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Abstract
Trying to automatically detect laughter and other nonlin-

guistic events in speech raises a fundamental question: Is it
appropriate to simply adopt acoustic features that have tradi-
tionally been used for analyzing linguistic events? Thus we
take a step back and propose syllabic-level features that may
show a contrast between laughter and speech in their intensity-,
pitch-, and timbral-contours and rhythmic patterns. We mo-
tivate and define our features and evaluate their effectiveness
in correctly classifying laughter from speech. Inclusion of
our features in the baseline feature set for the Social Signals
Sub-Challenge of the Computational Paralinguistics Challenge
yielded an improvement of 2.4% in Unweighted Average Area
Under the Curve (UAAUC). But beyond objective metrics, an-
alyzing laughter at a phonetically meaningful level has allowed
us to examine the characteristic contours of laughter and to rec-
ognize the importance of the shape of its intensity envelope.
Index Terms: social signals, laughter, acoustic features, classi-
fication, Computational Paralinguistics Challenge

1. Background
Despite how essential laughter is in our everyday social interac-
tions, its expressive varieties make it both a rich and challenging
subject matter. The social and emotional context surrounding
laughter, as well as the characteristic style of the laughing indi-
vidual, greatly influence the resulting laughter sound [1, 2, 3].
Consequently, there is no concrete laughter archetype or pro-
totype that serves as a starting point against which all laugh-
ter instances can be compared for analysis. Granted, we often
write out laughter as “haha” in English (or similar forms in dif-
ferent languages), but in reality, laugh sounds rarely consist of
repeated syllables that are best transcribed as [ha] or [hA].

Another challenge to studying laughter empirically is the
difficulty of capturing it “in the wild” in ways that preserve the
breadth of its socio-geographical contextual variety. Provine
describes the futility of his experience trying to elicit sponta-
neous laughter in an experiment, as laughter is “a social behav-
ior that virtually disappears in isolated people being scrutinized
in a laboratory setting” [1]. Prior studies on laughter typically
resorted to funny video clips to induce laughter [4] and used
actors to generate laughter sounds to be evaluated by listeners
[2, 3]. Such experimental design significantly restricts the types
of laughter context that can be studied.

Finally, a lack of common vocabulary has hindered progress
on laughter research. Trouvain recognizes this problem and
tries to analyze the terminological variety from a phonetic per-
spective. Trouvain notes that “laughter events are much more
complex than implied by an idealized segmentation and most

of the existing descriptions of laughter types. More data, clear
concepts and more knowledge about the production and acous-
tics of laughter are necessary to provide phonetically adequate
descriptions of the large repertoire of laughter variants” [5].

Amidst such circumstances, the INTERSPEECH 2013
Computational Paralinguistics Challenge – Social Signals Sub-
Challenge provides a corpus of spontaneous laughter occurring
in 60 phone conversations (involving 120 subjects), along with a
set of 141 baseline features and performance results for classifi-
cation [6]. Specifically, the SSPNet Vocalisation Corpus (SVC)
provides 2763 audio clips, each 11 seconds long, that are anno-
tated on every 10ms frame as either laughter, fillers, or garbage;
this paper performs classification in the context of this Chal-
lenge. Details about the corpus, baseline features, and evalua-
tion criteria are available from the Challenge organizers [6].

2. Approach
Trying to automatically detect laughter in speech raises a fun-
damental question: Is it appropriate to simply adopt acoustic
features – such as the Mel-frequency cepstral coefficients – that
have traditionally been used for analyzing linguistic events?
Even though laughter shares much of the sound production
mechanism as speech, its aural output seems quite musical in
expressiveness and variety, displaying a range of movements in
pitch, loudness, and timbre [4, 5, 7, 8].

In fact, studies that aim to synthesize laughter using exist-
ing speech models have found that they tend to yield unsatis-
fying results. For instance, Sundaram and Narayanan’s two-
level model for laughter relies on standard linear-prediction-
based analysis–synthesis to generate laughter calls, and natu-
ralness and acceptability evaluation scores of their synthesized
clips were significantly below that of real clips [9]. Using a
contrasting methodology, Lasarcyk and Trouvain explored im-
itating conversational laughter with articulatory synthesis and
diphone synthesis [10]. They describe limitations of diphone
synthesis in emulating breathing and certain laugh syllables that
are not available in the predefined phones used for speech; they
further note difficulties with using the articulatory synthesis ap-
proach in terms of technical limitations (e.g. 1 kPa pulmonic
pressure is seemingly not high enough for laughter) and our
incomplete knowledge of laughter physiology. If synthesizing
laughter calls for some kind of specialization or extension to
existing speech synthesis models, then we may anticipate an
analogous need for analyzing laughter.

2.1. Motivation for syllabic-level segmentation

Thus we take a step back and try to characterize the phonetic
building-blocks of laughter. But which level of segmentation



is most appropriate for our purpose? Trouvain has proposed
phonetic segmentation of laughter at three levels: (1) the seg-
mental level (either consonant or vowel); (2) the syllabic level
(the consonant-vowel unit); and (3) the phrasal level, which is
a “bout” (a sequence of laughter syllables in one exhalation
phase) or an “episode” (the whole laugh) [5].

For the purpose of discriminating laughter from speech, we
chose to segment laughter at the syllabic level because of the
following reasons. First, the syllabic level seems to be high-
level enough to be perceptually relevant from the listeners’
perspective, but low-level enough to serve as building blocks
for modeling an entire laughter episode. Second, segmenting
laughter signal at potential syllabic-level boundaries appears to
be a straight-forward task, as they are likely to occur at the local
minima of signal’s energy (by the pulsated exhalation/ inhala-
tion nature of laughter). Finally, our intuition tells us that when
humans identify laughter occurring in speech, it is localized at
the boundaries of syllabic-level units, as opposed to within; thus
it seems to work naturally as a meaningful unit for analysis.

2.2. Segmentation method

We segment laughter at every local minima of the signal’s en-
ergy, which is calculated on 10ms frames and smoothed using
a moving average. Specifically, we first calculate the energy
ei for each frame i as a sum of squared sample values in that
frame. That is, where Fi is the set of samples in frame i,

e(i) =
∑
n∈Fi

x2(n) .

Second, we obtain the smoothed frame-level signal energy
ẽi (in dB, to better match our perception of loudness) using
a simple moving-average rectangular window w of length M
(typically between 3-7 frames; determining the optimal M is
described in Section 2.3):

ẽ(i) = 10 · log

 M/2∑
j=−M/2

w(j) · e(i + j)

 .

Finally, we track the delta of smoothed frame energy and
segment the signal at every local minima; frames in which the
delta of smoothed energy changes from non-increasing to in-
creasing mark the beginning of a new unit Sk. In this manner
we segment our signal into approximated syllabic-level units1.

2.3. Optimal smoothing span (M )

The size of smoothing span, M , directly impacts the resolution
of the segmentation. Conceptually, we would like to segment
the signal at every syllabic units, following Trouvain’s proposal
[5]. Without smoothing (M = 1), the signal tends to become
segmented too finely; if we use too much smoothing (e.g. M =
10, which would average 10 frames, or 100ms), then we may
miss syllabic boundaries. Based on visual inspection (Figure
1) and classification performance (Figure 2), we determined the
optimal smoothing span to be 5 frames.

2.4. Consequence of segmentation on classification

Even though our features (to be described in Section 3) are de-
fined and calculated at the level of segmented units, the So-
cial Signals Sub-Challenge of the Computational Paralinguis-
tics Challenge stipulates that we make classification decisions at

1Note that scale-space segmentation[11, 12, 13] is a more thorough
but computationally demanding alternative to our segmentation method.
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Figure 1: Sample laughter excerpt from SSPNet Vocalisation
Corpus: time domain waveform (top left), frequency domain
spectrogram (bottom left), unsmoothed frame intensity (top
right) and smoothed frame intensity contour (bottom right).
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Figure 2: Determining optimal smoothing span as M = 5,
which yields maximal unweighted average Area Under the
Curve (UAAUC) using our syllabic-level feature set

a lower level: on 10ms frames. Consequently, all 10ms frames
that belong to the same segmented unit will have identical fea-
ture values, and therefore result in the same prediction labels.
While it may seem too crude to ignore all frame-level features,
such as those that make up the baseline feature set, our hope is
that analyzing at a higher level would offer us a structural view
of the signal and capture the notion of a laugh syllable.

3. Hypotheses
We hypothesize that the syllabic-level units in laughter differ
from that of speech in following ways:

1. Intensity contour: intensity may be higher and range
may be greater [14, 15]

2. Pitch contour: a higher mean f0 [4, 7, 15] may result in
a different pitch trajectory

3. Timbral contour: the spectral envelope may be less
variable because laughter predominantly consists of cen-
tral vowels [4, 16], compared to articulated speech

4. Rhythmic patterns: intensity envelope may show rhyth-
micity around 4-6 pulses per second [4, 7, 8, 17, 18]

4. Syllabic-Level Features
In this section, we motivate and define syllabic-level features
that we use to automatically discriminate laughter from fillers
and speech. These features allow us to evaluate our hypotheses.

4.1. Intensity contour

The intensity contour focuses on the attack and decay shape of a
syllabic unit. Because our analysis units have been segmented at



local minima of signal energy (based on the method described
in Section 2.2), the intensity contour of a unit must be arch-
shaped: non-decreasing followed by decreasing.

We determine minimum intensity (f1), maximum intensity
(f2), and range intensity (f3) based on smoothed intensity val-
ues calculated on all 10ms frames that belong to the unit, Sk:

f1 = min
j∈Sk

ẽ(j), f2 = max
j∈Sk

ẽ(j), f3 = f2 − f1 .

Given unit Sk = {j1k, ..., jNk }, we define the frame of maximum
and minimum intensities as follows:

jmax
k = arg max

j∈Sk

ẽ(j), jmin
k = arg min

j∈Sk

ẽ(j) .

Then we can define slope to maximum intensity (f4) and slope
from maximum intensity (f5) to describe the first-order shape of
the arch-like intensity contour of a segmented unit:

f4 =
ẽ(jmax

k )− ẽ(j1k)

jmax
k − j1k

, f5 =
ẽ(jNk )− ẽ(jmax

k )

jNk − jmax
k

.

In addition, we focus on the intensity delta at the moment
of attack and release, as we predicted it to be greater for laugh-
ter than for speech as a result of the impulsive, pulsated nature
of laughter: slope at attack (f6) is calculated as the delta of in-
tensity between the first two frames of a given unit, and slope
at release (f7) is calculated as the delta of intensity between the
last two frames of the unit. Note that the shortest possible unit
duration is two frames, in which case f6 = f7.

f6 = ẽ(j2k)− ẽ(j1k), f7 = ẽ(jNk )− ẽ(jN−1
k ) .

Finally, we calculate syllabic-unit level statistics on the
second derivatives of intensity (ẽ′′(j)): minimum second-
derivative intensity (f8), maximum second-derivative intensity
(f9), and mean second-derivative intensity (f10):

f8 = min
j∈Sk

ẽ′′(j), f9 = max
j∈Sk

ẽ′′(j), f10 =
1

N

∑
j∈Sk

ẽ′′(j) .

4.2. Pitch contour

The pitch contour focuses on the melodic line of a laughter syl-
lable. Because the fundamental frequency (f0) is difficult to
estimate on frames that are non-harmonic or unvoiced, we rec-
ognize that these features may not be robust for certain types of
laughter, such as unvoiced inhalations. We nonetheless experi-
ment with describing the pitch contour of syllabic units because
certain expressions of laughter are “song-like” [5]. Our features
for the pitch contour are calculated using the frame-level f0 val-
ues that are taken from the baseline feature set [6], which in turn
were obtained using the openSMILE feature extractor [19].

In calculating minimum f0 (f11) and maximum f0 (f12), we
take the logarithm of the frequency values to better match the
perception of pitch in human hearing:

f11 = min
j∈Sk

log( f0(j) ), f12 = max
j∈Sk

log( f0(j) ) .

In order to understand the pitch range of a unit, we calculate
f0 range (f13). To understand the trajectory of pitch movement,
we define position of minimum f0 (f14) and position of maxi-
mum f0 (f15) as the normalized position (ranging 0.0 to 1.0) of
the frame with minimum and maximum f0.

f13 = f12 − f11, f14 =
1

N

(
arg min

j∈Sk

f0(j)− j1k

)
,

f15 =
1

N

(
arg max

j∈Sk

f0(j)− j1k

)
.

4.3. Timbral contour

We take a look at the spectral flux, according to our hypoth-
esis that syllabic-level units in laughter may be characterized
by smaller variability in the spectral envelope than speech.
We compute minimum flux (f16), maximum flux (f17), and
mean flux (f18) as follows, where s(j) is the spectral flux (2-
norm between consecutive normalized spectra) calculated on
the smoothed spectrum2 of frame j:

f16 = min
j∈Sk

s(j), f17 = max
j∈Sk

s(j), f18 =
1

N

∑
j∈Sk

s(j) .

4.4. Rhythmic patterns

In addition to the features described above that look at various
contours of syllabic units, we included several meta-level fea-
tures to understand the overall rhythmic and temporal patterns
across multiple syllabic-level units. These features are meant
to capture the specific rhythm that is created by the repeated
exhalation and inhalation pulses in laughter (e.g. “ha-ha-ha”).

First, we capture the notion of laughter rhythm by calculat-
ing the frequency of the signal’s intensity contour. We do this by
applying a STFT of the intensity contour with a hop size of one
frame and window size of W , where W is sufficiently large (e.g.
50 frames) to cover multiple syllabic units. The highest energy
at each DFT frame captures the primary modulation frequency
of the intensity contour. We average this over the frames in each
unit to obtain the mean intensity-envelope frequency (f19).

Second, with an a priori knowledge that the rhythm of
laughter tends to be around 4-6 pulses per second [4, 7, 8, 17],
we sum up DFT bins (again, calculated on the signal intensity)
that correspond to the 4-6Hz range. The average of these num-
bers is captured in the mean laugh-rhythm feature (f20).

f19 =
1

N

∑
j∈Sk

arg max
m

Ej(m) ,

f20 =
1

N

∑
j∈Sk

1

|F |
∑
m∈F

Ej(m) ,

where F is the set of frequency bins that fall in to the 4-
6Hz range, and Ej is the DFT magnitude of a sequence
of intensity contours centered at frame j, i.e., Ej =
|DFT [ẽ(j −W/2), ...ẽ(j + W/2)] |.

4.5. Syllabic-level delta and average features

Finally, we calculate delta(∆) and average(AV) features on each
of the syllabic-level features f1 to f20 defined above. Like
our features from Section 4.4, these features capture patterns
across multiple syllabic-level units by tracking changes between
two consecutive units (∆) and averaging feature values across
four neighboring units (AV). For the kth syllabic unit Sk and a
syllabic-level feature fl, where 1 ≤ l ≤ 20:

∆fl(Sk) =fl(Sk)− fl(Sk−1) ,

AVfl(Sk) =
1

5

2∑
i=−2

fl(Sk+i) .

2We smoothed the spectrum using a moving average of 20 (out of
256) STFT bins, to roughly follow the formant-peaks.



DEV SET TEST SET

baseline syllabic features syllabic features baseline + syllabic baseline baseline + syllabic
(w/o ∆ & AV) (with ∆ & AV) (with ∆ & AV) (with ∆ & AV)

n = 141 n = 15 n = 45 n = 186 n = 141 n = 186

AUC [Laughter] 86.2% 70.9% 74.3% 88.1% 82.9% 85.9%
AUC [Filler] 89.0% 84.3% 87.7% 91.9% 83.6% 84.6%

UAAUC 87.6% 77.6% 81.0% 90.0% 83.3% 85.3%

Table 1: Results on development set and test set for Social Signals Sub-Challenge, using the same classifier (SVM/SMO) and parameters
(c=0.1) as the baselines. Delta(∆) and average(AV) features track syllabic-level feature values across multiple syllabic-units.

5. Classification Results
Table 1 summarizes the performance on the Social Signals Sub-
Challenge, performing a 3-class (laughter, filler, garbage) clas-
sification at every 10ms frames of phone conversations in the
SVC corpus. From the 20 syllabic-level features, we removed 5
associated with f0 because of poor performance. By using our
45 features ({f1–f10, f16–f20}, and their deltas and averages)
on the exactly same classifier (SVM/SMO) and parameters
(c=0.1) as the Challenge baselines, we obtained Unweighted
Average Area Under the receiver operating Curve (UAAUC) of
81.0% on the development set. Combining our features with
141 frame-level baseline features yielded UAAUC of 90.0%
on the development set (exceeding the baseline by 2.4%) and
85.3% on the test set (exceeding the baseline by 2.0%). Be-
cause the focus of this work was on investigating syllabic-level
features of laughter, we did not experiment with different classi-
fiers or try to tune parameters; however, we recognize that there
may be models and parameter settings that would result in a
better performance for the given task.

6. Discussion
We analyzed the effectiveness of our syllabic-level features us-
ing the WEKA data mining toolkit [20, 21]. Table 2 summarizes
our top-ranking features.

rank feature type score
1 f1 intensity 0.900
2 AV (f1) AV intensity 0.868
3 AV (f14) AV intensity 0.843
4 ∆ (f6) ∆ intensity 0.842
5 f3 intensity 0.798
6 ∆ (f9) ∆ intensity 0.797
7 f6 intensity 0.790
8 ∆ (f2) ∆ intensity 0.787

Table 2: Top eight features, using Information Gain Attribute
Evaluation in WEKA attribute selection.

Features describing the intensity-contour of syllabic units
were among the top-ranking features, suggesting that there ex-
ists a characteristic shape of the syllabic-unit “arch” that can
discriminate laughter and fillers from speech. Specifically, Fig-
ure 3 (left) illustrates how ‘laughter’ units (in red) tend to have
high maximum intensity, and ‘fillers’ (green) tend to have high
maximum intensity with extreme (low or high) minimum inten-
sity. Having a majority ‘garbage’ in the lower left corner of
the plot is partly an artifact of the nature of the corpus, which
labels speech from the speaker on the other side of the phone
(and therefore is much quieter) as ‘garbage’.

Moreover, Figure 3 (center) illustrates how ‘laughter’ is un-
likely to be at the lowest end of the mean laugh-rhythm feature

m
in
im

um
%in
te
ns
ity
%

maximum%intensity% slope%to%max%intensity%mean%laugh1rhythm%

Figure 3: minimum intensity versus {maximum intensity (left),
mean laugh-rhythm (center), and slope to max intensity (right)}
for ‘laughter’ (red), ‘filler’ (green), and ‘garbage’ (blue)

(i.e. left edges), supporting our hypothesis 4 that laughter ex-
hibits a rhythmic pattern of 4-6 pulses per second. The Mean
laugh-rhythm feature and its delta are our top-ranking attributes
among the non-intensity type features.

Finally, Figure 3 (right) illustrates how ‘laughter’ units tend
to have high slope to maximum intensity and high minimum in-
tensity (i.e. along the hypotenuse, consistent with hypothesis
1). This result intuitively makes sense as laughter syllables tend
to be abrupt exhalation pulses with quick rise to intensity peaks.

We note that features for the pitch-contour were our weak-
est features; this may be a result of having many inharmonic,
unvoiced, or otherwise silent frames, causing missing f0 val-
ues3. Similarly, features describing the timbral-contour (spec-
tral flux) were not as effective as we had hoped, and future work
should address how to tease out the timbral characteristics that
are uniquely associated with laughter.

7. Conclusion
We have explored how segmenting laughter at a level higher
than 10ms frames could aid in characterization of their con-
tours and patterns in ways that improve their automatic detec-
tion and classification in a speech context. Furthermore, we ob-
served that incorporating the changes (deltas) in syllabic-level
features over two consecutive units and averages across neigh-
boring units further contribute to the discriminative potential of
our feature set. While conceptually analogous to delta features
calculated at the frame level (such as many of the features in the
baseline set), our syllabic-level delta features track changes in
the higher temporal structure of laughter.

Nevertheless, we have so far only computed basic statistics
on the intensities, fundamental frequencies, and spectral flux of
syllabic-level units. Further research should be conducted to de-
termine more nuanced features that highlight essential acoustic
characteristics of laughter. In addition, it would be informa-
tive to analyze data using class labels that further distinguish
speech laugh from isolated laugh, or exhalation syllables from
inhalation syllables, thereby determining features that can dis-
criminate such subclasses of laughter.

3Because it is difficult to reliably estimate pitch in casual conversa-
tions, a better approach may be to use [22].
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