
Lifelong Learning for Acquiring the Wisdom of the Crowd

Ece Kamar, Ashish Kapoor, Eric Horvitz
Microsoft Research
Redmond, WA USA

{eckamar, akapoor, horvitz}@microsoft.com

Abstract
Predictive models play a key role for inference and
decision making in crowdsourcing. We present
methods that can be used to guide the collection
of data for enhancing the competency of such pre-
dictive models while using the models to provide
a base crowdsourcing service. We focus on the
challenge of ideally balancing the goals of collect-
ing data over time for learning and for improving
task performance with the cost of workers’ contri-
butions over the lifetime of the operation of a sys-
tem. We introduce the use of distributions over a set
of predictive models to represent uncertainty about
the dynamics of the world. We employ a novel
Monte Carlo algorithm to reason simultaneously
about uncertainty about the world dynamics and the
progression of task solution as workers are hired
over time to optimize hiring decisions. We evaluate
the methodology with experiments on a challeng-
ing citizen-science problem, demonstrating how it
balances exploration and exploitation over the life-
time of a crowdsourcing system.

1 Introduction
In recent years, crowdsourcing has emerged as a valuable ap-
proach to harness human abilities from a population of work-
ers to solve tasks that computers cannot easily perform alone.
Crowdsourcing has been used to solve such tasks as image
labeling, product categorization, and handwriting recogni-
tion. In most cases, system administrators take on the bur-
den of managing crowdsourcing tasks and making hiring de-
cisions. This time consuming job is a barrier for wider uses
of crowdsourcing. We investigate principles and algorithms
for the adaptive control of crowdsourcing tasks. We describe
a methodology, named CrowdExplorer, that optimizes hir-
ing decisions by adaptively learning about tasks as it ob-
serves worker contributions. We demonstrate the operation
and value of the methods with a workload drawn from efforts
on a large-scale citizen science challenge.

We focus particularly on inference and decision making for
the crowdsourcing of consensus tasks. The goal of consen-
sus tasks is to identify a correct answer by collecting assess-
ments from different human workers. Examples of consensus

tasks include games with a purpose (e.g., image labeling in
the ESP game) [Von Ahn and Dabbish, 2008], paid crowd-
sourcing systems (e.g., product categorization in Mechanical
Turk) [Ipeirotis, 2010], and citizen science projects (e.g., ef-
forts to classify birds or celestial objects). Consensus tasks
can be subtasks of larger tasks. For example, a system for
providing real-time traffic flow and predictions may acquire
reports on traffic conditions by contacting drivers within tar-
geted regions [Krause et al., 2008].

We shall describe how successful adaptive control of con-
sensus tasks hinges on managing the tradeoff between the
exploration of consensus tasks by hiring workers and ex-
ploitation by optimizing the best action to take via the use
of decision-theoretic models. We formalize decision-making
in consensus tasks with a Markov decision process (MDP)
with partial observability, and highlight the challenges in the
adaptive control of consensus tasks when accurate models of
the world are not known and need to be learned over time. We
describe a methodology we refer to as CrowdExplorer for the
adaptive control of consensus tasks. CrowdExplorer uses a
set of linear predictive models to learn continuously about the
dynamics of consensus tasks. The procedure quantifies its un-
certainty over the world dynamics with probability distribu-
tions over a set of models. CrowdExplorer uses a novel Monte
Carlo planning algorithm to optimize decisions about hiring
workers by efficiently and simultaneously reasoning about
the uncertainty over models and about the way a task may
progress. We evaluate the methodology on a dataset collected
from a real-world crowdsourcing effort called Galaxy Zoo.
The evaluations demonstrate that the methodology can out-
perform existing approaches for addressing the exploration-
exploitation tradeoff and that its use can significantly improve
the value of crowdsourcing.

2 Consensus Tasks
A task is a consensus task if it centers on identifying a correct
answer that is unknown to the task owner but can be correctly
identified by aggregating multiple workers’ predictions. For-
mally, a consensus task t is characterized as follows: Let A
be the set of possible answers for t. There exists a mapping
t → a∗ ∈ A that assigns each task to a correct answer. L ⊆ A
is a subset of answers that workers are aware of, o ∈ L is the
prediction (vote) of a worker about the correct answer of the
task. Each task is associated with a finite horizon (budget)

h, which determines the maximum number of workers that
can be hired for a task. The task owner has a positive utility
u ∈ R>0 for correctly identifying the correct answer of the
task but hiring each worker is associated with a cost c ∈ R>0.
Once the budget is consumed, a consensus rule f maps the
sequence of worker votes {o1, ..., oh} to the correct answer
a∗ ∈ A. A widely used example of consensus rule is the ma-
jority rule, which determines the correct answer as the answer
that is predicted the most by the workers.

A crowdsourcing system usually hosts a series of consen-
sus tasks of the same task class (e.g., image labeling and
product categorization) which may arrive at arbitrary times.
In a traditional workflow, the system uses the whole budget
to identify the correct answer using the consensus rule and
delivers the correct answer to the task owner. Once a task is
completed, the system moves on to solving another task. With
this workflow, the system is able to achieve perfect accuracy
but hires the maximum number of workers for each task. We
focus in this paper on an adaptive control methodology that
can learn about consensus tasks over time and optimize the
hiring of workers to maximize the overall efficiency.

2.1 Galaxy Zoo as Consensus Tasks
We motivate and evaluate our adaptive control mechanism
with Galaxy Zoo. Galaxy Zoo is one of the largest citizen sci-
ence efforts to date and serves as a well-known and canonical
example of a consensus task. The Galaxy Zoo system was de-
signed to engage members of the public to provide help with
identifying the correct classification of millions of galaxies
[gal, 2007].

Each Galaxy Zoo task is an image of a celestial object.
Workers classify images into 6 possible classes (e.g., ellipti-
cal galaxy, clockwise spiral galaxy). The budget of a Galaxy
Zoo task is determined by the number of workers assigned
to the task by the original Galaxy Zoo system and this num-
ber varies randomly from 30 to 93 for different tasks. Ac-
cording to the consensus rule defined by the task owners, the
correct answer of a Galaxy Zoo task is determined as the an-
swer that is agreed upon by at least 80% of the workers once
the whole budget is consumed. If such a consensus is not
reached, the correct answer is called undecidable. Studies on
the data collected from the Galaxy Zoo system showed that
the answers identified through the consensus rule have high
agreement with expert opinion [Lintott and others, 2008].

2.2 Modeling Consensus Tasks
We model decision making in consensus tasks as a finite-
horizon MDP with partially observable rewards, represented
with a tuple < h, S,A, T,R >. h, the horizon of the task, is
determined by the maximum number of workers to be hired
for a task. st ∈ S, a state of a consensus task at time t, is com-
posed of {o1, ..., ot}, the sequence of worker votes. 1 A, the
set of actions for a consensus task include H , hire a worker,
and ¬H , terminate and deliver the most likely answer to the
task owner. Making the right tradeoff between these two ac-
tions is crucial for the success of the system because when

1If the system has information about the properties of the task or
about characteristics of workers hired for the task, the state repre-
sentation can be expanded accordingly.

¬H is selected, the system terminates and there is no chance
to reverse this decision. T (st, α, st+1) is the likelihood of
transitioning from state st to st+1 after taking action α. The
system transitions to a terminal state and then moves on to a
new task, if the selected action is¬H . If the system decides to
hire a worker, the system may transition to any st+1 such that
st+1 = st ∪ {ot+1}, where ot+1 ∈ L. This transition prob-
ability corresponds to the likelihood of a randomly selected
worker voting ot+1. Since worker votes are correlated, this
likelihood is conditioned on the sequence of votes collected
so far on a task.

The reward function R(st, α) represents the reward ob-
tained by executing action α in state st. The reward for hiring
a worker is determined by c, the cost for hiring a worker. The
reward for terminating a task depends on the likelihood of
correctly identifying an answer label for the task. The sys-
tem can observe the sequence of votes collected for a task,
and consequently the current state, but it cannot observe the
correct answer. Therefore, it keeps a belief about the correct
answer at each state to be able to estimate the reward for ter-
minating. The correct answer is computed using the consen-
sus rule at the horizon. At states earlier than the horizon, the
correct answer is predicted by applying the transition model
recursively until reaching the horizon. b(st, a), the probabil-
ity of correct answer being a at state st, is computed as given
below, where f is the consensus rule:

b(st, a) =
{

[f(o1, ..., ot) = a] if t = h
Σst+1∈ST (st, H, st+1)b(st+1, a) otherwise

When the system terminates, it delivers the answer that is the
most likely to be correct according to its belief. Let â =
argmaxa∈Ab(st, a), the reward for terminating at state st is
defined as R(st,¬H) = b(st, â) × u, where u is the utility
for predicting the answer correctly.

When the parameters of the MDP are known, the Bellman
equation can be used to calculate for any state st the value for
terminating (V ¬H) and the value for hiring (V H):

V ¬H(st) = R(st,¬H)

V H(st) = R(st,H) +
∑
st+1

T (st,H, st+1) V π∗(st+1)

where V π∗(st) = max(V H(st), V ¬H(st)). The decision at
any state of a consensus task is guided by Value of Informa-
tion (VOI) analysis. VOI for state st is the difference between
V H(st) and V ¬H(st). If VOI is computed to be positive, it
is beneficial to hire an additional worker.

In practice, the number of states of a consensus task grows
exponentially with the horizon, which makes exact solution
approaches intractable. Previous work showed that consen-
sus tasks can be solved efficiently using Monte Carlo plan-
ning, when accurate models of the dynamics of the world are
known [Kamar and Horvitz, 2013].

Here, we investigate approaches for the adaptive con-
trol of consensus tasks in settings where accurate models
of the world do not exist. Adaptive control of consensus
tasks differs from other problems with inherent exploration-
exploitation tradeoffs. In solving consensus tasks, a system

needs to make decisions without receiving continuous rein-
forcement about its performance. Until the system reaches to
the horizon, it does not receive an explicit signal about its per-
formance. In contrast to traditional problems, in which any
action helps to explore the world, the exploration of a con-
sensus task permanently terminates once ¬H action is taken.

In consensus tasks, the domains of answers and worker pre-
dictions are finite and known. The values for the horizon,
utilities for correct identification of answers and for worker
costs are quantified by task owners. However, both the priors
on the correct answers of consensus tasks and the transition
models are unknown, and they need to be learned over time.
Therefore, to make hiring decisions appropriately, a success-
ful adaptive control system needs to reason about its uncer-
tainty about its specific models of the world as well as its
uncertainty over the way a task may progress.

3 Adaptive Control Methodology
We now focus on the CrowdExplorer methodology. The
building blocks of CrowdExplorer are an online learning
module for learning a set of probabilistic models represent-
ing the dynamics of the world (i.e. state transitions), and a
decision-making module that optimizes hiring decisions by
simultaneously reasoning about its uncertainty about its mod-
els and the way a task may stochastically progress.

One of the key challenges is that the number of state transi-
tions that define the dynamics of consensus tasks grows expo-
nentially with the horizon. To address this challenge, we use
a property of consensus tasks: the next state of the system
is completely determined by the vote of a next worker. Using
this property, we capture the transition probabilities with a set
of models that predict the vote of a next worker based on the
current state of the task. This implicit representation of the
world dynamics significantly reduces the number of variables
needed to represent consensus tasks.

Formally, we model state transitions with a set of linear
models M = {M1, ..., M|L|}, where Mi predicts the likeli-
hood of a next worker predicting the answer as ai ∈ L. Each
model takes as input a set of features describing the current
state, including the ratio of number of collected votes to the
horizon, and for each vote class, the ratio of number of votes
collected for that class to the total number of votes collected.
Let xt denote k dimensional feature representation of state
st and each model Mi is defined by k-dimensional vector of
weights wi, then we estimate transition probabilities as be-
low, where st+1 = st ∪ {ot+1 = ai}.

T (st, H, st+1) =
ewT

i xt

Σje
wT

j xt

The linear models are constantly updated using an online
learning algorithm. Initially, the models are uninformative
per the lack of training instances. As workers provide votes,
the system has access to more data and consequently the mod-
els starts to provide useful transition probabilities. As these
models are latent, we represent the parameters wi as random
variables. The online learning is implemented as a Bayesian
inference procedure using Expectation Propagation [Minka,

2001]. Specifically, the inference procedure provides a Gaus-
sian posterior distribution over the model parameters wi. One
of the key benefits of the Bayesian treatment is that the vari-
ance of this posterior distribution captures a measure of con-
fidence in determining the model. Intuitively, when little data
observed, the inference procedure will typically return a co-
variance matrix with large diagonal entries, corresponding to
the high degree of difficulty in determining the model from
a small amount of data. This uncertainty quickly diminishes
as the system sees more training instances. Reasoning about
such uncertainty is crucial as it enables management of the
tradeoff between exploration, learning better models by hir-
ing more workers, and exploitation, selecting the best action
based on the current models of the world.

begin
initialize PrM = {PrM1 , ..., P rM|L|}
foreach task i do

si
t ← {}

repeat
V OI ← CalculateV OI(si

t, P rM)
if V OI > 0 then

ot+1 ← GetNextWorkerV ote
AddLabel(PrM , ot+1)
si

t+1 ← si
t ∪ {ot+1}

si
t ← si

t+1

end
until V OI ≤ 0 or t = h

output si
t.â

end
end
CalculateVOI(st:state, PrM :model distribution)
begin

repeat
{fM1, ..., M̃|L|} ← SampleModels(PrM)

SampleExecutionPath(st, {fM1, ..., M̃|L|}, h)
until Timeout
return V OI ← st.V

H − st.V
¬H

end
Algorithm 1: CrowdExplorer methodology

The other key component of CrowdExplorer is the
decision-making module. This module is responsible for esti-
mating the value of hiring an additional worker by taking into
account the uncertainty over the models and over the stochas-
tic transitions of the world. The foundation of the decision-
making module is a Monte Carlo planning algorithm, MC-
VOI, which is designed for making decisions for consensus
tasks when accurate models of the world are known. MC-
VOI explores the exponential space of consensus tasks effi-
ciently by sampling future state, action transitions. Previous
work has shown that MC-VOI can outperform other Monte
Carlo planning algorithms for solving consensus tasks. We
expand the MC-VOI algorithm in our decision-making mod-
ule to reason about the model uncertainty that is inherent to
adaptive control in addition to reasoning about the stochastic
transitions in the world.

Details of the CrowdExplorer methodology are given in
Algorithm 1. For any state si

t of a consensus task i, the

methodology uses sampling to estimate values of states for
taking different actions as an expectation over possible mod-
els and stochastic transitions. At each iteration, the method-
ology first samples a set of models (M̃1, ..., M̃|L|) from the
model distribution PrM . These sampled models are then
used to sample future state transitions from si

t by continu-
ously taking action H until reaching the horizon. The re-
sulting state transitions form an execution path. Each exe-
cution path represents one particular way a consensus task
may progress if the system hires workers until reaching the
horizon. The aggregation of execution paths forms a partial
search tree over possible states. The tree represents both the
uncertainty over the models and over future transitions.

For each state st on the partial search tree, the methodology
uses recursive search on the tree to estimate values for hiring a
worker (st.V

H) and for terminating (st.V
¬H), and to predict

the most likely answer for that state (st.â) (See Algorithm 2).
A worker is hired if VOI for the initial state is estimated to
be positive. Once the vote of the next worker arrives, the vote
is used to update the predictive models and update the state
of the task. This computation is repeated for future states
until the budget is consumed or VOI is estimated to be non-
positive. The methodology terminates the task by delivering
the predicted answer (â) and moves on to the next task.

The variance of the predictive models estimated dynami-
cally by the online learning algorithm guides the decision-
making algorithm in controlling the exploitation-exploration
tradeoff. When the variance is high, each sampled model pro-
vides a different belief about the way future workers will vote.
Execution paths reflecting these diverse beliefs lead to high
uncertainty about the consensus answer that will be received
at the horizon. Consequently, this leads to more exploration
by hiring workers. When the variance is low, sampled models
converge to a single model. In this case, the hiring decisions
are guided by exploiting the model and selecting the action
with the highest expected utility.

This behavior is illustrated in Figure 1 for a toy example, in
which oi ∈ {0, 1}, h = 3 and majority rule is the consensus
rule. The figure displays the partial search trees generated
for initial state s1 = {o1 = 1} when there is (a) high un-
certainty over the models - model weights wi having large
variance—and (b) low uncertainty over the models—model
weights wi having small variance. Branches between nodes
represent possible votes to be collected from workers. Each
leaf is labeled with a∗, the correct answer as identified at the
horizon, and N , the number of times the leaf is sampled. In
(a), high uncertainty over the models leads to high uncertainty
over the correct answer. Consequently, high value is associ-
ated with hiring more workers to resolve the uncertainty over
the correct answer. VOI is estimated to be high. In (b), there
is no uncertainty over the correct answer according to the par-
tial search tree generated by the algorithm. Therefore, hiring
a worker does not help with predicting the correct answer.
VOI is estimated to be not positive.

3.1 Sampling Execution Paths
The algorithm for sampling an execution path (p) for a sam-
pled model (M̃) is presented in Algorithm 2. The detailed
explanation of the algorithm is presented in [Kamar and

Figure 1: Search trees generated by CrowdExplorer when
there is (a) high and (b) low uncertainty over models.

Horvitz, 2013]. The algorithm generates execution paths by
recursively sampling future votes from the predictive models
until reaching the horizon. At the horizon, it uses the consen-
sus rule to determine the correct answer corresponding to the
path (a∗p). For each path, the algorithm uses a∗p to evaluate
the utilities of each state on the path for taking actions H and
¬H by taking into account c, the cost of a worker.

SampleExecutionPath(st:state, M̃ :set of models, h:horizon)
begin

if t = h then
a∗p ← ConsensusRule(st)

else
ot+1 ← SampleNextV ote(st, M̃)
st+1 ← st ∪ {ot+1}
a∗p ← SampleExecutionPath(st+1, M̃ , h)

end
st.N [a∗p]← st.N [a∗p] + 1
st.N ← st.N + 1

st.V
¬H ← (

maxa∈A st.N [a]

st.N
× u)− (t× c)

if t < h then

st.V
H ←

X

s′t+1∈Φ(st)

(s′t+1.V × s′t+1.N)

st.N
end
st.V ← max(st.V

¬H , st.V
H)

st.â← argmaxa∈Ast.N [a]
return a∗p

end
Algorithm 2: Algorithm for Sampling Execution Paths

For each state st visited on a path, the algorithm keeps the
following values: st.N as the number of times st is sampled,
st.N [a] as the number of times a path visited st reached an-
swer a, st.N [a]/st.N as the likelihood at st for the correct
answer being a, st.â as the predicted answer at st. st.V

¬H ,
the value for terminating, is estimated based on the likelihood
of predicting the answer correctly at that state. Φ(st) is the set
of states reachable from st after taking action H . st.V

H , the
value for hiring more workers, is calculated as the weighted
average of the values of future states accessible from st.

4 Experiment Setup
We evaluated the ability of CrowdExplorer methodology to
adaptively control consensus tasks on a dataset collected by
Galaxy Zoo. The dataset includes 44350 votes collected for
1000 randomly selected Galaxy Zoo tasks, where each task
is the labeling of a single image. The budget for each task is
determined by the number of worker votes available for each
task in the dataset. The budget of each task is known and
varies between 30 and 93. The sequence of votes for each
task is ordered randomly. The correct answer of each task is
determined by the consensus rule defined by the experts of
Galaxy Zoo; the answer agreed on by the 80% of workers
at the horizon of a task is the correct answer. The system is
rewarded $1 for correctly predicting the correct answer of a
task (including predicting undecidables), the cost of hiring a
worker is varied between 1 cent and 0.25 cents to observe the
behavior of CrowdExplorer in trading off the cost of worker
with expected benefit in different settings. The overall utility
of the system over a certain number of tasks is the difference
between the number of tasks answered correctly and the over-
all cost of workers hired.

We compare the performance of CrowdExplorer method-
ology with a deterministic baseline. This baseline continues
hiring workers until there is no chance to change the system’s
opinion about the correct answer with the remaining number
of workers to be hired.

We implemented a number of adaptive control meth-
ods to evaluate the performance of CrowdExplorer. These
methods use well-known exploration policies to address the
exploration-exploitation tradeoff in consensus tasks. They
have access to the linear models described in Section 3. The
models are dynamically updated with the votes collected from
workers using the online learning algorithm. When it is best
to exploit, these methods use the MC-VOI algorithm for se-
lecting the best action to take. In selecting the best action,
they do not reason about the uncertainty over the set of mod-
els, but use the single most likely set of models to represent
the world dynamics.

The constant exploration method always explores for the
first cc tasks and then exploits for the remaining tasks. In the
epsilon-greedy method, the probability of exploration at each
state is calculated as min(1, cε

n), where n is the number of
tasks the system has seen so far. Traditional Boltzman explo-
ration equation is proposed for settings in which all possible
actions lead to exploring. We adapt the Boltzman method to
consensus tasks as follows: If V H > V ¬H , the methodology
hires a worker. If V H ≤ V ¬H , the likelihood of hiring is:

Pr(H|st) = 2
e

V H (st)
T

e
V H (st)

T + e
V¬H (st)

T

where T = cb

n . Since Pr(H|st) is computed only when
V H ≤ V ¬H , this quantity is in [0,1]. It is close to 1 when
T is large. It diminishes to 0 as more tasks are seen. Finally,
the optimistic method estimates an optimistic value for hiring
workers by adding a bound term co

n to MC-VOI’s estimation
of V H . It compares the optimistic estimate of V H with V ¬H

to select which action to take.

Figure 2: Average utilities of different methodologies for
varying worker costs.

cc, cε, cb and co are positive constants given as input to
the adaptive control methods for tuning their exploration be-
haviors. Similarly, the value that is used to initialize the co-
variance matrices of the CrowdExplorer methodology can be
adjusted to control the way the uncertainty over the models
diminish with training data. In the experiments, we search
over different values and report the results for the ones that
provide largest overall utility. We found that the performance
of CrowdExplorer was relatively robust to the initial setting
of this co-variance matrix and maintained the performance
advantage over the competing approaches for all reasonable
values. In contrast, we found that the epsilon-greedy and opti-
mistic exploration methods are very sensitive to their constant
parameter values.

All of the examined adaptive control methodologies, in-
cluding CrowdExplorer, explore the state space of consensus
tasks by using the sampling approach of the MC-VOI algo-
rithm to make decisions. The procedure can be stopped any-
time. To control across all adaptive control methodologies,
MC-VOI is provided the same computational resources for
exploring the space of consensus tasks at every run.

5 Results
Figure 2 reports the average utilities of different adaptive con-
trol methodologies and the deterministic baseline over 1000
tasks as a function of the cost of a worker. As shown in
the figure, CrowdExplorer delivers utilities higher than all
other adaptive control methodologies for all worker costs.
The value for adaptively controlling consensus tasks, instead
of following a deterministic strategy, grows with the cost of
a worker. When the cost is low (0.25 cents), the utility of
CrowdExplorer is comparable to the utility of the determin-
istic baseline, and it is significantly better than the utilities
of other adaptive control methodologies. For higher worker
costs, all adaptive control methodologies perform better than
the baseline.

CrowdExplorer dynamically adjusts its behavior to chang-
ing costs. When the cost is high (1 cent), it has 92% accuracy
by hiring 13% of available workers. For high-medium cost
(0.75 cents), it reaches to 95% accuracy with 20% of work-
ers. Its accuracy is 97% with 30% workers when the cost is
medium-low (0.5 cents). When the cost is low (0.25 cents), it
reaches near perfect accuracy with 56% workers.

Figure 3: Average utilities of different methodologies when cost is (a) 1 cent, (b) 0.75 cents, (c) 0.5 cents and (d) 0.25 cents.

Figure 3 reports the average utilities of the methodologies
with respect to the number of tasks solved for different worker
costs. The performance of CrowdExplorer is better or com-
parable to other methodologies during the execution of the
system for all worker costs. Other adaptive control method-
ologies often perform poorly until learning good models of
the world. Their performances improve with the completion
of increasing numbers of tasks. On the contrary, the perfor-
mance of CrowdExplorer is consistently good (i.e., better or
comparable to the deterministic baseline) throughout the ex-
ecution of the system. In contrast to the other methodolo-
gies, CrowdExplorer can customize its exploration decisions
to the specifics of a task and to its knowledge about the task.
Based on its models at any time, CrowdExplorer can assess
for which tasks it can make decisions about hiring workers
confidently, and which tasks it needs to learn more about.

6 Related Work
Decision-theoretic guidance of crowdsourcing has recently
come into focus as a rich research area. Dai et. al. fo-
cused on optimizing iterative workflows by separating the
process into offline learning and optimization phases [Dai
et al., 2011]. Lin et. al. developed an agent for dynami-
cally choosing between different iterative workflows [Lin et
al., 2012]. In contrast to the optimization of iterative work-
flows, which can be addressed with limited lookahead ap-
proaches, the optimization of consensus tasks requires rea-
soning about long sequences of evidence. Researchers pro-
posed greedy and heuristic approaches for solving consen-
sus tasks [Sheng et al., 2008]. Kamar et. al. formal-

ized consensus tasks as a sequential decision-making prob-
lem and introduced Monte Carlo planning approaches for ad-
dressing the combinatorial challenge [Kamar et al., 2012;
Kamar and Horvitz, 2013]. These approaches assume hav-
ing perfect models of consensus tasks and did not address the
challenge of simultaneously learning and optimizing for con-
sensus tasks.

Adaptive control of consensus tasks relates to multiple
lines of research for addressing the exploitation-exploration
tradeoff. This tradeoff is studied under various assumptions
in multi-armed bandit problems [Auer et al., 2002], optimal
stopping problems [Peskir and Shiryaev, 2006], active learn-
ing [Kapoor and E., 2007] and reinforcement learning re-
search [Sutton and Barto, 1998]. Many of these assumptions
are not realized on consensus tasks due to its special struc-
ture. For example, a consensus task does not receive continu-
ous reinforcement about its performance, which prevents up-
dating values of states based on observed rewards [Rummery
and Niranjan, 1994; Silver et al., 2008]. In consensus tasks,
exploration is only possible by hiring more workers and ex-
ploration policies that select actions randomly may result in
premature termination of tasks.

CrowdExplorer is a Monte Carlo approach for contin-
uously learning and optimizing decisions when stochastic
models of the world are unknown. This approach differs from
existing Monte Carlo planning algorithms, which use sam-
pling to explore and learn values for state, action pairs of large
MDPs when generative models of the world are known [Koc-
sis and Szepesvári, 2006; Silver and Veness, 2010]. The sta-
tistical modeling techniques used by some Monte Carlo plan-

ning algorithms (e.g., UCT) are designed for action selection
rather than for learning world models [Kocsis and Szepesvári,
2006]. The MC-VOI algorithm exploits the structure of con-
sensus tasks to eliminate the challenge of action selection in
Monte Carlo planning [Kamar and Horvitz, 2013]. Due to its
superior performance in solving consensus tasks, it serves as
a foundation for CrowdExplorer.

The methodology proposed has several other novel aspects:
first our approach uses predictive models as implicit rep-
resentations of the world. Related work to this aspect in-
cludes research in reinforcement learning where abstract rep-
resentation of Q values for state-action pairs [Sutton, 1996;
Džeroski et al., 1998] are used. Second, our method effi-
ciently models uncertainty over the predictive models. There
has been some related research where uncertainty over the
model of the world is represented as distributions over Q
values or individual transition probabilities [Dearden et al.,
1999; Poupart and Vlassis, 2008; Jaulmes et al., 2005]. The
number of distributions to be represented by these approaches
for consensus tasks grows exponentially with the horizon.
Finally, our method incorporates a new Monte Carlo ap-
proach that can simultaneously reason about the uncertainty
over models and over stochastic transitions. Existing ap-
proaches that separate sampling of models from decision-
making [Dearden et al., 1999; Jaulmes et al., 2005] are hard
to apply in our scenario as they get they quickly become in-
tractable.

7 Conclusion and Future Work
We reviewed our efforts on the adaptive control of crowd-
sourcing tasks. We presented a methodology that can dynam-
ically learn about the dynamics of crowdsourcing tasks and
that can make effective decisions about when to hire more
workers. We evaluated our methodology on a real-world
dataset and demonstrated that the methodology can achieve
significant savings in worker resources by adaptively learn-
ing about consensus tasks and optimizing hiring decisions.

We are exploring extensions of the methodology that can
learn more sophisticated models of the world dynamics, in-
cluding characteristics of individual workers and tasks. We
are investigating extensions for controlling for the optimal
timing and routing of tasks to workers and studying the ap-
plicability of the methodology for crowdsourcing tasks other
than consensus tasks. We are also investigating extensions
of CrowdExplorer to take into account the expected utility of
learning on future tasks in making hiring decisions. Finally,
we seek to study opportunities for simultaneously learning
and optimizing decisions in association with other Monte
Carlo planning algorithms. We believe a Monte Carlo ap-
proach that can simultaneously reason about model and tran-
sition uncertainties will be valuable for adaptive control in
numerous real-world domains.

8 Acknowledgments
We thank Chris Lintott for sharing Galaxy Zoo data, Paul
Koch for assistance with accessing the data, and Dan Bohus
and Rich Caruana for discussions and feedback.

References
[Auer et al., 2002] P. Auer, N. Cesa-Bianchi, and P. Fischer.

Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.

[Dai et al., 2011] P. Dai, D.S. Weld, et al. Artificial intelli-
gence for artificial artificial intelligence. In Twenty-Fifth
AAAI Conference on Artificial Intelligence, 2011.

[Dearden et al., 1999] R. Dearden, N. Friedman, and D. An-
dre. Model based Bayesian exploration. In Proceedings
of the fifteenth Conference on Uncertainty in Artificial In-
telligence, pages 150–159. Morgan Kaufmann Publishers
Inc., 1999.

[Džeroski et al., 1998] S. Džeroski, L. De Raedt, and
H. Blockeel. Relational reinforcement learning. Inductive
Logic Programming, pages 11–22, 1998.

[gal, 2007] Galaxy Zoo, 2007.
[Ipeirotis, 2010] P.G. Ipeirotis. Analyzing the Amazon Me-

chanical Turk marketplace. XRDS: Crossroads, The ACM
Magazine for Students, 17(2):16–21, 2010.

[Jaulmes et al., 2005] R. Jaulmes, J. Pineau, and D. Precup.
Active learning in partially observable markov decision
processes. Machine Learning: ECML 2005, pages 601–
608, 2005.

[Kamar and Horvitz, 2013] E. Kamar and E. Horvitz. Light
at the end of the tunnel: A Monte-Carlo approach to com-
puting value of information. In To Appear in Proceed-
ings of the 11th International Conference on Autonomous
Agents and Multiagent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2013.

[Kamar et al., 2012] E. Kamar, S. Hacker, and E. Horvitz.
Combining human and machine intelligence in large-scale
crowdsourcing. In Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 467–474. International Foun-
dation for Autonomous Agents and Multiagent Systems,
2012.

[Kapoor and E., 2007] A. Kapoor and Horvitz E. On dis-
carding, caching, and recalling samples in active learning.
In Uncertainty in Artificial Intelligence, 2007.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based monte-carlo planning. In Ma-
chine Learning: ECML 2006, pages 282–293. Springer,
2006.

[Krause et al., 2008] A. Krause, E. Horvitz, A. Kansal, and
F. Zhao. Toward community sensing. In Proceedings of the
7th international conference on Information processing in
sensor networks, pages 481–492. IEEE Computer Society,
2008.

[Lin et al., 2012] C.H. Lin, M. Mausam, and D.S. Weld. Dy-
namically switching between synergistic workflows for
crowdsourcing. In Twenty-Sixth AAAI Conference on Ar-
tificial Intelligence, 2012.

[Lintott and others, 2008] C.J. Lintott et al. Galaxy Zoo:
Morphologies derived from visual inspection of galaxies
from the Sloan Digital Sky Survey. Monthly Notices of the
Royal Astronomical Society, 389(3):1179–1189, 2008.

[Minka, 2001] T. P. Minka. Expectation propagation for ap-
proximate Bayesian inference. In Uncertainty in Artificial
Intelligence, 2001.

[Peskir and Shiryaev, 2006] G. Peskir and A. Shiryaev. Op-
timal stopping and free-boundary problems, volume 10.
Birkhäuser Basel, 2006.

[Poupart and Vlassis, 2008] P. Poupart and N. Vlassis.
Model-based Bayesian reinforcement learning in partially
observable domains. In Proceedings of the International
Symposium on Artificial Intelligence and Mathematics,
Fort Lauderdale, FL, USA (January 2008). Citeseer, 2008.

[Rummery and Niranjan, 1994] G.A. Rummery and M. Ni-
ranjan. On-line Q-learning using connectionist systems.
University of Cambridge, Department of Engineering,
1994.

[Sheng et al., 2008] V.S. Sheng, F. Provost, and P.G. Ipeiro-
tis. Get another label? improving data quality and data
mining using multiple, noisy labelers. In Proceeding of the

14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 614–622. ACM,
2008.

[Silver and Veness, 2010] D. Silver and J. Veness. Monte-
Carlo planning in large POMDPs. Advances in Neural In-
formation Processing Systems, 23:2164–2172, 2010.

[Silver et al., 2008] D. Silver, R.S. Sutton, and M. Müller.
Sample-based learning and search with permanent and
transient memories. In Proceedings of the 25th interna-
tional conference on Machine learning, pages 968–975.
ACM, 2008.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Re-
inforcement learning: An introduction, volume 1. Cam-
bridge Univ Press, 1998.

[Sutton, 1996] R.S. Sutton. Generalization in reinforcement
learning: Successful examples using sparse coarse coding.
Advances in neural information processing systems, pages
1038–1044, 1996.

[Von Ahn and Dabbish, 2008] L. Von Ahn and L. Dabbish.
Designing games with a purpose. Communications of the
ACM, 2008.

