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Abstract
In this paper, we create an open-domain conversational sys-
tem by combining the power of internet browser interfaces
with multi-modal inputs and data mined from web search and
browser logs. The work focuses on two novel components: (1)
dynamic contextual adaptation of speech recognition and under-
standing models using visual context, and (2) fusion of users’
speech and gesture inputs to understand their intents and asso-
ciated arguments. The system was evaluated in a living room
setup with live test subjects on a real-time implementation of
the multimodal dialog system. Users interacted with a television
browser using gestures and speech. Gestures were captured by
Microsoft Kinect skeleton tracking and speech was recorded by
a Kinect microphone array. Results show a 16% error rate re-
duction (ERR) for contextual ASR adaptation to clickable web
page content, and 7-10% ERR when using gestures with speech.
Analysis of the results suggest a strategy for selection of multi-
modal intent when users clearly and persistently indicate point-
ing intent (e.g., eye gaze), giving a 54.7% ERR over lexical
features.
Index Terms: spoken dialog systems, spoken language under-
standing, multi-modal fusion, conversational search, conversa-
tional browsing.

1. Introduction
Spoken dialog (conversational) systems have seen considerable
advancements over the past two decades [1]. A variety of prac-
tical goal-oriented conversational systems have been built and
deployed. The goal of these systems is to automatically identify
the intent of the user as expressed in natural language, extract
associated arguments or slots, and take actions accordingly to
satisfy the user’s requests.

A major limitation of conversational systems is their nar-
row scope; conversational systems are constrained to operate
over a small number of narrowly defined, known domains, with
hand-crafted domain-dependent schemas (ontologies). As a re-
sult, there has been an increased level of interest by the re-
search community to create open-domain conversational sys-
tems. These systems utilize very broad vocabularies, grammars,
and intent models. However, the breadth of domain coverage
comes at the cost of lower accuracy; without the constraints of
limited tasks, speech-enabled systems are often unable to cope
with the complexity open-domain speech recognition and un-
derstanding.

Advances in hand-held devices, touch displays and vision
processing technology provide an opportunity for the speech
community to increase the domain coverage of conversational
systems. Rather than relying on spoken input only, systems can

exploit the visual constraints introduced by touch, gesture, and
eye gaze. For example, pointing gestures can be used to narrow
the focus of attention to sub-region of the visual presentation,
giving the conversational system useful priors on what to expect
the user to say (e.g., selecting an item by pointing at it and say-
ing “that one”). Since Bolt’s seminal work on voice and gesture
at the graphics interface [2], several studies investigated use of
multi-modality for conversational interactions with a machine.
Previous studies investigated the use of pointing gestures [3],
touch gestures (including selection of items or an area on the
screen for example with a remote control [4, 5], with finger [6]
or with a pen [7]), and gaze and head-pose [8].

Another promising source of constraints for open-domain
conversational systems is data from web search and internet
browsers [9]. Web search engines and browsers are perhaps
the most pervasive, ubiquitous open-domain tools available to
people today to find information and complete transactions. In
many ways, search and browse have elements of automated con-
versational interactions, or the “interactive, spontaneous com-
munication between two or more [agents] who are following
rules of etiquette” [10]. Search and browse conversations are
interactive because the system responds to what has previously
been communicated. The conversations are spontaneous be-
cause the user is not constrained by domain. Developers of
search engines and browsers place considerable emphasis on the
design of interactions. These interaction models in many ways
are patterned after rules of etiquette of human-human conver-
sations, with designs considering how to maximize information
flow while minimizing unpleasant interruptions (e.g., relevance
versus monetization).

Early work on leveraging search engines and browsers fo-
cused on exploiting offline information in the user logs: queries
and corresponding clicks on links (documents) from search en-
gines and browsers capturing interactions over many hundreds
of millions of users and sessions. Work on exploiting the query-
click graphs include [11–16]. More recent work has focused on
human-computer addressee detection for conversational brows-
ing [17], as well as methods to exploit the combination of search
logs and semantic graphs [18–21].

In this paper, we create an open-domain conversational
system by combining the power of internet browser interfaces
with multi-modal inputs and data mined from web search and
browser logs. We focus on two input modes, speech and ges-
ture, and combine them to interact with browser and web page
interfaces and page elements (e.g., links, drop-down menus,
forms). By utilizing the pre-existing interaction mechanisms
of web pages, we are able to by-pass the requirement to craft
interactive user experiences for each domain of interest. In this
way, the system inherits the open-domain designs and protocols
of internet searching and browsing.



2. Conversational Scenario
In the conversational search and browse scenario, a user is free
to navigate and interact with any page on the web through natu-
ral conversations with the machine. The user can speak with no
constraints on their vocabulary, grammar, or choice of intent.
As the user is browsing, they may choose to refer to content
on the current page or not. Users may select links of the page
contents in at least 3 ways:

1. Explicit clicks: User utterance refers to a link on the
page, such as “show me Il Fornaio” or “Il Fornaio” in
Figure 1. The utterance may be accompanied with hand
gestures and eye focus.

2. Location referrals: User’s utterance may include the
relative position of the hyper-link on the page, such as
“click on the top one”. These may again be accompanied
with gestures and eye focus.

3. Gesture and speech: Users may click on a link by ges-
turing in combination with speech, for example, point-
ing to the link and saying “that one”, where the spoken
utterance does not overlap with the anchor text of the
hyper-link.

Figure 1: Example multimodal (speech + gesture) scenario.

Developing a system to enable the above scenario presents
several technical challenges. First, the system must decide
whether the user is referring to content on the current page or
another page. If the user refers to the current page, the system
must capture the intent: click, fill a form, scroll up/down, etc.
In Figure 1, the user’s intent in Turn 1 (from another web page)
was to navigate to this current page by saying “I’m looking for a
restaurant in Palo Alto”. Turn 2 refines the content on the page
to only show Italian restaurants. And finally, in Turn 3, the in-
tent was to select the restaurant link they gestured towards. If
the user had said “now show me what’s playing at the closest
theater”, the system would need to recognize the shift in user
intent/task as well as understand that the user is not referring to
any content on the page, but rather wants to navigate to a movie
theater listings web page.

3. Context Adaptation
A particularly effective method to reduce complexity of con-
versational systems is adapting to context. The context is in
multiple forms. Some of the more common examples include:

• Visual Context: used to increase the prior likelihood the
user will refer to entities/relations on the page

• Dialog Context: used for grounding, co-reference res-
olution, as well as potentially more complex inference
and reasoning

• Personal Context: used to increase the prior of choices
based on personal preferences from histories, geograph-
ically, etc.

In this paper, we leverage visual context. We use
maximum-a-posteriori (MAP) unsupervised adaptation to adapt
the statistical language model (SLM) of the speech recognizer
to the content on the page [22]. The adaptation text can either be
extracted from the page links (anchor text/titles) and/or landing
page content. The extraction can be completed at either run-
time or during an offline web page crawl procedure. For the
example in Figure 1, the listed restaurant names, street names,
food genre are all extracted from the scrape of the link/anchor
text. The SLM probabilities and lexicons for names such as “Il
Fornaio” can be increased to reflect the given visual context.
The details of the restaurant found on the landing page of the
link can be included in the adaptation data as well.

In addition to adapting the speech recognizer, the visual
context can be used to adapt the semantic components of the
system. For the example of Figure 1, priors of intents related
to restaurants would be increased (reservations, reviews, etc.).
Each of the links represents a new intent that can be dynami-
cally added to the system.

An advantage of adapting to the page content at run-time
versus crawl-time is the scalability of the solution: the system
is always “fresh” and able to support conversational interaction
on a page even if its content has recently changed. This is partic-
ularly important for dynamic pages (restaurant/movie reviews,
breaking news, sporting results).

By following the above procedure to dynamically adapt to
the visual context, the system in effect scales to the breadth of
the web. By adjusting priors based on the visual content of the
page, as well as related/connected pages (landing pages), the
system can achieve this scale robustly, as will be demonstrated
in the experiments of Section 5.

4. Multimodal Click Intent Detection
In addition to expressing intent verbally, a user may find it more
natural in certain situations to express their intent visually. The
simultaneous combination of two modes of intent expression
is referred to as multimodal intent. This paper focuses on the
combination of speech and hand gesture. Specifically, we study
the effect of speaking while pointing at an object, such as a link
on a web page. The scenario in Figure1 shows a user pointing
at a restaurant link and saying “Show me that one.” Multimodal
interactions such as these are powerful, saving time by reducing
dialog turns as well as intent/speech recognition errors.

In the following, we discuss each mode of intent capture
separately, and then how they are combined. Then we show ex-
perimental results that illustrate the power of the resulting mul-
timodal user interface.

4.1. Lexical Intent

Given the dynamic nature of web pages, we seek an effective
lexical intent similarity measure that can be implemented with-
out the requirement for supervised training. For this purpose,
we utilize the well known term frequency-inverse document



frequency (TF-IDF) similarity measure from web search rele-
vance [23].

For our purposes, we treat the k-th actionable element on
the web page, pk, (e.g., link, drop-down menu, form) as a doc-
ument. We will refer to the user’s utterance as a query, q. The
TF-IDF similarity between the query, q, and the page element,
pk, is given as

TF-IDF(q, pk) =
∑
t∈q

tf-idft,pk (1)

where t denotes each term (word) in the query, TF is the number
of occurrences of the term in pk, and IDF is the log inverse of
the number of page elements that contain the term t. The IDF
factor is especially important for our task, since many terms
on a given page will have little or no semantic discriminating
power. For example, anchor text from links on a restaurant web
page are likely to have the term restaurant in almost every link.

4.2. Gesture Intent

As with lexical intent, we seek a measure to capture the simul-
taneous voice and visual gesture intent of the user. For both
speech recognition and hand movement detection, we use the
popular and low-cost sensor Kinect. Kinect is a microphone
array and a skeletal tracking motion sensing input device by
Microsoft for the Xbox video game console and Windows PCs.
The sensor has adequate resolution and software to accurately
track hand movements. However, additional processing is re-
quired to discriminate intentional hand gestures such as point-
ing from unintentional hand movements.

Figure 2: Pointing gesture intent model

For this work, we employ a simple model of pointing intent;
a sequence starting with the hand motion, a brief pause with the
hand still, followed by a spoken query. Figure 2 represents this
model. Typically (as with Kinect) the hand gesture controls a
cursor. The simplest method to determine the intended object
selection is to compute the shortest straight line distance from
the cursor to the (bounding box around) the page element. To
decrease the chance of false positives, a gesture focus region
may also be used. Gesture focus regions can be implemented
with a weighting function, typically based on the inverse dis-
tance of the cursor to the object. Figure 3 shows the family of
exponential inverse distance weighting (IDW) functions used in
the experiments

Gesture Score = exp(
−|d|a

10b
). (2)

The IDW is used to specify the region of focus around the
gesture’s cursor. The goal of the IDW is to help balance the
precision-recall of the gesture detection: a narrower region
around the cursor (e.g., a = 2, b = 0) decreases the false alarms
by reducing the affect of nearby objects, while a wider region
(a = 1, b = 1) decreases the chance of incorrectly missing
the intended object. The distance is measured in pixels from
the gesture cursor to the object on the screen (e.g., web link,
drop-down menu, form region). The IDW functions map the
distances to [0, 1], with a distance of 0 (the user is pointing di-
rectly at the object of interest) mapped to the maximum weight
of 1.

Figure 3: Gesture focus windows around the cursor.

4.3. Combining Intents

To form a single multimodal score for the kth page element,
SMk , we use linear interpolation to combine the lexical score
and the gesture score

SMk = (1− α) TF-IDF(q, pk) + α · Gesture Score

= (1− α)
∑
t∈q

tf-idft,pk + α · exp(
−|d|a

10b
) (3)

The values for α, a, and b are determined experimentally. Once
the multimodal intent score is computed, it can be used for de-
tection of intent by thresholding the score

Λ(SMk ) ≷accept
reject θ. (4)

The threshold θ can be optimized to minimize the cost of the
error types: false accept, where the system incorrectly detected
the presence of a user intent, and miss, where the system failed
to detect the intent of the user.

5. Experiments and Results
5.1. Data Sets

We collected two data sets from 8 speakers during 25 sessions
(set 1) and 7 speakers during 14 sessions (set 2). Both collec-
tions were performed in a living room set up, where users were
seated on a couch approximately 5-6 feet away from a televi-
sion screen. At the beginning of their first session, users were
shown a short tutorial video demonstrating how the system can



be used, and were asked to improvise open-domain usage sce-
narios. In the first collection, the tutorial video included exam-
ple usage scenarios with explicit (voice) clicks (as defined in
Section 2) whereas in the second collection, the tutorial video
included examples of using gesture with speech to click on a
link. In both collections, users searched and browsed the web
over open-domain tasks (e.g., shopping).

The total number of user turns in the first collection is
2,868, and 917 (31.9%) of these have a click intent. The second
set includes 1,101 user turns, and 284 (25.8%) of these have a
click intent. For the second set, we also computed the num-
ber of different types of clicks: 87.3% of the clicks are explicit
clicks, 1.1% are location referrals and 11.6% include combined
gesture and speech.

While hand pointing gestures were used for “click” intents,
the collected data also includes cases of false gestures and false
alarms by the system, such as a user lifting their arm to reach
something on the coffee table. Hence, we further analyzed the
usage of multi-modal input on a subset of the second collection.
First, we separated out all utterances that control the display,
such as “scroll down”, as these can be captured with a high pre-
cision using the user’s spoken utterances. Table 1 summarizes
this analysis. 558 user turns are split into two: ones that are
accompanied with a hand gesture and no gesture. The intent of
these turns are categorized into click intents and non-click in-
tents. In this analysis, we merged the gesture and speech clicks
with location clicks as the second group is very infrequent, and
named them “Click other”. In this data subset, 22.8% of user
utterances did not have a click intent, and yet a gesture was
captured falsely. Similarly, 18.3% of the click utterances (ex-
cluding the explicit clicks) did not include a pointing gesture.

Table 1: Statistics of user turns with/without hand gestures.

Gesture No Gesture TOTAL
Found Found

Click “that one” 15 (2.7%) 1 (0.1%) 16 (2.8%)
Click other 25 (4.5%) 102 (18.3%) 127 (22.8%)
Non-Click 127 (22.8%) 288 (51.6%) 415 (74.4%)

TOTAL 167 (30.0%) 391 (70.0%) 558

5.2. Results

To examine the effectiveness of contextual adaptation for ASR,
we used 2,868 utterances (9,346 words) from the first collec-
tion and completed tests on statistical language model (SLM)
adaptation. While the average utterance length in this set looks
short (3.3 words), this is mainly because this set contains all
user turns in a session, including commands to change the dis-
play, which are usually 1-2 words (such as “scroll down” and
“back”). About 40% of the utterances are such commands, 32%
are click utterances, and 28% are the rest.

Table 2 shows the word error rate (WER) results from these
experiments, where we compare a generic large vocabulary
400K word conversational speech recognition language model
(LVCSR-LM) with its dynamically adapted version. The ta-
ble also includes an analysis of impact on performance of click
(32%) and non-click (68%) utterance subsets. Overall, with
an out-of-vocabulary (OOV) rate of 0.25% and adapting the
language models to the visual context improved the WER of
the LVCSR-LM from 20.6% to 19.2%. WER for the context-
related click utterance subset improved from 28.2% to 23.7%
(a relative improvement of 16%), without a degradation on the
performance of the rest of the turns. The small improvement

(from 17.4% to 17.1%) on the non-click turns can be partially
due to domain adaptation as a side effect of adapting to the vi-
sual content.

Table 2: ASR WER with contextual adaptation.

LM WER WER WER
overall Click subset Non-Click subset

LVCSR-LM 20.6 28.2 17.4
LVCSR-LM 19.2 23.7 17.1
+ adaptation

To study the effects of the gesture intent signal independent
of how often it is used and the quality of the gesture detector, we
complete simulations where all components/measures are real
except the gesture. Table 3 shows results on a held-out random
sample of 75% of the turns in data sets 1 and 2. The table shows
the probability of the error types (false accept and miss) using
the multimodal score and the intent detector of Equations 3-
4. Results are computed for both manual transcription of the
speech and automatic speech recognition using the contextual
adaptation. The parameters of the detector are varied to show
the affects of the size and shape of the gesture focus window
(a and b) and the interpolation weight (α) between lexical and
gesture-based intent. Since we normalized the scores of the lex-
ical and gesture intent detectors to be [0-1], α can be interpreted
as the relative importance of the gesture score in the combina-
tion.

For these experiments, we also simulated the human user’s
gesture intent to control for gesture precision. The simulation
places the gesture cursor on an equidistant curve from the in-
tended page element (link). The gesture precision distance, R,
is the number of pixels that the cursor is away from the desired
object (e.g., web link) and the page. We simulated gestures
for two different gesture precisions: R = 0 and R = 20 pix-
els. The probability of missing the multimodal intent, Pmiss,
is computed in the operating region where the probability of
falsely detecting an intent is low (Pfa = 1%). We focus on this
operating region due to the sensitivity of users to false positives
and the objectionable user experience of the system incorrectly
taking actions (clicking).

The best performing multimodal intent detector uses a bal-
anced blend of lexical and gesture (α = 0.5) and a broad ges-
ture focus window (a = 1,b = 2). At these settings, with per-
fect speech recognition, perfect gesture precision (R = 0), and
the user gesturing towards the intended page element (link) for
100% of the trials, the Pmiss(@Pfa=1%) = 8.1%. This repre-
sents an upper bound on the performance and is a 68.2% error
rate reduction (ERR) compared to the single mode lexical in-
tent detector (‘No Gesture”) with Pmiss(@Pfa=1%) = 25.5%.
With the same settings for the gesture focus window, with au-
tomatic speech recognition (ASR), and with a gesture precision
of R = 20, the Pmiss(@Pfa=1%) = 16.9%. This is a 50.3%
error rate reduction (ERR) over lexical intent alone.

Using the same development data set used to compute the
results in Table 3, we conducted experiments with real human
gestures and an automated gesture detection model. For this
test, we extracted gesture positions from the data logs that were
generated using the model shown in Figure 2. We examined
two cases: (1) all logged gestures and (2) only gestures where
the user also said “that one”. The first case includes all cases
where a gesture was detected, which is approximately 30.0%
of the test cases (see Table 1). The second case was used to
isolate human gesture precision from the errors introduced by
the gesture detection model.



Table 3: Summary of multi-modal intent detection with simulated gestures.

R = 0 R = 20
IDW IDW Gesture Pmiss@Pfa=1% Pmiss@Pfa=1% Pmiss@Pfa=1% Pmiss@Pfa=1%
a b α Manual ASR Manual ASR

No Gesture - - - - - 25.5% 34.0%
1 0 0.25 10.2% 21.1% 25.5% 34.0%
1 0 0.50 9.5% 19.4% 25.5% 34.0%
1 0 0.75 10.0% 19.9% 25.5% 34.0%
1 1 0.25 10.2% 21.1% 21.5% 31.5%
1 1 0.50 8.3% 18.3% 16.9% 27.1%
1 1 0.75 8.6% 18.5% 8.3% 20.1%
1 2 0.25 10.9% 21.3% 12.3% 23.1%

Gesture 1 2 0.50 8.1% 18.3% 7.2% 16.9%
1 2 0.75 8.3% 18.3% 7.6% 17.1%
2 0 0.25 10.4% 21.3% 25.5% 34.0%
2 0 0.50 9.5% 19.4% 25.5% 34.0%
2 0 0.75 10.0% 19.9% 25.5% 34.0%
2 1 0.25 10.2% 21.1% 25.5% 34.0%
2 1 0.50 8.3% 18.3% 25.5% 34.0%
2 1 0.75 10.0% 19.9% 25.5% 34.0%
2 2 0.25 10.2% 21.1% 25.0% 33.3%
2 2 0.50 8.3% 18.3% 23.4% 32.2%
2 2 0.75 8.3% 18.3% 20.6% 30.8%

Figure 4: DET results for multi-modal intent detection

The results are shown in Table 4. With the introduc-
tion of errors due to both human gesture precision and the
gesture detection model, the performance over all the trials
was Pmiss(@Pfa=1%) = 22.9% (ERR=10.2%) and 31.7%
(ERR=6.8%) for manual transcriptions and ASR, respectively.
For the case where the user clearly indicated the pointing
intention with the phrase “that one” while gesturing, the
Pmiss(@Pfa=1%) = 15.4% for both manual and ASR (per-
fect recognition of the phrase), which is ERR=39.6% and
ERR=54.7%, respectively. For this second case, we computed
the average gesture precision for humans. Referring to Table 3,
the gesture precision (R) for humans was is in the range of 16.4
to 28.6 pixels, depending on the density of the visual content on
the screen. In other words, humans are able to precisely ges-
ture towards the intended element. The drop in performance,
therefore, was a result of (1) humans only gesturing toward the
intended page element 30.0% of the time (see Table 1) and (2)

errors in the gesture detection model (see Figure 2).
Figure 4 summarizes the performance of the same experi-

ment for ASR and compares human performance to the upper
bound with perfect gesture detection and 100% user participa-
tion in gesturing towards the intended page element (link) when
speaking. The top two curves show the performance of the real
multimodal lexical+gesture detector compared to the baseline
(lexical only).

Table 4: Multi-modal intent detection with real gestures.

IDF IDF Gesture Pmiss@Pfa=1% Pmiss@Pfa=1%

a b α Manual ASR
No Gesture - - - 25.5% 34.0%

All 1 2 0.50 22.9% 31.7%
Gestures 1 2 0.50 15.4% 15.4%

+ “that one”

6. Conclusions
This paper described the development of a multi-modal dialog
system for conversational web search and internet browsing.
The work focused on two novel components: dynamic con-
textual adaptation of speech recognition and spoken language
understanding models using multi-modal conversational con-
text, and fusion of users’ multi-modal speech and gesture in-
puts for understanding their intents and associated arguments.
The system was evaluated in a living room setup with live test
subjects on a real-time implementation of the multimodal dia-
log system. Results showed a 16% error rate reduction (ERR)
for contextual ASR adaptation to clickable web page content,
and 7-10% ERR when using gestures with speech. Analysis of
the results showed that when users clearly and always indicate
pointing intent while simultaneously using voice, the combi-
nation of modalities yields a 54.7% ERR over lexical features.
While we observed users only point with hand gesture 30% of
the time, the result suggests that other, more persistent modali-
ties (e.g., eye gaze) could be used to yield substantial gains over
speech alone.
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