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Abstract

A key decision facing autonomous systems with ac-
cess to streams of sensory data is whether to act
based on current evidence or to wait for additional
information that might enhance the utility of tak-
ing an action. Computing the value of informa-
tion is particularly difficult with streaming high-
dimensional sensory evidence. We describe a belief
projection approach to reasoning about information
value in these settings, using models for inferring
future beliefs over states given streaming evidence.
These belief projection models can be learned from
data or constructed via direct assessment of param-
eters and they fit naturally in modular, hierarchical
state inference architectures. We describe princi-
ples of using belief projection and present results
drawn from an implementation of the methodology
within a conversational system.

1 Introduction

Real-time adaptive systems, such as self-driving cars, mon-
itoring systems, and conversational agents, reason continu-
ously under uncertainty: they probabilistically estimate the
state of the world based on data collected via multiple sen-
sors and use these state estimates to guide action selection.
Sensors and inferences can be characterized by different lev-
els of accuracy and by stochastic delays, and collecting ad-
ditional evidence can lead to improved state estimates at the
cost of delayed action. For instance, face identification of-
ten becomes more accurate as a person approaches a camera.
Significant tradeoffs can arise between the decision to act im-
mediately based on the available evidence or to wait for addi-
tional evidence to accumulate for the future action. To resolve
such tradeoffs, a system must reason about the expected bene-
fits and costs of future courses of actions, including gathering
additional information under uncertainty.

Exact computation of the value of information with stream-
ing sensory data is challenging for several reasons. Real-
time systems often harness high-dimensional streams of evi-
dence, which introduce challenges in training accurate gener-

*Stephanie Rosenthal contributed to this research during an in-
ternship at Microsoft Research.

ative observation models. As an example, an embodied con-
versational agent can leverage pixels in RGB video streams,
depth maps, and audio signals to track the location, intentions
and goals of people in the surrounding environment. Build-
ing generative models that accurately predict future pixels,
depth maps, and audio signals based on the previous series of
such rich observations is a challenging task. In fact physically
situated conversational systems often rely on hierarchies of
conditional models that abstract the high-dimensional stream-
ing sensory evidence into fewer, lower-dimensional percepts.
For instance, a conversational agent may use vision models to
track and identify people in its vicinity based on an analysis
of pixels in a video stream. These trajectory and identity per-
cepts can be used to infer peoples’ goals and intentions, and
ultimately to drive decisions about interaction. Even when
relying on the abstraction of high-dimensional sensors, per-
forming belief updates by iteratively combining predictions
of generative observation models can lead to an accumulation
of errors over long periods of time.

We address the challenge of constructing information-
gathering policies for systems that rely on high-dimensional
streaming sensor data. As we will discuss in more detail,
traditional approaches for computing the value of informa-
tion do not perform well in these settings as they use gener-
ative models for predicting future observations that are hard
to train and reason with. We propose an approach we refer
to as belief projection, in which direct conditional models are
used to predict future beliefs from a prior stream of observa-
tions. We show how these models can be used to resolve the
tradeoffs between acting immediately, waiting for more evi-
dence to accumulate, or, more generally, orchestrating which
sensors should be activated at a given time. The proposed
belief projection models can be learned automatically, via
self-supervision, and fit naturally into hierarchical inferen-
tial architectures. We demonstrate a practical implementa-
tion of these ideas in a physically situated embodied conver-
sational agent that uses natural language to interact with peo-
ple. The proposed approach enables a mixed-initiative en-
gagement policy in this system, and opens new opportunities
for solving other real-world decision problems.

2 Related Work

Tradeoffs between acting and waiting can be resolved by
computing the expected value of information (VOI). VOI has



been also used in prior work for evaluating the value for per-
forming additional computation [Horvitz, 1987] and for eval-
uating the value of precomputing answers to future problem
instances with currently available resources [Horvitz, 2001].

In settings with large state spaces and high-dimensional
streaming evidence, exact computation of VOI is challenging
for several reasons. First, the computation requires reasoning
about an exponentially growing tree of future evidence gath-
ering actions and outcomes [Heckerman et al., 19931, which
quickly renders the problem intractable. To address this issue,
various approximations of VOI have been proposed. Most
VOI approximations employ a greedy analysis, assuming that
only a single piece of evidence will be observed [Ben-Bassat,
1978; Heckerman et al., 1992] before action is taken. If the
problem has a submodular structure, greedy VOI approaches
have been shown to have well-defined error bounds [Krause
and Guestrin, 2007]. Non-myopic VOI analyses have been
formulated [Heckerman et al., 1993; Bilgic and Getoor, 2011;
Liao and Ji, 2008] for situations where sequential obser-
vations are independent. When future evidence can per-
fectly predict the state, approximate algorithms [Armstrong-
Crews and Veloso, 2008] can be used. Algorithms have
also been proposed for problems with decomposable structure
[Boutilier ef al., 19991, and for problems with a search space
that grows linearly in the horizon [Hajishirzi er al., 2009].
Decisions about when to terminate evidence collection have
also been studied in optimal stopping problems [Pe3kir and
Sirjaev, 2006]. Tractable solutions developed for this class of
problems are not applicable to our setting as the aggregation
of evidence can have arbitrary influences on beliefs.

The challenge of acting under uncertainty with streaming
evidence has been noted as a key Al research problem [Sel-
man et al., 1996]. Previous work on computing VOI in such
settings has focused on myopic analyses and domain-specific
heuristics [Oliver and Horvitz, 2003]. We propose a new ap-
proach to reasoning about information value amidst streams
of high-dimensional evidence. The proposed approach is my-
opic but includes actions for waiting different amounts of
time for new streaming evidence.

Besides the exponentially growing search tree, a sec-
ond important challenge in computing VOI with high-
dimensional evidence has to do with the use of generative
observation models [Kaelbling et al., 1998]. Constructing
such models is difficult for domains with high-dimensional
observation spaces. In addition, it has been shown [Kamar et
al., 2012] that predicting future beliefs by iteratively apply-
ing generative observation models leads to accumulation of
errors in belief predictions. Predictive state representations
have been proposed as an alternative to generative approaches
[Littman et al., 2002]. However, these representations are
also prone to error accumulation as a result of iterative updat-
ing. We introduce belief projection, where direct conditional
models are used for tractable and accurate predictions of fu-
ture beliefs.

3 Approach

To resolve the tradeoff between acting immediately and wait-
ing to collect additional observations, systems need to con-

sider the uncertainty of their current state and of future obser-
vations. The tradeoff can be formalized using a POMDP, or
equivalently a belief MDP [Kaelbling ef al., 1998]. s; € S
represents the state of the world at time ¢. Uy is a sequence
of evidence vectors that are collected by the system from
time 1 to time ¢, ¥; = {¢;}i=1.¢- b:i(s¢) represents the
system’s belief at time ¢ about being in state s;. p(b|Uy)
is the probability of b; given evidence collected. The set of
actions A is composed of a set of domain actions A, and
the action a,, which represents waiting a single time step
to collect additional information. The system transitions to
a terminal state after taking a domain action. p(¥;41|0;)
is the probability of future evidence after taking action a,,.
R(st,a) is the system’s reward for taking action a at state
s¢.  The expected reward for belief state b; is computed
(b, a) =3, bi(st) - R(se, a).

The VOI at any belief state b, is the difference between
Vwait, the value for waiting, and V., the value of acting.
Vwait and V. are computed with the Bellman equation:

Vaet(be) = gelaAi r(bt, a) )

Vwait (bt) = T(bz, a’w)+
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Vit bty
where V*(b;) = max(Vaet(bt), Viait (bt)). A positive VOI
indicates that it is beneficial to wait for more evidence.

The number of belief states that need to be explored for
the exact computation of VOI grows exponentially with the
depth of lookahead, rendering exact computation intractable,
especially when evidence arrives incrementally in a stream-
ing manner. To overcome this complexity, we introduce an
approximation procedure that converts the sequential deci-
sion problem into a myopic problem, while still considering
the utility of taking sequences of information gathering ac-
tions. We move beyond the recursive consideration of se-
quences and introduce longer duration wait actions, Aoy (k)
which represent waiting for k£ time steps and then taking a
single domain action and terminating. The reward for tak-
ing these actions can be approximated from existing reward
functions, e.g, 7(b¢, Gy(iy) = k - 7(bt, aw), or can be elicited
directly from domain experts. The value of taking a,, ) is
calculated as follows, under the assumption that the system
will take the best domain action at the end of waiting:

Viwait (k) (be) = 7(be, i)+
> Wikl W) - Y p(berr|Piyr) - Vaer (berr) O

Uitk btk

The value of waiting (V,,4,+(b¢)) is approximated as the max-
imum of values associated with the different wait durations.
Although greedy, this computation is still intractable as
it requires a model that predicts future sensory evidence,
p(¥y4x| V). Building a generative model that predicts future
observations is intractable because of the high-dimensionality
and streaming nature of the sensory evidence ). Complex
systems that harness perceptual machinery, such as cameras
and microphones, use off-the-shelf non-decomposable com-
ponents for making state inferences p(s;|¥;), where 1; is
high-dimensional, e.g., pixels for face tracking or raw au-
dio for speech recognition. Alternative formulations using
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Figure 1: Training setup for belief projection models.
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factorizations of p(WUs 1| Uy) into (Vi yrlSttk) - D(Strk|Pe)
encounter similar tractability challenges.

To address this computational challenge, we introduce be-
lief projection. Belief projection models are direct condi-
tional models of the form p(b;;x|¥;) that predict the future
belief at time ¢ + & based on the evidence W collected up to
time ¢. These models do not require predictions of future sen-
sory evidence streams, and can be used to estimate the value
of wait actions:

Vwait(k)(bt) = T(bu aw(k)) + Z p(bt+k‘\IJt) : Vact(btJrlc) “4)

btk

The belief projection model p(b:1;|¥;) can be trained in
a supervised manner without requiring manual labeling (see
Figure 1). The training data, consisting of pairs of the form
W, — byik, can be collected automatically at runtime by
recording W, the sensory evidence collected up to time ¢,
and the output of the state inference model at time ¢ + k (see
Figure 1). For each data point (U, by ), the features U,
describe the sensory evidence collected up to time ¢. The cor-
responding label, b, , consists of the output of the state in-
ference models at some future time ¢ + k; the training label is
a belief over the state s, . For instance, if the state is binary,
i.e, sy € {0,1}, the belief over s; is defined over the unit
1 simplex, i.e, by € A, which is the [0, 1] real interval. In
this case, the belief projection model constructs a probability
distribution over this simplex, or over the [0, 1] interval.

A possible approach to constructing belief projection mod-
els is to employ a mixture of Beta distributions (see the ap-
plication described in Section 4). The model parameters can
be trained from data in a maximum likelihood manner. An
alternative is to discretize the [0, 1] interval into several bins,
treat the problem as multinomial classification, and to build
a model via discriminative learning techniques such as maxi-
mum entropy or decision trees. The complexity of the learn-
ing problem increases as the size of the original state space
increases. For instance, if instead of being binary, the state is
a multinomial variable with d possible values, the belief over
s¢ is defined over the unit d — 1 simplex, i.e., by € Ald=1)
The state projection inference model could be constructed in
this case as a mixture of Dirichlet distributions.

Finally, we note that the proposed approach requires that
we sum over all possible beliefs b, 1. In practice, a tractable
solution for computing this sum (or integral) is required. One
approach that works well when the underlying state space is
small is to discretize the belief space (the simplex) into a num-
ber of bins, and to sum over the corresponding probabilities.

Another alternative is to construct belief projection models
with parametric forms that allows for analytic integration. We
have explored the use of non-parametric techniques (decision
trees and random forests) for learning belief projection mod-
els that can directly provide belief samples which can be used
in the VOI computation.

As we mentioned earlier, belief projection is well-suited
for complex systems constructed via the coupling of multi-
ple, modular inference components into hierarchical state in-
ference architectures. In such systems, lower-level compo-
nents, such as speech recognition and face tracking and iden-
tification, are usually trained and optimized separately, prior
to integration in a larger application. These components ab-
stract the high-dimensional streaming sensory evidence, such
as raw audio and video data, into fewer lower-dimensional
percepts, such as words spoken and the location and iden-
tity of a person. The outputs of these perceptual models
are then used as inputs for higher-level domain-specific in-
ferences models that reason about goals, activities, and other
relevant state variables, which ultimately drive interaction de-
cisions. An example is shown in Figure 3 and discussed in
more detail in the next section. Belief projection is a natural
fit for computing VOI for such modular architectures as mod-
els can be trained independently for each low-level perceptual
inference model. The projected beliefs over the percepts can
then be used to infer the corresponding beliefs of the high-
level state.

4 Application

We now review an implementation of the methodology de-
scribed earlier to support a mixed-initiative engagement pol-
icy in a deployed system that has been serving as an auto-
mated secretary for nearly two years.

4.1 The Assistant

The Assistant is a multimodal interactive kiosk displaying an
animated avatar head. The system is stationed outside the
office of an employee at our organization (see Figure 2 part
(a)) and has been serving as an automated secretary. The sys-
tem has access to the owner’s calendar, computer activity, and
the wifi fingerprints of devices on the owner’s network, and
continuously makes probabilistic forecasts about the owner’s
availability and arrival for meetings via subsystems devel-
oped as separate research projects [Horvitz er al., 2002;
2004]. The Assistant can interact via spoken language with
visitors who stop by the owner’s office and handles a va-
riety of administrative tasks, such as providing information
about the activities, whereabouts, and future availability of
its owner, scheduling meetings, and relaying messages. The
system leverages an array of sensors and makes real-time in-
ferences about people in its proximity, including their iden-
tities, activities and goals, in support of natural and effective
interactions with visitors.

4.2 Engagement Problem

An important challenge for the Assistant is managing its en-
gagement with people. Engagement is the process by which
participants in a conversation coordinate their actions to ini-
tiate, maintain and terminate their interactions [Sidner et al.,
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Figure 2: (a) The Assistant outside the owners office. (b) Visitor walks through the Assistant’s field of vision. (c) Visitor heads
towards the chair to wait for owner. (d) Visitor sits down in Assistant’s field of view.

2005; Bohus and Horvitz, 2009]. Prior versions of the As-
sistant used a conservative, heuristic engagement policy: the
system waited for users to initiate engagement by entering in
an f-formation [Kendon, 1990] with it, i.e., by approaching
and standing closely in front of it. This policy was designed
to minimize false positive cases where the Assistant would
accidentally initiate engagement with someone walking by or
standing nearby but talking to someone in another office. At
the same time, we had noticed that people who are waiting
for the owner (to return to his office, or to become available)
often bypass the system and sit in nearby chairs (see Figure 2
(a)) or talk to others while waiting. In these situations, the
Assistant’s engagement policy did not allow it to proactively
initiate engagement, which led to missed opportunities to en-
gage a waiting person in dialog. Such missed opportunities
can be costly. For example, the system may know that the
owner is running late for a scheduled meeting, and would like
to relay this information if the person waiting is scheduled to
meet with the owner. Without knowledge of the delay, the
visitor may leave in frustration.

The engagement problem is a sequential decision-making
problem with streaming evidence. The Assistant can par-
tially observe the state of the world: it cannot perfectly ob-
serve a visitor’s goals or intentions to engage with the system.
However, the Assistant has access to streaming observations,
which provide additional evidence about the true state of the
world over time. The observations are complex, composed
of information from multiple sensors including a camera and
a microphone, and the domain of observations can be very
large. The decision to reach out and engage someone near
the system depends on inferences about the state of the world
based on the streaming and high-dimensional observations.

At each time step, the Assistant makes a decision between
acting to engage right away, and waiting to gather additional
sensory evidence in support of better decisions. In addition,
the Assistant can take actions to seek additional evidence in
real time. Specifically, the system can take and send a snap-
shot of the visual scene to human volunteers and ask them to
help identify the person in the scene. When deciding how to
act, the Assistant needs to reason about multiple sources of
uncertainty: uncertainty about the streaming observations it
may collect, about when the responses to information gather-
ing actions will arrive, and about whether and when the per-
son may leave the scene (and thus curtail an opportunity to
engage in conversation).

The methodology described earlier enables a mixed-
initiative engagement policy which allows the Assistant to
initiate engagement proactively with users (even at a distance)
when it is confident about the state of the user, and to wait or
trigger external queries for additional evidence when it is un-
certain. This engagement policy hinges on inferences about
the current state and future observations, and trades off the
value of additional sensory evidence that is likely to be accu-
mulated in the future with the costs of engaging people that
are not looking for the owner, and the costs of missed oppor-
tunities to engage visitors before they leave.

4.3 Formalization

The engagement problem described above can be formalized
in terms of a belief MDP. The state .S relevant for making en-
gagement decisions subsumes three variables: (1) the users
Presence (P), which can take two possible values: present,
denoting that the user is still present in the scene, or not-
present, denoting that the user has left the scene; (2) the
User’s Engagement Action (U E'A), which can take two pos-
sible values: engaging, denoting that the user is entering in
an f-formation with the Assistant, or not-engaging otherwise;
and (3) the users Goal (G), which can take two possible val-
ues: looking-for-owner, denoting that the user is looking for
the owner, or other if this is not the case. The Assistant can
observe whether a user is present, but cannot fully observe
the user’s engagement action or goal. The Assistant keeps a
belief state representing its belief about the non-observable
variables of the state. The belief is inferred based on a hi-
erarchical graphical model shown in Figure 3, which lever-
ages three lower-level percepts: F-Formation (FF), which in-
dicates whether or not a user is entering in an f-formation
with the Assistant; Activity (A), which indicates whether or
not the user is approaching the Assistant; and On-Calendar
(OC), which indicates whether the user has a meeting with
the owner that has started or is about to start. These lower-
level percepts are in turn inferred based on direct conditional
models that leverage even lower-level high-dimensional ob-
servations obtained from sensors such as sustained attention,
the trajectory of the face, speed of movement, proximity, cen-
trality of location, face identification information, as well as
the owner’s calendar information.

The engagement problem includes two domain actions:
Engage, in which the Assistant engages the user immediately,
and DontEngage, in which the Assistant decides to not en-
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Figure 3: Hierarchical graphical model for state inference.

States .S System Utility
Engagement Goal (G) Action (A)
Action (UEA)
. Engage 1.00
engaging {any) DontEngage 0.05
looking- Engage 0.75
not- for-owner DontEngage 0.25
engaging Engage 0.10
other DontEngage 1.00

Table 1: Utilities for state and action combinations.

gage the user. If the user is not present, the Assistant can
only take the DontEngage action. The decision-making prob-
lem terminates after taking any of the domain actions. Evi-
dence collection actions include: Wait(t) to collect additional
sensory information, and AskAndWait(t) to ask an external
source whether the user is the person on the owner’s calen-
dar and also collect sensory information while waiting for the
response, where ¢ ranges from 1 to 100 seconds.

The reward function represents the utility for taking an ac-
tion at a given state. The rewards for taking Engage and Dont-
Engage actions at different states elicited from the Assistant’s
owner are shown in Table 1. The current policy in the Assis-
tant considers a 0.05 cost for taking action AskAndWait(t).

In belief MDPs, the transition model represents the proba-
bility of transitioning to a belief state after taking an action.
Traditional methods for predicting future belief states would
use observation models for predicting future evidence. Delib-
erating amidst high-dimensional streaming evidence makes
these methods infeasible. Instead, we combine predictions of
multiple belief projection models, as outlined in Section 3,
to predict future belief states. Three belief projection models
predict the future values of FF, A and OC variables. The hi-
erarchical model given in Figure 3 is used to turn beliefs over
these perceptual variables to beliefs over binary UEA and
G variables. The belief over each of these binary variables
is a 1-dimensional simplex, i.e., the interval [0,1]. In this
case, we construct the three belief projection models heuris-
tically, based on mixtures of Beta distributions; we present
these models in Subsection 4.5, where we illustrate their im-
plementation and function with a concrete example.

To determine the transition probabilities, the predictions of
belief projection models are combined with predictions of a
model for the likelihood that a user may leave the scene. This
inference is based on the time since the actor was detected,
via a mixture of two linear hazard rate distributions: the first

component has a mean of ~ 4 seconds and models people that
simply pass through the corridor and the second component
has a mean of ~ 300 seconds and models people that sit in an
alcove near the Assistant.

When the AskAndWait(t) action is taken, the transition
model takes into account the likelihood that the response will
arrive sometime in the future and the likelihood about the
content of the message if it arrives. The first likelihood is
modeled via a log-normal distribution with a mean of 40 sec-
onds. The likelihood of the content of the message is mod-
eled with the Assistant’s current prediction of the OC vari-
able. Once the message arrives, the Assistant updates its be-
lief about the OC variable with the content of the message.

4.4 Selecting Actions

Based on the methodology outlined in Section 3, the Assis-
tant computes the expected utilities for taking any of the do-
main actions, and for taking any of the information-gathering
actions followed by the best domain action. The expected
utilities for domain actions reflect the Assistant’s belief about
immediate rewards. The expected utilities for observation
gathering actions combine the potential benefits of improved
estimates of the state of the world with the potential costs of
external queries or for missing the opportunity to engage if
the user leaves the scene.

The Assistant recomputes the utilities at every time step
and chooses the action with the highest expected utility. With
this replanning approach, the Assistant may choose a partic-
ular action like Wair(10) at a certain time, while at the next
time step the action selected might change based on the accu-
mulated evidence, e.g., to something like Engage or Wait(50).

4.5 Sample Trace

We now illustrate the methods with a sample trace of the
Assistant’s operation. In the example, a visitor approaches
the office where the Assistant is stationed (see Figure 2(b)),
passes by the system (see Figure 2(c)) and sits down in a
nearby chair (see Figure 2(a,d)).

Between times ¢; and t5, as the visitor approaches, the
width of the face (Figure 4A), as well as the probability
of f-formation and approaching (Figure 4D) are increasing;
the Assistant is uncertain about whether this visitor is on-
calendar (Figure 4D). Based on the lower-level perceptual
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Figure 4: Sample traces: face width (A), action utilities (B,
C), and inferences (D).
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Figure 5: Projected percept beliefs computed for ¢y for On-
Calendar (A), Activity B, F-Formation (C), and Wait(t) com-
puted at 5.

evidence, the state inference indicates that at time ¢ the
marginal probability that the visitor is looking-for-owner is
0.33 (Figure 4D). As the visitor is approaching, the expected
utility for Engage has been steadily increasing and for Dont-
Engage has been decreasing (Figure 4B).

The Assistant also computes the utility of Wai#(t) and
AskAndWait(t). For each time t, these computations are based
on projection models for the On-Calendar, Activity and F-
Formation percepts. Figures 5A, B, and C show the projected
future beliefs (black histograms at every future time point),
as computed at time ¢5. The actual beliefs (constructed at the
future points) are also shown as a solid, colored line.

The projected beliefs for the On-Calendar percept, shown
as black histograms in Figure 5A, are constructed based on
a mixture of two Beta distributions. The mixture model is
formulated such that, if the actor is getting closer the system
(as in our example), the On-Calendar perceptual inference is
more likely to output future beliefs with more certainty, con-
centrated towards O and 1. The projected beliefs for the Ac-
tivity and F-Formation percepts are computed similarly and
displayed in Figures 5B and C. These figures indicate that,
if the Assistant waits, there will be reduced uncertainty over
whether the person is on the calendar, whether they are ap-
proaching, and whether they are entering in an f-formation.
The computation for the expected utility of Wait(t) performed
at time ¢, integrates over these predicted future beliefs, and
also takes into account the probability that the actor will dis-
appear. Figure 4C shows the resulting expected utility of
Wait(t) for different values of . The maximum expected util-
ity is attained for a wait time of {=3 seconds, and corresponds
to the value for the Wait action shown in gray in Figure 4C.
Similarly, the computation for the expected utility of AskAnd-
Wait(t) integrates over the predicted future beliefs, as well as
over the probability that the response might arrive by time ¢,
and takes into account the likelihood of different responses.

As Figure 4B shows, while initially the expected utility on
Engage increases, and even exceeds the expected utility of
DontEngage shortly thereafter, the expected utility of Wait is
even larger; the system infers that waiting is most beneficial
since the person is getting closer and uncertainties about their
identity, and, ultimately their goals, will likely be resolved
and a better decision can be made in the near future.

Next, the visitor passes by the Assistant and sits in a nearby
chair (see Figure 2(d)). In Figure 6A, B, and C, we show
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Figure 6: Projected percept beliefs computed for ¢3 for On-
Calendar (A), Activity B, F-Formation (C).

the projected beliefs for the On-Calendar, Activity and F-
Formation percepts, as computed at time t3. As the person
is no longer moving closer, the projected beliefs indicate that
there is not much to gain by waiting. At t3, the expected util-
ity of AskAndWait exceeds the expected utility of Wait (see
Figure 4B), as the perceptual belief projection model indi-
cates that the identity will not be known better in the future
and the visitor will not likely leave immediately. The Assis-
tant launches an external query about the visitor’s identity.

From this point forward, the AskAndWait action is no
longer evaluated, but the utility computation for the Wait(t)
action also reflects the fact that the response to the infor-
mation gathering action might arrive. When this happens a
few seconds later, at time ¢4, the system finds that the visitor
is indeed the person expected and the corresponding proba-
bility for on-calendar increases to 1.0 (see Figure 4D). The
maximum expected utility action becomes Engage (see Fig-
ure 4B), and the system proactively engages the visitor that
is at this point still waiting in the chair (see Figure 2D), by
saying ‘“Pardon me, are you looking for [Owner’s Name]?”

5 Conclusions and Future Work

We introduced belief projection for computing the value of
information in systems that operate with high-dimensional
streaming sensory evidence. The approach relies on develop-
ing direct conditional models to predict future beliefs based
on current evidence. Belief projection can be used to resolve
tradeoffs between acting immediately and waiting for more
evidence to accumulate. The methods are well-suited for sys-
tems that use hierarchical architectures for making state in-
ferences. We implemented belief projection in a deployed in-
teractive agent and illustrated how the methodology enables
mixed-initiative engagement policies. Using belief projection
models constructed with heuristic parameters, the system is
able to deliberate about the value of waiting for more infor-
mation from sensors, soliciting help in real time from experts,
or acting immediately.

We are currently exploring the learning of the projection
models from case libraries of sensory data via non-parametric
methods. Another direction for future work is investigating
whether belief projection can be applied to broader decision-
making problems with arbitrary sequences of actions.
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