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Abstract 

Calculating speaker pitch (or f0) is typically the first 

computational step in modeling tone and intonation for spoken 

language understanding. Usually pitch is treated as a fixed, 

single-valued quantity. The inherent ambiguity judging the 

octave of pitch, as well as spurious values, leads to errors in 

modeling pitch gestures that propagate in a computational 

pipeline. We present an alternative that instead measures 

changes in the harmonic structure using a subband 

autocorrelation change detector (SACD). This approach builds 

upon new machine-learning ideas for how to integrate 

autocorrelation information across subbands. Importantly 

however, for modeling gestures, we preserve multiple 

hypotheses and integrate information from all harmonics over 

time. The benefits of SACD over standard pitch approaches 

include robustness to noise and amount of voicing. This is 

important for real-world data in terms of both acoustic 

conditions and speaking style. We discuss applications in tone 

and intonation modeling, and demonstrate the efficacy of the 

approach in a Mandarin Chinese tone-classification experiment. 

Results suggest that SACD could replace conventional pitch-

based methods for modeling gestures in selected spoken-

language processing tasks. 
Index Terms: pitch, prosody, intonation, correlogram 

 

1. Introduction 

Estimating pitch can be challenging. Definitional problems 

include irregularities at voicing boundaries and octave 

ambiguities due to shifting periodicities. Engineers define pitch 

based on periodicity [1] and psychologists based on what we 

hear [9], neither of which mention the motion of the glottis as 

used by a speech scientist. Furthermore, computational 

problems are present in the face of noise and reverberation. 

While in many cases the pitch of a vowel is obvious, the real 

world is not always straightforward. The pitch of a sound is 

more difficult to measure as we move to address speech 

produced in casual, spontaneous or noisy environments. 

Yet, questions about tone in languages such as Chinese, and 

prosodic intonation questions are often phrased as questions 

about pitch. We want to know the pitch of a speech signal so we 

can tell whether the “pitch” has gone up or down. Not only does 

this require us to estimate a pitch, an inherently non-linear and 

error-prone process, but then we compute the derivative of the 

“pitch.” Taking the derivative of a noisy signal adds more noise. 

In this paper we argue that, for some tasks, we can better 

answer questions about the behavior of pitch without first 

computing the pitch. In speech and linguistics we are often 

interested in what we call a “pitch gesture.” We want to know 

whether the “pitch” goes up or down, but we don’t actually care 

about the absolute pitch. Even with octave ambiguities and 

partial voicing, we see and measure clear indications of change. 

This change signal is more reliable, and gets us more directly to 

the answer we care about. We calculate pitch changes by 

finding many pitch candidates, as others have done, but then 

look at how all these candidates move over time.  We never 

compute a single pitch value. 

Thus in this paper we present the Subband Autocorrelation 

Change Detector (SACD) in Section 3, after introducing the 

problem and related solutions in Section 2. Section 4 describes 

our initial tests of the idea, and Section 5 summarizes our 

contribution. 

2. Related Work 

Pitch is inherently ambiguous.  Like a Necker cube, a single 

sound can be perceived with more than one pitch. Shepard tones 

[13] are perhaps the best example. We hear a tone complex that 

descends in pitch forever. But how can that be?  The answer is 

that we can often hear more than one pitch in a sound. In a 

Shepard tone, the pitch is continuously descending, and when 

one's attention is disturbed, or when the evidence for the low 

pitch is weak we shift our attention to a higher, more likely 

octave.  

The root of the problem is that vocal pitch is ambiguous. 

One can argue that with more data and better machine learning 

we can find the one true pitch. But even the ground truth is 

problematic. Figure 1 shows the pitch-transition matrix for the 

Keele data [12]. These labels are computed from the 

laryngograph signal, and are often used to train systems and 

measure performance. We calculate the frame-to-frame pitch-

transition matrix for the pitch labels and display the result in 

Figure 1. There is strong activity along diagonals one octave 

from the center. This suggests that one octave jumps are not 

rare.  

The correlogram is a mature model of human sound 

perception [8][16]. It is based on temporal patterns, as can be 

measured by autocorrelation, across many cochlear filters or 

channels.  Each channel of the filterbank corresponds to a small 

range of frequencies, each recorded by hair cells at one location 

along the basilar membrane.  Within one channel auditory 

neurons preserve the timing of the signal, and periodicities in 

these firings are a robust representation of the signal. Pitch 

models based on the correlogram successfully pass many 

psychoacoustic tests [9][10][15]. The multi-channel approach is 

important for noise robustness. 

Our work starts with the correlogram and extends it to pitch 

prediction using the machine-learning extensions suggested by 

Lee and Ellis [6]. An intermediate output of their system 

produces an estimate of the likelihood of 70 possible pitch 

classes.  When combined with a Viterbi decoder, their SAcC 

system performs, arguably, at the limit of the accuracy of the 

Keele database. 

Our work is close to the fundamental frequency variation 

spectrum idea pioneered by Laskowski et al. [4][5]. They 

compare the dilation of two spectrogram slices to measure pitch 

Published at Interspeech 2013, 

Lyon France, August 2013 

mailto:malcolm@ieee.org


changes. But a magnitude spectrogram contains the same 

information as a temporal autocorrelation. We extend their 

ideas by using multiple subbands to enhance noise robustness, 

use a machine-learning technique to limit the correlations to 

good pitch candidates, and simplify the computation by using a 

logarithmic-frequency scale so that we can linearly correlate 

frames, instead of stretching them. 

In the sense that we capture many pitch candidates, our 

work is similar to that proposed by the RAPT algorithm, aka 

get_f0 [19]. RAPT uses autocorrelation of the audio waveform 

(no filterbank) to find a large number of possible correlation 

times. RAPT uses a Viterbi search to find the pitch path that 

smoothly goes through a collection of these pitch candidates.  

The Viterbi search enforces a continuity constraint that reduces 

the chances of an octave error.  Another approach to prune the 

pitch candidates is called the Log-normal Tied Mixture model 

(LTM) [17]. The LTM approach assumes pitch is Gaussian-

distributed in log space and fits three modes to a speaker’s pitch 

distribution with means of p/2, p, and 2p.  Frames whose 

posterior probability is higher for the first or third mode can 

either be “corrected” or removed. It does this without regard to 

the continuity of the signal, but still provides an advantage in 

many situations. Many more advanced models for pitch 

measurements are also possible [2][3][18]. 

In another approach, which has been used to model 

Mandarin tone, Lei et al. takes the RAPT pitch estimates and 

uses LTM to remove possible octave errors [7]. The pitch is 

only present when the signal is voiced. They then use 

interpolation to fill in the missing data, and they use two filters 

to give a cleaner estimate. The first filter removes the long-term 

trend in the pitch, as might be caused by an overall downward 

trend in the pitch of a sentence, or a rise at the end.  They use a 

second filter to smooth the pitch estimates and thus give what 

we call a relative pitch.  The combination of filters passes 

frequency variations between 0.66Hz and 20 Hz. They apply 

their ideas to tone recognition, but only as part of a larger 

speech-recognition system. A block diagram of their system is 

part of Figure 2. 

The RAPT system is widely used, but as is also the case for 

other trackers, has difficulty at the onset of voicing, with 

nonmodal phonation such as creaky voice, and with noisy or 

reverberant signals. Post processing steps such as Viterbi 

searches and LTM can remove some errors. But octave errors 

that remain impart a lot of energy into the signal. These sharp 

transitions can swamp subsequent signal-processing steps.  

We thus propose a more robust system, which avoids 

picking a single pitch. Instead we go straight to the final output, 

a pitch gesture. 

3. System Overview 

Figure 2 shows a block diagram of our system in 

comparison to the SAcC approach [6]. The original correlogram 

work gave a pitch estimate for each possible periodicity by 

uniformly weighting the energy across channels. Since uniform 

weighting is not justified, further work by Lee and Ellis [6] learn 

weights for different parts of the correlogram to arrive at an 

estimate of the pitch probabilities that best match labeled data. 

They implement this weighting using a multi-layer perceptron 

(MLP). This differentially weights the energy in the 

correlogram and then estimates the likelihood of each pitch 

class. Note, Lee first uses principal component analysis (PCA) 

to reduce the dimensionality of the correlogram. The goal of 

PCA here is to preserve the original signal, and to use a smaller 

number of dimensions. This makes it easier for an optimization 

routine to find the best perceptron weights, but doesn’t affect 

the overall information flow.  

In both SAcC and SACD there are 24 discrete pitch classes 

per octave, and a MLP with 70 independent outputs calculates 

the probability that the correlogram data includes evidence for 

that pitch. This results in an array of pitch probabilities for 67 

frequencies from 60–400Hz on a logarithmic axis. There are 

three additional pitch states in this model, corresponding to 

unvoiced (state 1), pitch too low (state 2) and pitch too high 

(state 3).  We trained the pitch-candidate MLP using the Keele 

pitch database [12].  

 
Figure 1. Pitch transition probabilities from the Keele database. 

Pitch is quantized into 24 classes per octave. Even this ground 

truth has octave jumps, as indicated by the off-diagonal lines.  
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Figure 2. Three block diagrams for comparison:  the baseline system by Lei et al. [7], Lee and Ellis’ SAcC for estimating pitch [6], and 

this paper’s SACD. Multiple lines are used to indicate vectors of information that are passed from stage to stage, without making an 

explicit decision. 
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The final stage of the SACD algorithm is to capture 

information about how the pitch-probability distribution 

changes over time. While there are changes from frame to frame 

in formants and harmonic energies, the predominant change is 

a vertical shift in the positions of the pitch candidates. These 

correspond to pitch changes. We capture these changes by 

correlating the pitch probabilities in one frame and the next.  

These changes are often small, since one unit shift corresponds 

to 1/24 of an octave in 10ms, but the signal is robust because it 

represents an average over many active pitch classes. If the 

probability of pitch class i is equal to pi, then the pitch gesture 

(change of Δ) is computed by 

 
i i

i

g p p
 
 .  

We implemented the subband filtering using 40 gammatone 

filters, as well as the correlogram calculation, using the 

Auditory Toolbox [14]. The MLP was implemented using 

Netlab [11]. 

4. Evaluation 

For a baseline, we used Talkin’s RAPT code (get_f0), and re-

implemented the relative-pitch feature proposed by Lei et al. 

[7].  This includes the LTM, the cubic interpolation across 

unvoiced regions, and the two moving-average filters. 

Figure 3 shows a comparison of our baseline and the SACD 

analysis. An initial version of the SACD algorithm used an 

estimate of the maximum, calculated with super-resolution peak 

picking, as input to the classifier. But estimating the peak 

location can be noisy. Instead, we obtained better results by 

using a 5-frame moving average window to smooth the data, 

and then passing the 5 correlation values around 0 lag to the 

classifier. Thus the basic SACD pitch-change signal is a 5-

dimensional vector, sampled at 100Hz.  

4.1. Evaluation on Tone Classification Task 

We are interested in measuring the change in pitch for a range 

of tasks, including for modeling intonation in natural speech 

and for cases in which the signal is noisy. As a first step for 

evaluating our approach, however, we needed a more 

constrained task. We chose to examine performance using a 

Mandarin Chinese tone recognition task, because we have large 

quantities of transcribed and aligned speech data. This is a 

simple task that involves the detection of change, rather than 

tasks such as emotion or speaker recognition. Lei et al. describe 

their system [7] with enough detail that we can replicate their 

algorithm and use their relative-pitch signal as a baseline. Since 

we could not access the tone-classification results from the prior 

work, we ran the published system as well as our new system 

on another corpus. 

We started with 998 utterances from a Microsoft 

“Engineered Smart-Phone Database.” Our data was collected 

by asking native Chinese speakers to read a mixed set of web-

search queries and voice commands via mobile phones in their 

natural environment (sampling frequency of 16kHz.) The 

utterances were transcribed manually. The audio was then time 

aligned to the transcript expressed as Chinese characters. In the 

transcription, each Chinese character corresponds to a syllable 

 

Figure 4: Average pitch gestures from the two representations 

for each of the four Chinese tone types. The solid line shows 

the relative pitch response from the baseline approach (with 

dashed lines indicating plus and one standard deviation from 

the mean.) The background images show the SACD results. All 

vowel examples are resampled so they are 20 frames wide 

before averaging. 
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Figure 3. Baseline relative pitch vs. SACD pitch change 

measures of the English word “Go.” The top panel shows the 

RAPT pitch, with and without the LTM corrections. LTM 

probably does the right thing around frame 80, but the right 

answer is not clear around frame 20. This change imparts 

energy into the relative pitch signal in the second panel. The 

third panel shows the pitch-class signal from the SACD. The 

fourth panel shows the pitch-change vector as a function of 

time. Lighter and redder colors indicate more energy at that 

shift. The light band above the centerline, near time 45, 

indicates the pitch is going up. 
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coded with a tone; we used these tone labels in our training and 

testing.  

  From this database we extracted 5522 tone samples.  The 

syllables with the four tone classes (high-high, low-high, dip, 

high-low) are on average 149ms long. Our basic evaluation 

metric is the four-way tone-classification accuracy, without 

regard to the segmental content or sentential position of the 

syllable. While the tone labels were generated from a 

dictionary, and the time alignment was machine generated, we 

believe this is a fair test since both systems performed the same 

test. 

For both the baseline and the SACD system, we resampled 

the feature so that all test syllables had the same fixed length. 

This made it easier for a simple classifier to judge the 

information in each syllable. For display, we sorted the tones 

into their four classes and averaged the signal in each class. We 

show overall averages in Figure 4. As can be seen, both features 

show differences between the four classes, and the feature 

roughly correspond to the pitch change of each tone. 

For the recognizer we used a slightly different approach. 

The baseline had 20 real samples, while the SACD approach 

has a 5-dimensional vector over time (+/-2 state changes per 

frame.) Thus we resampled the SACD signal so it had 4 

temporal samples per syllable, so the number of variables per 

test for the two approaches is 4x5=20 real samples. 

We trained a simple multi-layer perceptron (MLP) to 

classify either tone signal.  For each experiment, we split the 

data so that a random 70% of the entire database was used for 

training the MLP, and the rest was used for testing. The MLP 

had 20 inputs, a variable number of hidden units, and 4 outputs. 

We judged the tone prediction as correct if the largest unit 

output corresponded to the correct tone. 

Figure 5 shows the results as we varied the number of 

hidden units in the MLP from 1 to 50. In all cases the 

correlogram feature did better than the tone curve.  This is in 

spite of the fact that correlogram method does not attempt to 

remove the long-term trend. (The lower performance when the 

number of hidden units is less than 10 suggests that these MLP 

networks don’t have the necessary richness to learn the needed 

classifications.) 

4.2. Evaluation with Noise 

We also tested both algorithms with added white noise. As 

shown in Figure 6 the performance of the both approaches 

decline, but the gap widens as the SNR is reduced.  From 

examination of intermediate results; we believe this is due to 

RAPT not producing a good pitch signal. RAPT starts to make 

errors as we add noise, and strong measures such as a Viterbi 

search and even LTM cannot compensate. The processing steps 

that follow when computing the relative pitch have nothing with 

which to work. 

5. Conclusions 

We have demonstrated a new system for analyzing pitch 

gestures. Unlike most previous approaches, we do not start with 

a single estimate of the pitch. Pitch estimates are problematic 

because it is difficult to find a single, best estimate, in all cases, 

over time, and errors are possible. When calculating the change 

in “pitch” these errors are compounded, so small errors become 

even larger derivatives.  More importantly, for certain tasks we 

don’t really care about the pitch, but rather only how it is 

changing.  

We demonstrated the efficacy of our pitch-gesture approach 

in a Chinese tone-recognition task. We have presented a feature, 

SACD, that reflects the change in “pitch” over time.  The 

feature does not start with a single pitch estimate. Instead it uses 

a pitch-class likelihood signal, as first pioneered in the SAcC 

system [6], to indicate multiple possible pitches. Even with 

significant amounts of noise, the SACD feature outperforms our 

baseline approach. 

Our SACD feature is more robust to noise for two reasons. 

First of all, the subband analysis allows the pitch information in 

each channel to be analyzed separately from every other 

channel.  A noise in one channel might obliterate the pitch in 

that channel, but will not affect the other channels. Secondarily, 

the basic pitch-class probabilities are based on a machine-

learned transformation from the correlogram to the pitch class. 

While the MLP we use to do this transformation was trained on 

relatively clean (Keele) speech, additional robustness is 

possible with training data that matches the noise characteristics 

of the desired environment. 

 Future work should investigate the efficacy of this 

approach on spontaneous, reverberant and distance speech. 

 
Figure 5. Four-way tone classification accuracy for the baseline 

and SACD features. Results are plotted as a function of the 

number of hidden units in the MLP. Dashed lines indicate the 

mean +/-1 standard error (standard deviation/sqrt(# of trials)) to 

give an indication of the variability in each experiment. 
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Figure 6. Four-way tone classification accuracy as a function of 

added noise. The SACD approach maintains its accuracy better 

in the face of noise. 
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