
Biocharts: Unifying Biological Hypotheses with
Models and Experiments

Hillel Kugler
Microsoft Research Cambridge

Email: hkugler@microsoft.com

Abstract—Understanding how biological systems develop and
function remains one of the main open scientific challenges of
our times. An improved quantitative understanding of biological
systems, assisted by computational models is also important for
future bioengineering and biomedical applications. We present a
computational approach aimed towards unifying hypotheses with
models and experiments, allowing to formally represent what a
biological system does (specification) how it does it (mechanism)
and systematically compare to data characterizing system behav-
ior (experiments). We describe our Biocharts framework geared
towards supporting this approach and illustrate its application
in several biological domains including bacterial colony growth,
developmental biology, and stem cell population dynamics.

Index Terms—Computational Systems Biology; Visual For-
malisms; Temporal Logic; Developmental Biology; Stem Cells.

I. INTRODUCTION

Computer technology and software have changed the way

biological research is performed. A striking example is the

genomic revolution, which would have been impossible with-

out the practical support of software in storing, accessing and

analyzing very large data sets [1], [2]. However there is a

deeper connection between biology and software, based on the

resemblance between a biological system and a software sys-

tem, both being complex information processing “machines”

composed of many small units functioning together to achieve

various high-level requirements [3]. One of the unique features

of biological systems that make them different than systems

studied in other natural sciences is the inherent process of

computation that living systems perform. A main challenge

for the biological sciences in the next years will be developing

a theoretical framework to study biological computation that

will allow synthesizing pieces of the puzzle we know or aim

to discover using reductionist methods into a coherent system

level understanding of life. This could enable an understanding

of what cells and organisms compute, how they do it, what

happens if computation goes wrong, and how can such “errors”

in biological computation modules be fixed. As a starting point

to even begin and tackle these questions, a framework that

allows a formal yet user friendly representation of biology is

needed. Here we outline a proposal for such a framework,

towards unifying hypotheses with models and experiments,

allowing to formally represent what a biological system does

(specification) how it does it (mechanism) and systematically

compare models to data characterizing the system behavior

(experiments). We introduce our method that unifies scenario-

based and state-based modeling, provides a visual interface to

temporal logic via scenarios, and allows scalable simulation,

visualization and analysis.

II. SCENARIOS

Scenarios have emerged as a natural way to describe and

study system behavior (see e.g. [4], [5], [6], [7], [8]), and are

especially useful in modeling reactive systems [9], whose role

is to maintain an ongoing interaction with their environment

rather than produce some final value upon termination. Bio-

logical systems can be viewed as the ultimate reactive systems,

and thus methods influenced by engineered reactive systems

are now being adapted and developed for modeling biological

systems. In a scenario-based approach, each scenario captures

a “story” about some aspect of behavior, and all the scenarios

together describe and define the overall system dynamics. Here

we present our modeling framework based on the language of

Generalized Live Sequence Charts (GLSCs), that extends Live

Sequence Charts [10] and adapts it [11] towards biological

modeling.

A. Generalized Live Sequence Charts

Generalized Live Sequence Charts (GLSCs) is a visual

language for modeling behavioral requirements, and forms a

foundation for our framework for modeling biological systems,

Biocharts. We describe the main language features, outline the

semantic definitions and explain some of the design decisions

and the motivation from the biological perspective.

We consider an object oriented setting, where a system

is composed of a set of classes and objects. Each object is

an instance of one of the classes. The dynamic behavior is

defined by GLSCs, which capture the specification (what the

system should do), mechanistic behavior (how the biological

system works), design principles (including system invariants

and temporal properties), and experimental results (what is

known about the biological system from lab experiments). A

powerful capability of GLSCs and the Biocharts framework

is the ability to represent specifications, mechanisms and

experiments within the same framework.

More formally, an object system O is a set of classes and

a set of objects, with each object mapping to (by being an

instance of) exactly one class. GLSC requirements are a set

of GLSCs which collectively describe the behavior of O.

A Generalized LSC (GLSC) L describing O is defined by

L = 〈I,M, evnts , temp, side,V〉 where:

2013 IEEE 9th International Conference on e-Science

978-0-7695-5083-1/13 $25.00 © 2013 IEEE

DOI 10.1109/eScience.2013.41

317

I is a set of instances, each defined as a pair 〈locs, O〉
where locs is a finite totally ordered set of locations labeled

1, 2, . . .maxO and O ∈ O is the object (or class) corre-

sponding to the instance. For any I ∈ I, we denote the set

of I’s locations by locs(I). We assume that the locs(I)’s
are mutually distinct, and denote by locs(L) the set of all

locations of L.

M is a set of methods and messages. A method is a 4-tuple

of the form 〈name, sender , receiver , mode〉 where name is the

name of the method, sender and receiver are the names of the

instances from which the method is sent or by which it is

received, and mode ∈ {a, s} denotes whether the message

is asynchronous or synchronous. A message is a method

parameterized by a variable or property.

evnts: locs(L) → E maps locations to the events that

occur in them. The set E of events consists of the set Ev

of visible events (methods and messages), and the set Eh

of hidden events (assignments, conditions, and jumps), thus

E = Ev ∪ Eh. The set of L’s visible events, denoted by

Ev , consists of the sending/receiving events of messages and

methods, i.e., Ev = {snd(m), rcv(m) : m ∈ M}. Function

evnts−1:E × L → locs(L) maps events to a set of locations

within GLSC L.

temp: locs(L) → {H,C,W} maps locations to hot, cold,

or warm temperatures.

side:E → {sys, env} maps events as originating from the

system or the external environment. Hidden events are always

system events.

V is a set of typed variables. The types directly supported by

GLSCs are bounded non-negative integers, a numeric integer

range, enumeration, and Boolean.

An example GLSC with labeled locations appears in Fig. 1

B. Executions

A GLSC execution tracks the dynamic progress along a

scenario. For this purpose, a GLSC execution is coupled with

state information—a mapping from the GLSC variables V
to values, and also a cut, defined as a set of locations with

precisely one location from each instance line. Given a GLSC

L and execution Li (there can be several executions per GLSC

at runtime being tracked simultaneously) the lifetime of the

variables appearing in execution Li corresponds to the lifetime

of the execution itself. We avoid undefined values by requiring

that any variable in a GLSC has a predefined initial value (can

be a nondeterministic or random assignment), which is used to

initialize the variable each time an execution is created. The

initial cut is a cut whose instances are all at their topmost

locations. An event e ∈ E is enabled in execution Li if the cut

is located one position above each location in evnts−1(e, Li).
An event is minimal if it is enabled from the initial cut.

Liveness of an execution (the requirements on progress

for a given cut) is defined by cut temperature, which in

turn is determined by the temperature of the cut locations.

A hot cut contains at least one hot location. A cold cut
contains all cold locations. Progress is required from a hot

cut, whereas no progress is required from cold cuts. According

Fig. 1. An example of a scenario describing larval stages in C. elegans
development, with locations labeled for illustration purposes.

to our semantics, if an execution reaches a cold cut it closes

successfully. A warm cut contains at least one warm location,

but no hot locations. Warm cuts do not require progress and

thus an execution can remain infinitely often in a warm cut

without being considered as a violation. When an enabled

event occurs while being in a warm cut this will cause progress

[12].

These definitions are the basis for defining whether a system

satisfies a given GLSC requirements. An execution is satisfied
when it reaches a cold cut. Special cases are progressing to the

end of the chart, as the final locations of all instances are cold,

or a cold condition evaluating to false. An execution violates
when the partial order is violated (e.g. by the occurrence of a

message appearing in the execution which is not yet enabled)

or when a hot condition evaluates to false. To define whether

a system satisfies its GLSC requirements we consider all

traces composed of visible events that the system can generate,

and require that for all traces non of the GLSC executions

are violated. This relies on defining a step semantics, and

determining a sequence of hidden events that is taken in

response to a visible event.

C. Language Extensions and Semantics

At the core of executing, monitoring, verifying and applying

synthesis methods is the notion of a step. In a similar way to

the definition of statechart semantics [13], [14], we outline an

operational semantics for GLSCs. A full definition including

all language features is beyond the scope of this paper,

additional information is available online [15]. Intuitively, a

step is composed of a visible event, and the response to it,

318

a set of hidden events that can update local variables and

progress locations in GLSCs. We first provide more details on

the definition of visible and hidden events, before outlining

the step semantics.

An instance element is a graphical representation of an event

(see Fig. 2). Each instance element is anchored to one or more

instance lines, the instances of which are called participating
instances. There are two kinds of events:

Visible events include messages and methods, which are

unidirectional communications from a sender object to a

receiver object. Sending and receiving are considered two

distinct events for asynchronous communications. For syn-

chronous communications, sending and receiving are treated

as a single event. Methods are depicted on the GLSC as an

arrow pointing from the sender to the receiver, with the method

name above the arrow. Synchronous methods are drawn with

a solid arrow head, whereas asynchronous methods are drawn

with an open arrow head.

Fig. 2. An example of a scenario describing the behavior of two objects
a and b. If method m1 of object a occurs, as specified in the prechart, then
object b will execute method m3 if property p is TRUE, otherwise if property
p is FALSE it will execute method m4.

Hidden events are internal to a GLSC. All instance elements

denoting hidden events cause synchronization among the par-

Fig. 3. An example of a scenario describing class behavior, showing universal
quantification and dynamic object creation.

ticipating instances. They are depicted graphically as shown

in Fig. 2, 3. Assignments are shown as a rectangle with an

assignment expression inside. This causes an assignment of

a GLSC variable to the value of an expression. Conditions

are shown as a hexagon containing a conditional expression.

False evaluation results in either satisfaction (closure) of the

GLSC if cold, or violation of the requirements if hot. True

evaluation results in the cut being able to pass beyond the

condition. Jumps are not shown on the chart directly, but are

used in conjunction with conditions to implement higher level

control structures like loops and if-then-else. Synchronization

is represented using a hexagon with no conditional expression

inside and is syntactic sugar for a true condition, specifying a

synchronization with no other side-effect.

Visible events occurrences are global and not necessarily

associated with a specific GLSC. When an event occurs,

each GLSC execution is responsible for binding the event

to an instance element within the chart. If the event carries

additional information, such as parameters, additional actions

may be taken as part of the binding, such as unification.

For example, if a message event contains a constant actual

parameter k and some GLSC has a message instance element

319

with formal parameter X , the system will unify k and X .

Algorithm 1 Step algorithm

1: function STEP(v,mode)

2: Create new executions for minimal events

3: if v is a message then
4: for each GLSC � in the requirements do
5: for each execution e of � do
6: Bind visible event and perform unification

7: if unification failed then
8: Return failure
9: end if

10: end for
11: end for
12: end if
13: for each GLSC � in the requirements do
14: for each execution e of � do
15: Bind visible event v to an instance element i
16: if e.SingleStep(i) == success then
17: ProcessHiddenEvents(e,mode)

18: else
19: Partial order violation of �
20: end if
21: end for
22: end for
23: Compute the set of minimal events

24: Compute the set of enabled events

25: end function

We provide a schematic description of the step semantics

in Algorithms 1,2. The routine Step gets a visible event and

the execution mode, performs bindings and unification and

invokes the routine SingleStep that moves a cut onto an

instance element (which is bound to some enabled event).

It performs a series of final checks before declaring the

step successful and updating the cut. After updating the cut,

bookkeeping is performed. If the GLSC contains a subchart,

the subchart receives its own execution. Subcharts report the

result of their execution (i.e., satisfied or violated) to the parent

chart.

III. STATECHARTS

We adapt classical statecharts [16] following the directions

outlined in [17], [18]. The statechart itself is similar to the

description in [16], [13], [14], in that there are three types

of states: OR-states, AND-states and basic states. The OR-

states have substates related to each other by “exclusive or”,

AND-states have orthogonal components that are related by

“and”, while basic states have no substates, and are the lowest

in the state hierarchy. When building a statechart there is an

implicit additional state, the root state, which is the highest

in the hierarchy. The active configuration is a maximal set of

states that the statechart can be in simultaneously, including

the root state, exactly one substate for each OR-state in the set,

all substates for each AND-state in it and no additional states.

The general syntax of an expression labeling a transition in

Algorithm 2 Advancing the Cut by a Single Step

1: function SINGLESTEP(instance element i)
2: if i does not appear in the current GLSC, isn’t mini-

mal, or isn’t enabled then
3: Return success
4: end if
5: Advance the cut

6: if i is an asynchronous message receive and message

wasn’t sent then
7: Return failure
8: end if
9: if i is a hidden event then

10: if the element cannot be entered then
11: Return failure
12: else
13: Perform actions associated with hidden event

(if any)

14: end if
15: end if
16: if the LSC is in a cold cut or cold condition is false

then
17: Return success
18: end if
19: if i is a subchart then
20: Spawn a new execution

21: end if
22: Compute enabled events

23: end function

a statechart is “m[c]/a” where m is the method that triggers

the transition, c is a condition that guards the transition from

being taken unless it is true when m occurs, and a is an action

that is carried out if and when the transition is taken. All of

these parts are optional.

A. Classes and Objects

For Biocharts we adapt some of the principles of [19],

[14], especially the way statecharts are incorporated into an

object-oriented framework. The motivation for this decision is

that typical biological models require specifying many entities

(e.g., cells) with the same specification but each one in a

different active configuration. These entities can be created and

destructed dynamically during execution (representing, e.g.,

cells being born or dying), so the object oriented framework

is a natural one for representing such models.

A system is composed of classes, and a statechart can

describe the modal behavior of the class; that is, how it

reacts to messages it receives by defining the actions taken

and the new mode entered. A class that has an associated

statechart describing its behavior is called a reactive class.

During runtime there can exist many objects of the same

class, called instances, and each can be in a different active

configuration – a set of states in which the instance resides.

Thus, a new statechart is “born” for each new instance of the

class, and it runs independently of the others. When a new

320

instance is created, the statechart enters its initial states by

taking default transitions recursively until it is in an active

configuration.

A new feature that we implement for Biocharts, building on

our experience from biological projects, is to enable an object

to dynamically create a new object of the same class in exactly

the same active state as the original object is in at the time

of creation. This is useful in various biological contexts; for

example, during cell division, where daughter cells typically

inherit the state of the mother cell. In this case, the statechart of

the daughter cell is “born” in an active configuration identical

to its mother cell, and no default transitions are taken as part

of this initialization.

As mentioned above, the general syntax of an expression

labeling a transition in a statechart is “m[c]/a”, for message

m, condition c and action a. The message m is either a method

or a message as described in the GLSC definitions.

B. Steps

At the heart of statechart semantics is the precise definition

of the effect of a step, which takes the system from one

stable configuration to the next one. In general, we adapt the

definitions of [14]. Two important semantic decisions are that

changes made in a given step take effect in the current step,

and a step take zero time.

Biocharts also supports running lower level modules as

programs from GLSCs or statecharts. We now explain how

the low level part, which will typically describe the dynamics

of the biological pathways and networks, is integrated with

the high-level part. A state in a Biochart’s statechart can

include a ‘low-level’ module, which is a program P . This

P is activated on entering the state, by calling P.Start, and

is stopped when the state is exited, by calling P.Stop. The

program P has input variables x1, x2, · · ·xl, output variables

y1, y2, · · · ym and local variables z1, z2, · · · zn. The input and

output variables are part of the object’s variables, so that,

for example, another program P ′ activated in an orthogonal

state can use an output variable of P as one of its input

variables. Input variables are accessed by the program P by

calling xi.get() initially and at any stage of its computation.

Similarly, P can set the value of the output variables by calling

yj .set(val).

IV. BIOLOGICAL SYSTEMS

We illustrate the use of the Biocharts framework in several

biological domains, emphasizing the general concepts and

modeling principles, more details are available online [15]

including a tutorial, user guide and access to the models

described.

A. Chemotaxis and Bacterial Colony Growth

Understanding the biological processes and population dy-

namics of bacteria is a basic research area in biology. In recent

years there is also a growing interest in designing bacteria

to perform useful tasks in the field of synthetic biology,

e.g., for the production of biofuels [20]. We developed a

Fig. 4. Bacterial chemotaxis, moving from a Tumble to a Run state.

model that describes bacterial population dynamics, allowing

to specify individual bacteria and how they utilize chemotaxis

while searching for food, specifying bacterial metabolism and

cell division and enabling to study emerging system level

properties of the overall colony growth [17]. One the moti-

vations for building such a model, is that although bacterial

chemotaxis [21] is well studied, there are still significant

unknown questions in understanding how chemotaxis works

and the effect it has on the overall population dynamics, which

is key for bacteria colony survival and important for many of

the potential synthetic biology applications.

Bacteria movement is an advantage in heterogeneous en-

vironments where nutrients and toxins are not spread out

evenly. To guide the movement in a beneficial direction, the

bacteria must be able to sense gradients in its environment.

Most bacteria are generally considered to be too small to

sense gradients across their diameter. Thus, they are forced to

sense temporal changes in concentrations during their motion.

Movement in bacteria is usually composed of a repeated se-

quence, consisting of a relatively straight motion followed by a

reorientation to another direction. By making the reorientations

more frequent when the gradient is in an undesirable direction

and less frequent when it is in a beneficial direction, the

bacterium can relocate itself to a more suitable place.

In Fig. 4 we show an example of a scenario describing the

behavior of a bacterium after reorientation. If method evRun
occurs, and the property SwimmingState of Bacterium1
is equal to Tumble as specified in the prechart (the dashed

hexagon in the top of the chart), then the bacterium will

execute message SetSwimmingState(Run) resulting in set-

321

Fig. 5. Bacterial chemotaxis, moving from a Run to a Tumble state.

ting the property SwimmingState to Run. In a similar way,

another scenario shown in Fig. 5 specifies moving from state

Run to state Tumble.

The Biocharts framework allows using combined represen-

tations, via GLSCs or statecharts, a statechart representation

of the Bacterium class appears in Fig. 6. This high-level

statechart model invokes lower-level modules capturing the

molecular simulation of the pathway involved in chemotaxis

[22], as well as solvers tackling the metabolic modelling

using flux balance analysis (FBA) [23]. The invocations are

carried out based on the statecharts active state configuration.

Internally, the statechart execution is achieved via an automatic

translation to GLSCs that preserves the statecharts semantics

and utilizes the GLSC execution algorithm, a full description

of the technical details is beyond the scope of this paper.

B. Stem cell population dynamics

Stem cells are defined by their capacity to proliferate and

to differentiate into specific cell types. Understanding stem

cells is both a fascinating scientific question, but also of

practical importance as improper control of stem cell popu-

lations may underlie tissue degeneration and cancer. The C.
elegans germline [24] is a tractable system to study stem cell

population dynamics.

In the germline, which has the form of a U-shaped tube

composed of two “arms”, see Fig. 7, germ cells are typically

arranged in different regions which contain cells at various

differentiation stages, see also Fig. 8. The stem cells are

located at the more distal region (called the proliferative

zone), and they proliferate to initially grow the germline

population and later to maintain it by replacing cells that have

matured as oocytes or sperm, or have died. A well orchestrated

computation is needed to ensure proper functioning of the

system, making sure enough cells are created and at the

right times and positions. It is crucial that the underlying

computation is accurate and robust, as fertilized eggs lead to

Fig. 6. Part of a Statechart describing Bacterial Chemotaxis

the new generation of worms and are thus key for the species

survival.

A cell called the DTC (Distal Tip Cell) is positioned at

the distal end of each of the gonad arms, and produces a

signal that instructs the cells in the proliferative zone to remain

stem cells. A simplified view of the genetic pathway (can

be viewed as a high-level intuitive yet informal description

of the cellular biological circuit) appears in Fig. 9. A formal

and more detailed representation of the underlying biological

model appears in the statechart of Fig. 10.

Running model simulations allow a dynamic view into

germline development and maintenance, and performing var-

ious in-silico experiments. An interesting question related to

the overall computation is how fast should stem cells divide

to properly maintain the system. Cells have an “internal

clock” called the cell cycle [25] that controls the timing of

cellular division. The speed of the cell cycle in C. elegans
is known to be faster in early development stages than in

the adult. Model simulations allowed making predictions of

the effects of changes to the speed of the cell cycle on the

stem cell population. The model predicted that slowing of

cell cycle in early development can have significant effects

on the proliferative zone in the adult. By utilizing a strain

with a mutation that has a slower cell cycle, the in-silico

experiments were carried out in the lab and these predictions

were conformed experimentally [26]. These results suggest

that developmentally regulated cell cycle changes might be

an important design principle that impacts the maintenance of

stem cell systems.

322

Fig. 7. Schematic picture of the C. elegans germline, cells in only one of
the gonad arms (left side in figure) are shown. The Distal Tip Cell (DTC) is
shown in red at the edge of the gonad arm, The stem cells in the proliferative
zone are in yellow, cells in the transition zone are in light green, differentiating
cells in green, followed by oocytes in pink and sperm in purple.

Fig. 8. A more detailed schematic picture of the germline and gonad, and
its position within C. elegans [27]. The regions shown are from distal to
proximal : Distal Tip Cell, Proliferative Zone (stem cells), Transition Zone,
Meiotic Prophase (Differentiating cells), Oocytes, Sperm, Fertilized eggs.

Fig. 9. A Diagram showing a simplified version of the pathway controlling
the proliferation/differentiation decision.

Fig. 10. Top : A statechart of a germline cell.

Fig. 11. Embryonic development in C. elegans, each cell is shown as an
animated sphere, color coding is used to show cells that are progeny of the
same mother cell, this allows visualizing that the “orange” cells organize in the
top of the figure whereas the “red” cells organize in the bottom. Information
is displayed using the Network3D visualization tool [28], data captured from
live videos and image analysis algorithms in [29].

Fig. 12. Simulation of spatial behavior of cell populations : The execution
engine can be connected to custom built visualizations, providing information
on cell positions and lineage relationship, in this image an arrow between
a daughter and mother cell, selecting a cell in the visualization displays the
current properties of this cell.

C. Cell lineage

Understanding the cell lineage, the tree of divisions in a

multicellular organism, from the first cell division to differen-

tiated cells is a key research area in developmental biology.

Biological systems have evolved robust ways to build an

organism from an egg to the developed embryo and for

maintaining required cells during later stages in the life of

the organism, e.g., for reproduction or replacing cells that die.

An ideal system to study the lineage is C. elegans [30]. The

entire somatic lineage of C. elegans is known [31], it contains

959 cells and during normal development (termed wild-type) is

generated in a reproducible and almost deterministic way. We

323

Fig. 13. Visualization plots of complex multi-cellular systems : The user
interface allows to specify which cellular properties in the model to plot
during model simulation. In this image we are plotting the spatial positions
(x,y coordinates) for a stem cell model. Despite the abundance of data, the
general picture allows a quick way to compare for example between wildtype
(normal) and mutant (perturbed) behavior. Vertical lines initiating at regular
time points represent new cells being born.

have constructed a scenario-based representation in Biocharts

of the entire lineage. As shown in Fig. 14, the occurrence of

method Start in object Worm will trigger the first cell, P0
to be born and then divide, later triggering cell P1 to divide.

The first cell division is specified in Fig. 15, where P0 divides

to create daughter cells P1 and AB. The division of cell P1 is

specified in Fig. 16. The model specifies timing constraints on

divisions and allows ablating cells. This preliminary model can

serve as a “skeleton” to study an entire organism development,

and for connecting computational models of specific parts

of the lineage, e.g., vulval development [32] and germline

development [26] towards studying the interactions between

subsystems.

V. CONCLUSION

We present a computational approach aimed at unifying

hypotheses with models and experiments, allowing to formally

represent what a biological system does (specification) how

it does it (mechanism) and systematically compare to data

characterizing system behavior (experiments). The approach

is supported by visual languages that allow an easier entry

point for non programmers, both for specifying the models, for

examining existing rules and hypotheses and for tracking sim-

ulation and analysis results. The framework is available online

and can be run as a desktop application or in a web browser. As

our knowledge of biological systems becomes more detailed,

the need to synthesize the information into coherent and

predictive system models becomes more important, thus we

provide a semantic foundation and prototype tool supporting

the development of realistic mechanistic models of multicellu-

lar systems that enables interpreting and re-examining existing

data in a systematic way and investigating new hypotheses in-

silico towards experimental testing of predictions in the lab.

Fig. 14. The lineage in C. elegans

Fig. 15. The first division in C. elegans

324

Fig. 16. Cell P1 division in C. elegans

ACKNOWLEDGMENT

The author would like to thank Cory Plock for a long term

fruitful collaboration on scenario-based modeling and for his

dedicated work in developing the Biocharts framework.

REFERENCES

[1] E.S. Lander et al., “Initial sequencing and analysis of the human
genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001.

[2] J.C. Venter et al., “The sequence of the human genome,” Science
Signaling, vol. 291, no. 5507, pp. 1304–1351, 2001.

[3] P. Nurse, “Life, logic and information,” Nature, vol. 454, no. 7203, pp.
424–426, 2008.

[4] P. Heymans and E. Dubois, “Scenario-based techniques for supporting
the elaboration and the validation of formal requirements,” Requirements
Engineering Journal, vol. 3, pp. 202–218, 1998, springer-Verlag.

[5] J. Whittle and J. Schumann, “Generating statechart designs from scenar-
ios,” in 22nd International Conference on Software Engineering (ICSE
2000). ACM Press, 2000, pp. 314–323.

[6] M. Lettrari and J. Klose, “Scenario-based monitoring and testing of real-
time UML models,” in 4th Int. Conf. on the Unified Modeling Language,
Toronto, October 2001.

[7] S. Leue and T. Systä, “Scenarios: Models, Transformations and Tools,
International Workshop, Dagstuhl Castle, Germany, September 7-12,
2003, Revised Selected Papers,” in Scenarios: Models, Transformations
and Tools, ser. LNCS, vol. 3466. Springer-Verlag, 2005.

[8] S. Uchitel, J. Kramer, and J. Magee, “Incremental elaboration of
scenario-based specifications and behavior models using implied scenar-
ios,” ACM Trans. Software Engin. Methods, vol. 13, no. 1, pp. 37–85,
2004.

[9] D. Harel and A. Pnueli, “On the development of reactive systems,” in
Logics and Models of Concurrent Systems, ser. NATO ASI Series, K. R.
Apt, Ed., vol. F-13. New York: Springer-Verlag, 1985, pp. 477–498.

[10] W. Damm and D. Harel, “LSCs: Breathing life into message sequence
charts,” Formal Methods in System Design, vol. 19, no. 1, pp. 45–80,
2001.

[11] H. Kugler, C. Plock, and A. Roberts, “Synthesizing Biological Theories,”
in Proc. 23rd Int. Conf. on Computer Aided Verification (CAV’11), ser.
LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer-
Verlag, 2011, pp. 579–584.

[12] C. Plock, “Synthesizing executable programs from requirements,” Ph.D.
dissertation, New York Univ., 2008.

[13] D. Harel and A. Naamad, “The STATEMATE semantics of statecharts,”
ACM Trans. Software Engin. Methods, vol. 5, no. 4, pp. 293–333, 1996.

[14] D. Harel and H. Kugler, “The RHAPSODY Semantics of Statecharts
(or, On the Executable Core of the UML),” in Integration of Software
Specification Techniques for Application in Engineering, ser. LNCS, vol.
3147. Springer-Verlag, 2004, pp. 325–354.

[15] H. Kugler, “Biocharts Project Website,” 2013,
http://research.microsoft.com/Biocharts/.

[16] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci-
ence of Computer Programming, vol. 8, pp. 231–274, 1987, (Preliminary
version: Technical Report CS84-05, The Weizmann Institute of Science,
Rehovot, Israel, February 1984.).

[17] H. Kugler, A. Larjo, and D. Harel, “Biocharts: A Visual Formalism for
Complex Biological Systems,” J. R. Soc. Interface, vol. 7, no. 48, pp.
1015–1024, 2010.

[18] D. Harel and H. Kugler, “Some Thoughts on the Semantics of
Biocharts,” in Time for Verification, ser. LNCS, Z. Manna and D. Peled,
Eds., vol. 6200. Springer-Verlag, 2010, pp. 185–194.

[19] D. Harel and E. Gery, “Executable object modeling with statecharts,”
Computer, vol. 30, no. 7, pp. 31–42, July 1997, also in Proc. 18th Int.
Conf. Soft. Eng., Berlin, IEEE Press, March, 1996, pp. 246–257.

[20] T. Howard, S. Middelhaufe, K. Moore, C. Edner, D. Kolak, G. Taylor,
D. Parker, R. Lee, N. Smirnoff, S. Aves, and J. Love, “Synthesis of
customized petroleum-replica fuel molecules by targeted modification
of free fatty acid pools in Escherichia coli,” Proceedings of the National
Academy of Sciences, vol. 110, no. 19, pp. 7636–7641, 2013.

[21] G. Wadhams and J. Armitage, “Making sense of it all: bacterial
chemotaxis,” Nature Reviews Molecular Cell Biology, vol. 12, no. 5,
pp. 1024–1037, 2004.

[22] C. Morton-Firth, T. Shimizu, and D. Bray, “A Free-energy-based
Stochastic Simulation of the Tar Receptor Complex,” J Mol Biol., vol.
286, pp. 1059–1074, 1999.

[23] A. Feist, C. Henry, J. Reed, M. Krummenacker, A. Joyce, P. Karp,
L. Broadbelt, V. Hatzimanikatis, and B. Palsson, “A genome-scale
metabolic reconstruction for Escherichia coli K-12 MG1655 that ac-
counts for 1260 ORFs and thermodynamic information,” Molecular
Systems Biology, vol. 3, no. 121, 2007.

[24] E.J.A. Hubbard, “Caenorhabditis elegans germ line: a model for stem
cell biology,” Dev. Dyn., vol. 236, no. 5, pp. 3343–3357, 2007.

[25] P. Nurse, P. Thuriaux, and K. Nasmyth, “Genetic control of the cell divi-
sion cycle in the fission yeast Schizosaccharomyces pombe,” Molecular
and General Genetics, vol. 146, no. 2, pp. 167–178, 1976.

[26] Y. Setty, D. Dalfo, D. Korta, E.J.A. Hubbard, and H. Kugler, “A model of
stem cell population dynamics: in-silico analysis and in-vivo validation,”
Development, vol. 139, no. 1, pp. 47–56, 2012.

[27] D. Hansen, L. Wilson-Berry, T. Dang, and T. Schedl, “Control of the pro-
liferation versus meiotic development decision in the c. elegans germline
through regulation of gld-1 protein accumulation,” Development, vol.
131, no. 1, pp. 93–104, 2004.

[28] R. Williams, “Network 3d,” 2012, http://research.microsoft.com/en-
us/um/cambridge/groups/science/tools/network3d/network3d.htm.

[29] Z. Bao, J. Murray, T. Boyle, S. Ooi, M. Sandel, and R. Waterston,
“Automated cell lineage tracing in Caenorhabditis elegans,” Proceedings
of the National Academy of Sciences, vol. 103, no. 8, pp. 2707–2712,
2006.

[30] S. Brenner, “The genetics of Caenorhabditis elegans,” Genetics, vol. 77,
pp. 71–94, 1974.

[31] J. Sulston and H. Horvitz, “Post-embryonic cell lineages of the nema-
tode, Caenorhabditis elegans,” Developmental Biology, vol. 56, no. 1,
pp. 110–156, 1977.

[32] N. Kam, H. Kugler, R. Marelly, L. Appleby, J. Fisher, A. Pnueli,
D. Harel, M. Stern, and E.J.A. Hubbard, “A scenario-based approach
to modeling development: A prototype model of C. elegans vulval fate
specification,” Developmental Biology, vol. 323, no. 1, pp. 1–5, 2008.

325

