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Abstract
In this paper we propose a method for improving unsupervised
language model (LM) adaptation by discriminatively filtering
the adaptation training material. Two main issues are addressed
in this solution: first, how to automatically identify recogni-
tion errors and more correct alternatives without manual tran-
scription; second, how to update the model parameters based
on the recognition error cues. Within the adaptation frame-
work, we address the first issue by predicting regression pairs
between recognition results from the baseline LM and an ini-
tial adapted LM, using features such as language model score
difference. For the second issue, we adopted a data filtering ap-
proach to penalize potent error attractors introduced by the un-
supervised adaptation data, using Ngram set difference statis-
tics computed on the predicted regression pairs. Experimen-
tal results on a large real-world application of voice catalog
search demonstrated that the proposed solution provides signif-
icant recognition error reduction over an initial adapted LM.
Index Terms: unsupervised, discriminative, language model
adaptation,

1. Introduction
Consider the following scenario for a real-world speech recog-
nition application. A baseline language model (BLM) is first
created from training data that was roughly in-domain, based on
the best estimate of potential real user inputs. The application
is deployed to public and a large amount of real user utterances
are serviced and captured; an updated LM is then created by
incorporating user utterance data to improve recognition accu-
racy. Since it can be very expensive to manually transcribe large
amount of user utterances, automatic recognition output using
BLM is used to approximate manual transcriptions. This is thus
a typical case of unsupervised LM adaptation [1, 2, 3]. To ob-
tain the updated LM, one basic approach is to train a new LM
using unsupervised automatic transcription and interpolate the
new LM with BLM. The interpolation weights can be trained to
optimize the perplexity on a held-out set of transcriptions.

While this process is simple and efficient, the updated LM
can only provide limited accuracy improvement over the base-
line LM; in fact, for many utterances, the updated LM may even
perform worse than the baseline LM. A major cause of this lim-
itation is the recognition errors in the unsupervised transcription
data. Some of these errors may not even be due to the quality of
the baseline LM itself, but rather attributable to some deficien-
cies and biases in other parts of the recognition system, such as
the acoustic model and the decoder. These errors can get re-
inforced through the adaptation process to create even stronger
error attractors than there were previously in the baseline LM.
One common approach to alleviate the error reinforcement issue

is to filter the unsupervised transcriptions to retain only those
more likely to have been correctly recognized, for example, by
setting a threshold on the baseline recognition confidence score.
However, such filtering is generally not reliable and is not di-
rectly driven by the minimization of the recognition errors from
the adapted model. In this work, we propose a method to filter
the unsupervised transcription data in a discriminative fashion
that aims to reduce the potent error attractors, thus improving
overall recognition accuracy for the updated model.

There are two main issues that we have to address in an un-
supervised, discriminative solution. First, how to automatically
identify recognition errors and their corresponding corrected or
improved forms, without manual transcriptions. Previous work
in discriminative LM training addressed this issue in various
ways. One popular approach to the first issue [4, 5, 6] is to
generate likely confusion sets for recognition by modeling pho-
netic similarities and applying LM constraints through the use
of weighted finite state transducers (WFST). In [7] the authors
bypassed the phonetic confusion modeling and extended the
phrasal cohort approach, which was previously applied only on
transcribed data [8], to completely untranscribed scenario and
still retains over 40% of gains of supervised approach. In [9]
recognition lattice was generated from a weaker acoustic model
than the one used for producing unsupervised transcriptions,
thus creating contrasting pairs of superior and inferior samples
for error gradient computation. A recent work by Ogawa et al.
[10] created word alignment network out of recognition word
confusion network, to directly estimate recognition errors by
type, and further enhanced it with a discriminative classifier. In
our proposed solution we leverage the LM adaptation frame-
work and adopt a less ambitious but more focused approach to
minimize the negative effect of error attractors introduced by the
unsupervised adaptation data, while retaining the benefit from
the correct portion of the unsupervised data. This sharper fo-
cus allows us to use specialized features to identify recognition
regression pairs between the initial adapted LM and BLM.

The second issue that we have to address is how to update
the language model based on the identified recognition error
cues. Two different approaches to this issue have been promi-
nent in previous work on discriminative LM training. The first
approach attempts to modify Ngram-based language models di-
rectly, using generalized probablistic or gradient decent [11, 6],
or linear programming [12] on some globally defined optimiza-
tion criteria. One drawback of this approach is the difficulty
in dealing with Ngram backoff weight updates and proper nor-
malization of the updated model. In [13] the authors reported
moderate improvement when additional steps are taken to up-
date Ngram backoff weights and to constrain parameter up-
dates with probability normalization. The second approach per-
forms re-ranking or re-scoring on an Nbest list or lattice from
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a first-pass recognition output using a discriminatively trained
LM [14, 9, 15], which can often incorporate additional features
beyond Ngrams and be optimized by various machine learning
algorithms. In this work, we would like to stay within an ex-
isting Ngram modeling and first-pass decoding framework to
minimize impact on recognition latency and production system
complexity; and instead of directly modifying Ngram parame-
ters in existing model, we update the model through filtering of
adaptation training data, by taking advantage of the nature of
relatively short utterances in the applications we are targeting.

In the following sections, we first outline the overall frame-
work of our proposed solution. We then describe our approach
to identify recognition regression pairs for the LM adaptation
scenario, followed by a description of a training data filter-
ing approach to update model with recognition error cues. We
present experimental results on a real world application, and
finally conclude with a discussion of the advantages and limita-
tions of our approach, and potential future work.

2. Unsupervised, Discriminative LM
Adaptation

2.1. Overall framework

To facilitate further description let us first define the proposed
adaptation framework. Assume we have a baseline language
model BLM that already exists for the target application. Let U
denote a large set of real user utterances collected from the ap-
plication and we have at our disposal a fixed decoder and acous-
tic model for recognition. We split U into two separate subsets,
a larger one Ua, and a smaller one Ub. The overall adaptation
process to create a final adapted language model is as follows:

1. Decode set Ua and Ub with BLM to obtain recognition
output RBLM (Ua) and RBLM (Ub), respectively.

2. Train a new Ngram model from RBLM (Ua) and inter-
polate it with BLM to obtain the initial adapted model
ULM

(a)
0 .

3. Decode set Ub with ULM
(a)
0 to obtain recognition output

R
ULM

(a)
0

(Ub).

4. Identify a subset C of Ub with regression pairs between
RBLM (Ub) and R

ULM
(a)
0

(Ub) such that utterances in
C were likely to have worse recognition results using
ULM

(a)
0 than using BLM .

5. Compute the differences of regression pairs in C and
apply the statistics to filter set RBLM (Ua), suppressing
likely contributors to error attractors.

6. Train a new Ngram model with the filtered set and inter-
polate it with BLM to obtain the updated adapted model
ULM

(a)
1 .

In both step 2 and step 6, it is possible to apply additional
data filtering criteria such as thresholding by recognition confi-
dence, to retain only the most confidently recognized results for
training new model. It is also possible to run multiple iterations
on step 3 through step 6 for further improvements.

In essence, the framework learns some possible error re-
gression patterns that initial adapted model ULM (a)

0 may gener-
ate over BLM , and makes correction to the unsupervised adap-
tation data when retraining an updated adapted model ULM (a)

1 .
The following sections will provide a detailed description of our
proposed solutions to crucial steps 4 and 5.

2.2. Identifying recognition regressions

As in any discriminative training method, it is critical to have
reliable cues about whether a training sample gets a correct
or incorrect recognition result so that appropriate rewards and
penalties can be assigned to model parameters. With unsuper-
vised training data, these cues are generally difficult to obtain.
In our LM adaptation task we can take advantage of the rela-
tionship between two language models - an already available
baseline model BLM , and an initial adapted ULM

(a)
0 that can

be viewed as a modification of the BLM with statistics learned
from the unsupervised adaptation material Ua. For an arbitrary
utterance, there are four possible outcomes when it is decoded
against each of the two LMs independently. 1) Both can be cor-
rect; 2) both can be incorrect; 3) BLM is correct but ULM (a)

0

incorrect; 4) BLM is incorrect but ULM (a)
0 correct. Cases 1

and 4 are straightforward and we would want to keep the cor-
responding contribution from Ua. Case 3 is the one we want to
penalize since ULM

(a)
0 degrades the BLM performance. Case

2 is less clear and may depend on the relative degree of incor-
rectness between the two models. It will thus be very helpful
to be able to automatically identify utterances belonging to the
different cases. It turns out there exist some automatically com-
putable features that are helpful.

One very effective feature that we have found was the dif-
ference between the language model scores of each recognition
output string, with respect to the LM that the recognition was
run with. For example, for an utterance x, recognition with
BLM gives a hypothesis xBLM with LM score LMS(xBLM )

and recognition with ULM
(a)
0 gives a hypothesis x

ULM
(a)
0

with

LM score LMS(x
ULM

(a)
0

); then a large negative value in the

difference LMS(x
ULM

(a)
0

)− LMS(xBLM ) would indicate that
it more likely belongs to case 3. Here LM score is the sum of
the log probabilities of words in a hypothesis using a particu-
lar LM. Figure 1 demonstrates this effect on a data set from a
large voice catalog search application (as described in more de-
tail in Section 3). The horizontal axis represents the LM score
difference and vertical axis the proportion of different types of
outcomes within the group of utterances having the particular
LM score difference values. Clearly a large number of case 3
utterances have a large negative LM score difference while case
4 utterances tend to have large positive LM score difference.

One immediate application of this disparity is that we can
improve the final recognition accuracy by running separate
recognitions using each of BLM and ULM

(a)
0 and elect to use

ULM
(a)
0 result only when the LM score difference is greater

than some threshold, and fall back to using BLM result other-
wise. However, since this result selection significantly increases
the resource requirement at production time by doubling the
amount of decoding required, we will not further pursue this
development. Instead, in this work we focus on using the LM
score difference to select a set of possible regression pairs where
ULM

(a)
0 performed worse than BLM , to use in the next stage

of training updated adapted model.
There are other features that may potentially help distin-

guish the four outcome cases above, such as the AM score dif-
ference and acoustic quality measures such as SNR. However,
when combined with LM score difference in a statistical clas-
sifier training, these additional features did not offer significant
gain and in the rest of this work, we will focus on using only
the LM score difference feature. One should also note that the
effectiveness of the feature depends heavily on the quality of
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Figure 1: Distribution of sentence-level recognition disposi-
tions for each range of LM score difference between the initial
adapted LM ULM

(a)
0 and BLM , on a large voice catalog search

application. Case 3 for BLM is correct but adapted LM incor-
rect; case 4 for BLM incorrect but adapted LM correct; case 1
and 2 for both models correct or both incorrect, respectively.

recognition engine and acoustic model, as well as the quality
of the BLM . Generally a poorer baseline system will result
in greater number of regression pairs selected since there are
greater amount of deficiencies to exploit.

2.3. Data filtering using Ngram-Diff statistics

Once we have a set of regression pairs containing recognition
hypotheses from BLM and from initial adapted ULM

(a)
0 , there

are various ways to apply this knowledge on improving the un-
supervised adaptation. In this work, we chose to modify the un-
supervised training data set RBLM (Ua) to suppress possible er-
ror attractors introduced or reinforced via the initial adaptation.
One advantage of this choice over directly modifying Ngram
language model is the simplicity of training process. For exam-
ple, we do not have to explicitly deal with the decision whether
to remove an Ngram or update backoff paths when an Ngram is
suppressed.

The technique we introduce for suppressing potential error
attractors is based on a concept of NgramDiff. For text strings
T1 and T2, and an integer N , we define NgramDiff(T1, T2, N)
as an asymetric Ngram set difference of order N between the
two strings, consisting of all Ngrams of order N in T1, an-
notated by the difference in frequency of occurrences of each
Ngram in T1 and T2. For example, if T1 = ”<s> a c d </s>”
and T2 = ”<s> a b c </s>” where ”<s>” and ”</s>” are
begin and end of sentence, respectively, then we will have:

Ngrams Diff
NgramDiff(T1, T2, 1) d 1
NgramDiff(T1, T2, 2) c d 1

a c 1
d </s> 1

NgramDiff(T1, T2, 3) a c d 1
c d </s> 1
<s> a c 1

In each case, the ”Diff” count of ”1” indicates that the par-
ticular Ngram occurred one more time in T1 than in T2 (ac-
tually all 1 and 0 times in this example, respectively). In this
example, we have omitted Ngrams where the difference is less
than 1. Consider a regression pair with correct recognition
string T2 from BLM and incorrect recognition string T1 from

ULM
(a)
0 . NgramDiff(T1, T2, N) thus provide statistics on er-

roneous Ngram patterns that appeared in the incorrect hypoth-
esis more frequently than in the correct hypothesis. Since we
know that the recognition system is capable of producing the
correct hypothesis T2 it is likely that the Ngram patterns with
positive NgramDiff values have contributed to the promotion
of the incorrect hypothesis T1 over the correct hypothesis T2.
Thus NgramDiff(T1, T2, N) offers a set of potential error at-
tractor Ngrams with their frequencies.

We now compute the NgramDiff on all regression pairs that
we have identified between RBLM (Ub) and R

ULM
(a)
0

(Ub) and

aggregate the statistics into NgramDiffScore(i) for each Ngram
type i. Then for each recognition result in R

ULM
(a)
0

(Ua), in-
stead of always including it in the unsupervised adaptation set
as we did when creating ULM

(a)
0 , we will only include it with

a probability that aims to penalize recognition strings that con-
tain a high value of NgramDiff statistics, thus more likely error
attractors. In our experiments, we have adopted a simple for-
mulation as following:

P (accept) = (1 +
∑
i

wn ∗NgramDiffScore(i))−E (1)

Here i ranges over all Ngrams of order n from the current
recognition string that have positive NgramDiffScore. wn is a
weighting factor for Ngrams of order n and E in the exponent
scales and inverts the score, and both are meta parameters that
can be optimized on held-out data.

3. Experiments
Our experiments were conducted on data collected from a large
catalog search application where users can use voice to query
from millions of media items such as movies, music, and
video games by their titles, artists, and other relevant attributes.
The test set contains 5000 transcribed utterances, with 18,159
words. Another 5000 transcribed utterances were used for val-
idation and tuning. A set of 480K transcribed utterances were
available but in our final experiment we will only use the un-
supervised recognition output of this set (set Ub) with respect
to the BLM to learn regression pairs. Finally, a total of about
eight million untranscribed utterances were used for unsuper-
vised adaptation (set Ua). All data sets were drawn randomly
from the same time period over nine months. For each ex-
periment we measure the relative sentence error rate reduction
(SERR) and relative word error rate reduction (WERR) over the
baseline model (BLM ), as well as the perplexity of each model.
The baseline BLM Ngram model was trained from various data
sources collected at a time prior to any of the data sets were
captured in production; the major sources included a snapshot
of media items in the catalog then and media queries in Bing
web query logs. As described in the previous sections, we treat
the BLM as given and do not use its original training data di-
rectly in this work.

To better understand the contribution of different parts of
the algorithm, we ran four experiments differing in how the
recognition regression pairs were generated:

• Setup 1: Decode test set with initial adapted model
ULM

(a)
0 . The set of regression pairs C contains tran-

scription and recognition output of all test utterances that
were misrecognized.
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• Setup 2: Decode test set with both baseline BLM and
initial adapted model ULM (a)

0 . The set C contains tran-
scription and recognition output of all test utterances that
were correctly recognized with BLM but misrecognized
with ULM

(a)
0 .

• Setup 3: Same as Setup 2 but use set Ub instead of test
set to generate set C.

• Setup 4: Decode set Ub with both baseline BLM and
initial adapted model ULM (a)

0 . The set C was gener-
ated following the algorithm in Section 2.2, thus contains
recognition output pairs from BLM and from ULM

(a)
0

where the former were likely to have performed better
than the latter. The threshold for LM score difference
was set to -2.

The first two setups were thus cheating experiments involv-
ing test data. Setup 3 did not use test data for training but was,
of course, a very inefficient use of transcription of Ub, which, if
directly used in a supervised adaptation, would have improved
the overall performance significantly. Setup 4 represents a true
unsupervised solution. In all cases we have only used NgramD-
iff statistics of order 2 and the weighting factor wn and exponent
E in equation 1 were tuned on the tuning set.

Table 1 compares the performance of the four setups to
using only the baseline BLM or the initial adapted model
ULM

(a)
0 , which already provided a significant error reduction

over BLM . Both Setup 1 and 2 further improved over ULM (a)
0 ,

suggesting that the NgramDiff-based data filtering method was
effective in suppressing error attractors. In particular, Setup 2
outperformed Setup 1 since the former focuses exclusively on
utterances that did worse with ULM

(a)
0 than with BLM , which

are more likely to be corrected when we filter the unsupervised
adaptation data. On the other hand, Setup 1 included all mis-
recognized utterances with ULM

(a)
0 but some of them, though

erroneous at sentence level, may still be more ”correct” (con-
taining fewer word errors) than the corresponding results from
BLM , thus more likely to mis-adapt. Setup 3 improved over
ULM

(a)
0 even though the regression pairs were learned from a

set disjoint from the test data, suggesting some knowledge in
the regression pairs were indeed transferable. Also as expected,
it performed worse than cheating Setup 2.

Finally, the entirely unsupervised Setup 4 performed at least
as well as Setup 3 although in Setup 4 we identified the regres-
sion pairs automatically using the LM score difference metric.
Setup 4 provided an additional 3.1% SERR over ULM (a)

0 , thus
extending the gains from unsupervised adaptation by almost
two thirds; WERR was also improved by an additional 2.0%.
A detailed look at the selected regression pairs shows that 39%
of those selected had correct result with BLM and incorrect
with ULM

(a)
0 , precisely the kind of regressions we aimed to

extract. Furthermore, virtually no utterance in the selected pairs
had incorrect BLM result but correct ULM (a)

0 result, the kind
of patterns that would have led to mis-adaptation. The remain-
ing 61% were incorrect with both BLM and ULM

(a)
0 . Since

we selected the regression pairs with the LM score difference
metric using a relatively strict threshold, overall the selected
ones are more likely to have ”more correct” BLM results than
ULM

(a)
0 results, thus minimizing potential harms from includ-

ing such pairs in generating NgramDiff statistics. Interestingly,
perplexity goes up between ULM

(a)
0 and each of the updated

adapted models, even though recognition error rate is being re-
duced. This is due to the discriminative nature of the adaptation

where optimizing perplexity no longer correlates with minimiz-
ing recognition errors, and a similar phenomenon was reported
in previous discriminative training work such as [11].

Table 1: Performance comparison of different setups on the test
set. SERR% and WERR% are relative sentence error and word
error rate reductions over the BLM , respectively.

model SERR% WERR% Perplexity
BLM 0 0 118.1

ULM
(a)
0 4.79 9.04 65.9

Setup 1 6.88 10.17 70.0
Setup 2 9.34 12.15 68.3
Setup 3 7.50 11.02 75.1
Setup 4 7.92 11.02 76.6

4. Discussion and Future Work
As explained in previous sections, the proposed solution lever-
ages the unique setup of the LM adaptation framework to al-
low us rely on features such as LM score difference to effec-
tively identify possible regression pairs between the BLM and
the initially adapted LM. However, such features are less likely
to work as well in other scenarios such as between two more
independent LMs. The data filtering strategy presented in Sec-
tion 2.3 took advantage of the nature of short utterances in our
voice search applications. The technique is less likely to be
successful for applications with longer utterances since more
Ngrams would be inadvertently affected even though they may
not be the true target of penalization during data filtering. In
those cases direct modification of Ngram counts or parameters
may be more effective.

The current experiments only made use of 1-best recogni-
tion results for identifying regression pairs and for unsupervised
adaptation. It is possible to extend the method to more items
on N-best list for additional gains but also with greater risk of
penalizing insignificant error patterns unnecessarily. There are
also a number of other ways to extend the proposed solution,
such as running multiple iterations of regression-pair identifica-
tion and data filtering and model update steps, as well as mak-
ing explicit use of the positive adaptation pairs where the ini-
tial adapted LM indeed performed better than the BLM (case
4 in Section 2.2). Furthermore, it should be possible to take
into account the acoustic model scores of the identified regres-
sion pairs to compute more precise adjustments needed in the
adapted model to minimize recognition errors [11, 6, 12].

5. Conclusions
We have described a discriminative data filtering solution to im-
prove unsupervised LM adaptation. We leveraged the unique
setup of the adaptation framework to automatically predict
recognition regression pairs between a baseline LM and an ini-
tial adapted LM, using features such as LM score difference.
NgramDiff statistics were computed from the identified regres-
sion pairs and applied to the unsupervised adaptation data fil-
tering, to penalize potent error attractors introduced through the
initial adaptation. An updated adapted LM can be trained from
the filtered adaptation data. We demonstrated the effectiveness
of the proposed solution on a large, real-world voice catalog
search application and achieved significant additional recogni-
tion error reduction over the initial adapted LM.
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