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Abstract

We present a new scalable approach to using deep neural net-

work (DNN) derived features in Gaussian mixture density hid-

den Markov model (GMM-HMM) based acoustic modeling

for large vocabulary continuous speech recognition (LVCSR).

The DNN-based feature extractor is trained from a subset of

training data to mitigate the scalability issue of DNN training,

while GMM-HMMs are trained by using state-of-the-art scal-

able training methods and tools to leverage the whole training

set. In a benchmark evaluation, we used 309-hour Switchboard-

I (SWB) training data to train a DNN first, which achieves a

word error rate (WER) of 15.4% on NIST-2000 Hub5 evalu-

ation set by a traditional DNN-HMM based approach. When

the same DNN is used as a feature extractor and 2,000-hour

“SWB+Fisher” training data is used to train the GMM-HMMs,

our DNN-GMM-HMM approach achieves a WER of 13.8%.

If per-conversation-side based unsupervised adaptation is per-

formed, a WER of 13.1% can be achieved.

Index Terms: deep neural network, DNN-based feature extrac-

tion, DNN-GMM-HMM, DNN-HMM, LVCSR

1. Introduction

In the past several years, a so-called DNN-HMM approach has

become a new state-of-the-art acoustic modeling method for

large vocabulary continuous speech recognition (LVCSR) (e.g.,

[1–5]). The main factors contributed to the improved recogni-

tion accuracy compared with the traditional GMM-HMM based

approach include the use of long-span features in the input layer

of a DNN, a hierarchical highly nonlinear feature mapping due

to its deep structure, and using decision-tree based HMM tied-

states as target classes in DNN output layer. Our recent study

in [6] has shown that when long-span features and a tied-state

based discriminative training criterion are used, it is possible for

the GMM-HMM approach to achieve similar state classification

accuracy on training set as that of the DNN-HMM approach.

However, there is still a performance gap in terms of word error

rate (WER) between DNN-HMM and GMM-HMM approaches

on the testing set. This may suggest that the hierarchical nonlin-

ear feature extraction capability of a DNN is the most important

contributing factor in the success of DNN-HMM approach.

In literature, there are several methods which derive fea-

tures from either a shallow or a deep neural network, and use

the features in GMM-HMM based acoustic modeling. For ex-

ample, a so-called tandem approach [7] uses log-posterior prob-

abilities generated by the softmax output layer of a multi-layer

perceptron (MLP), or the weighted sums of the outputs of the
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last hidden layer as features. A so-called bottleneck-feature ap-

proach [8] imposes a bottleneck in the middle of an MLP, and

uses the weighted sums of the outputs of the hidden layer imme-

diately before the bottleneck layer as features. More recently,

encouraged by the success of DNN-HMM approach, several

extensions to the conventional tandem and bottleneck-feature

approaches are proposed, which include using a bottleneck in

a pre-trained DNN in [9], and using auto-encoder bottleneck-

features on top of a DNN in [10]. However, to the best of

our knowledge, none of them has outperformed the best DNN-

HMM solution yet in a comparable setup [9–11].

Given the preliminary success of DNN-HMM approach,

one of the most important research problems is how to scale up

DNN training to leverage big data and further improve recogni-

tion accuracy. Past and ongoing efforts include using multiple

GPU cards (e.g., [12]) and large-scale CPU clusters (e.g., [13])

to speed up DNN training, and exploring new scalable optimiza-

tion methods for DNN training (e.g., [4, 13]).

In this paper, we present a new scalable approach to using

DNN-derived features in GMM-HMM based acoustic model-

ing for LVCSR. The DNN is used as a feature extractor which

is trained from a sampled subset of training data to mitigate

the scalability issue of DNN training, while GMM-HMMs are

trained by using state-of-the-art scalable training methods to

make use of the whole training set. In a benchmark evaluation

on Switchboard-I conversational telephone speech transcription

task, it is demonstrated for the first time that our DNN-GMM-

HMM approach can outperform the traditional DNN-HMM ap-

proach and offers a promising practical solution.

The rest of this paper is organized as follows. In Section 2,

we present the details of our new approach. In Section 3, we

report our experimental results. Finally, we conclude the paper

in Section 4.

2. Our Approach

2.1. Training a DNN for feature extraction

The topology of a DNN is defined by the number of hidden lay-

ers and the number of nodes in its input, hidden, and output

layers, respectively. Typically, the number of nodes in the input

layer is determined by the length of input feature vector, which

is composed by augmenting several neighboring frames of the

original Dori-dimensional feature vectors. The number of hid-

den layers and the number of nodes in each hidden layer are

set empirically by considering the tradeoff among trainability,

classification accuracy and runtime efficiency. In our approach,

the number of nodes in the output layer is set according to an

initial GMM-HMM set trained on the same task. Using tra-

ditional training procedures, the GMM-HMM set is trained on

the full training set using spectral features. The GMM-HMM
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Figure 1: Illustration of a typical 9-layer (7-hidden) DNN and

the layer from which the features are derived.

topology and the structure of decision-tree based state-tying are

well-tuned empirically. The number of nodes in the DNN out-

put layer is then equal to the number of tied-states in the corre-

sponding GMM-HMM set.

To train the DNN feature extractor, a well-established DNN

training recipe using cross entropy (CE) criterion can be used

(e.g., [1, 2]). The initial feature-state alignment required for

DNN training is generated by performing forced-alignment us-

ing spectral features and the initial GMM-HMM set. Only a

sampled subset of training data is used in this step to miti-

gate the scalability issue of DNN training. Different sampling

strategies can be used to obtain the subset, for example, ran-

dom utterance- or frame-level sampling, tied-state distribution

preserving sampling, WER-guided sampling, among other pos-

sibilities. Such trained DNN can be used directly to perform

speech recognition as in DNN-HMM approach (e.g., [1, 2]), or

it can be used to extract features for GMM-HMM acoustic mod-

eling as described in the following subsections.

2.2. Deriving features from a DNN

Fig. 1 illustrates how features are derived from a trained DNN

in our approach. Firstly, a Draw-dimensional raw feature vec-

tor is obtained from the last hidden layer by calculating the

weighted sums of the outputs of its previous layer. In this way,

a new set of DNN-derived features can be extracted for the full

training set. After that, principal component analysis (PCA) is

performed to compress the dimension of the DNN-derived fea-

tures to Ddnn, and each feature frame is augmented with its

original spectral features to compose a new (Ddnn + Dori)-
dimensional feature vector. Finally, HLDA [14] is performed

to reduce the feature dimension to Dgmm, which is appropriate

for GMM-HMM acoustic modeling. In this step, the same set

of decision-tree based tied-states in the initial GMM-HMM set

is used to define the “classes” in training HLDA transform.

2.3. GMM-HMM training using DNN-derived features

The GMM-HMM training using DNN-derived features is quite

straightforward. The same decision-tree state-tying structure is

used again, and a single-pass re-estimation is performed using

both spectral and DNN-derived features in parallel, to initialize

a single-Gaussian GMM for each HMM tied-state. Conven-

tional maximum likelihood (ML) based GMM-HMM training

recipe is then applied to grow the number of mixture compo-

nents of the GMMs to an appropriate value.

After ML training, discriminative training is performed in

two steps. Firstly, we follow our previous work in [6] to perform

a lattice-free, tied-state based WE-RDLT training in the feature

space. A set of contextual weight expanded linear transforms

is estimated using a maximum mutual information (MMI) cri-

terion, which is identical to the cross entropy criterion in DNN

training. Secondly, conventional sequence-based MMI training

is performed in the model space (e.g., [15]). Language model

scores encoded in word lattices are incorporated in this step to

refine the GMM-HMM parameters.

In certain application scenarios, unsupervised adaptation

can be performed in the recognition stage. Therefore, a second-

pass decoding is conducted to further improve the recognition

accuracy. In this study, a traditional CMLLR adaptation ap-

proach [16] is used to demonstrate the impact of unsupervised

adaptation.

2.4. Discussion

Our method of deriving features from a DNN is different from

the conventional tandem or bottleneck-feature approaches. Be-

cause the bottleneck layer is no longer necessary in our ap-

proach, the power of nonlinear discriminative feature extraction

in DNN can be fully utilized. In our approach, the dimension of

the raw DNN-derived feature vector is independent of the num-

ber of nodes in the output layer, which is not the case for the

tandem approach. Therefore, the trained DNN feature extractor

can be used in other tasks or setups with a different decision-tree

tying structure. Given the promising results in [17], we conjec-

ture that it is possible to train a DNN feature extractor which

can be shared by GMM-HMM based LVCSR systems for dif-

ferent languages. Given the experimental evidence in [18], it

is also possible to train a DNN feature extractor by using both

clean and noisy speech data to improve the noise robustness of

a GMM-HMM based LVCSR system.

In addition to mitigating the scalability issue, using GMM-

HMM to model DNN-derived features provides additional op-

portunities of further improving recognition accuracy by lever-

aging some well-established techniques in GMM-HMM frame-

work such as adaptation (e.g., [19] and the references therein),

adaptive training (e.g., [16,20]) or irrelevant variability normal-

ization (IVN) based training (e.g., [21–23]), discriminative fea-

ture extraction (e.g., [6, 24, 25]), among others.

3. Experiments

3.1. Experimental setup

Two training data sets are used in this study. The first is a 309-

hour set from Switchboard-I conversational telephone speech

transcription task [26]. The second is a 2,000-hour set which

is composed of the aforementioned 309-hour set and another

1,700 hours speech from Fisher English corpus (parts 1 and 2)

[27]. The 1831-segment SWB part of the NIST 2000 Hub5

evaluation set which consists of 40 conversational sides (about

2 hours of speech) is used as the testing set.

For front-end spectral feature extraction, we use 13-

dimensional PLP features along with their time derivatives up

to the third order, i.e., Dori = 13 × 4 = 52. Windowed

mean and variance normalization is performed, and a 39 × 52
HLDA transform is estimated to reduce the feature dimension

for GMM-HMM modeling, i.e., Dgmm = 39.

Using spectral features, two sets of speaker independent

GMM-HMMs are trained. The first is trained using the 309-



Table 1: WER (%) comparison of different systems using 309-

hour training data (UA = unsupervised adaptation).

DNN-HMM DNN-GMM-HMM (9.3k, 309hr)

(9x2k, 9.3k, 309hr) ML RDLT MMI UA

16.4 17.8 16.1 15.3 14.7

hour data set, and has about 9.3k phonetic decision-tree based

tied triphone HMM states, each modeled by a 40-component

GMM. The second is trained using the 2,000-hour data set, and

has about 18k tied-states, each modeled by a 72-component

GMM.

For DNN training, 11 augmented frames of the original 52-

dimensional spectral features are fed into the input layer. The

training procedure is the same as in [2]. Several DNNs with dif-

ferent topologies are trained to investigate the effect of several

structural parameters.

For the GMM-HMM sets trained using DNN-derived fea-

tures, the topology and other setups are kept the same as that

of using spectral features. The WE-RDLT [6] training is per-

formed using 1,000 “regions.” Unsupervised adaptation is done

for each conversation side, where CMLLR with 2 regression

classes, one for speech and another for non-speech, is used.

It is a common practice to re-balance acoustic and language

model scores when using features generated by neural networks

[8]. In our experiments, an acoustic down-scaling factor of 0.5

is used in decoding and word-lattice based sequence training

(simply multiply the acoustic log-likelihoods by 0.5). This is

found essential to obtain the best recognition accuracy.

Our recognition vocabulary contains 47,633 unique words.

The pronunciation lexicon contains multiple pronunciations per

word with a total of 58,393 unique pronunciations. A trigram

language model, which is trained on the 2,000-hour data tran-

scripts and interpolated with a written-text trigram, is used in

decoding. All of the recognition experiments are performed

with a Microsoft in-house decoder and the results are evaluated

by using the NIST Scoring Toolkit SCTK [28].

3.2. Experimental results

3.2.1. 309-hour experiments

We start from a large 9-layer (7-hidden) DNN which is trained

using cross entropy criterion and 309-hour data set. The DNN

has 2,048 nodes in each hidden layer and about 9.3k nodes in

the output layer. We label this DNN as “9x2k, 9.3k, 309hr”

and similarly for other DNN topologies hereinafter. Using the

features derived from it, a GMM-HMM set which has the same

tied-states (about 9.3k) is trained, where each state is modeled

by a 40-component GMM.

The recognition performance (WER in %) of different sys-

tems is compared in Table 1. When used directly in the hy-

brid mode, the DNN-HMM achieves a WER of 16.4%, which is

significantly better than the corresponding initial GMM-HMM

systems trained using spectral features only (which achieves

a WER of 26.1% after ML training and 20.5% after discrim-

inative training). Using the features derived from this DNN,

the WER of the ML-trained DNN-GMM-HMM system is im-

proved significantly to 17.8%, but still worse than the DNN-

HMM system. After WE-RDLT, the WER of our DNN-GMM-

HMM system is reduced to 16.1%, which means the GMM-

HMM using DNN-derived features can perform slightly better

than its DNN-HMM counterpart. At this point, both the RDLT

Table 2: WER (%) comparison of systems with different DNN

topologies on 309-hour task. About 9.3k tied states are used in

both DNN-HMM and DNN-GMM-HMM systems.

DNN-HMM DNN-GMM-HMM

9x2k 16.4

ML Training

17.8

7x2k 16.7 18.0

7x1k 17.8 18.9

5x2k 17.9 21.5

Table 3: WER (%) comparison of different systems with

bottleneck-features and proposed DNN-derived features on

309-hour task. About 9.3k tied states are used in both DNN-

HMM and DNN-GMM-HMM systems (BN = bottleneck).

DNN-HMM DNN-GMM-HMM

7x2k 16.7
ML Training

18.0

7x2k-BN 18.0 19.6

and DNN are trained with a tied-state based cross entropy cri-

terion, and the GMM parameters are still ML-trained. By per-

forming sequence MMI training to optimize the GMM parame-

ters, the WER of our DNN-GMM-HMM system further reduces

to 15.3%. Finally, after unsupervised CMLLR adaptation, the

WER of the DNN-GMM-HMM system is reduced to 14.7%.

The overall relative performance improvement is quite similar

to the gain commonly obtained when performing discriminative

training and adaptation on GMM-HMMs trained with spectral

features.

3.2.2. Effect of number of hidden layers and hidden nodes

To investigate how different DNN topologies would affect the

DNN-HMM and DNN-GMM-HMM systems, the numbers of

hidden layers and hidden nodes are varied in our experiments.

The recognition performance of different systems is compared

in Table 2. When the numbers of hidden layers and hidden

nodes of the DNN are reduced, the recognition performance of

the DNN-HMM systems degrades gradually. The performance

of the ML trained DNN-GMM-HMM systems follows similar

trend. The experimental results demonstrate that the DNN ben-

efits most from its highly nonlinear discriminative feature map-

ping brought by its deep structure. Wider hidden layers with

more nodes also contribute to the performance. On this task, the

7x2k DNN feature extractor seems to be a good choice because

it saves 1/3 of the runtime feature extraction cost compared with

the 9x2k DNN (4 vs. 6 nonlinear layers), yet it achieves similar

recognition performance after GMM-HMM modeling (17.8%

vs. 18.0%). In real applications, tradeoff between efficiency

and accuracy can be made to determine the appropriate DNN

topology for feature extraction.

3.2.3. Comparison with deep bottleneck-features

In order to compare our DNN-derived features with the deep

bottleneck-features in [9], a symmetric 7-layer (5-hidden) DNN

which has a 52-node bottleneck in its 4th layer is trained. When

used as a feature extractor, the raw bottleneck-features after

PCA are augmented with the original spectral features. HLDA

is then used to perform dimension reduction similarly as in

our proposed approach. The comparison of recognition per-

formance is given in Table 3. It can be seen as expected that



Table 4: WER (%) comparison of different systems using 309-

hour data for DNN training and 2,000-hour data for GMM-

HMM training. About 18k tied states are used in both DNN-

HMM and DNN-GMM-HMM systems (UA = unsupervised

adaptation).

DNN-HMM DNN-GMM-HMM (18k, 2000hr)

(9x2k, 18k, 309hr) ML RDLT MMI UA

15.4 16.1 14.7 13.8 13.1

Table 5: WER (%) comparison of different systems using 2,000-

hour data for training both DNN and GMM-HMMs. About 18k

tied states are used in both DNN-HMM and DNN-GMM-HMM

systems (UA = unsupervised adaptation).

DNN-HMM DNN-GMM-HMM

(9x2k, 18k, 2000hr) (18k, 2000hr)

CE MMI ML RDLT MMI UA

14.6 13.3 15.6 14.5 13.0 12.3

the bottleneck layer hurts the performance of the DNN-HMM

system by 1.3% absolute (or 7.8% relative). Even larger per-

formance degradation (1.6% absolute, or 8.9% relative) is ob-

served when the DNN is used for feature extraction. The results

suggest that deriving features from a deeper hierarchy of hidden

layers is better than from a bottleneck layer in the middle. The

information loss caused by the bottleneck layer is detrimental

to the performance, therefore should be avoided.

3.2.4. 2,000-hour experiments

Although the DNN-GMM-HMM system using DNN-derived

features is able to achieve similar or even better performance

than the DNN-HMM in the previous 309-hour experiments,

the practical value of this combination is still limited. Using

GMM-HMM to model DNN-derived features introduces addi-

tional procedures in training, while the computational cost in

runtime feature extraction and decoding is not reduced either.

Therefore, it is much more interesting to scale up the data used

in GMM-HMM training and see how it performs using the com-

bination suggested in this paper.

Using spectral features, the 2,000-hour full data set is used

in our experiments to train a GMM-HMM set with about 18k

tied states and 72 Gaussian mixture components per state. After

that, a 9x2k (7-hidden) DNN feature extractor is trained with the

same 18k tied-states, but using only the 309-hour Switchboard-I

data. Using the features derived from this DNN, another GMM-

HMM set is trained again on the full training set. Recognition

performance of different systems is compared in Table 4. Com-

paring with the results in Table 1, the WER of the DNN-HMM

trained on the same 309-hour data is reduced by 1.0% absolute

(or 6.1% relative) because more nodes are used in the output

layer (9.3k vs. 18k). The performance of the DNN-GMM-

HMM system is improved significantly due to the above fact

and using much more training data. Overall, an absolute WER

reduction of 1.5% (or 9.8% relative) is achieved without unsu-

pervised adaptation, and 1.6% absolute (or 10.9% relative) is

achieved with adaptation.

If one could afford to wait the completion of training a DNN

using the 2,000-hour full data set [29], even better performance

can be achieved as shown in Table 5. The DNN trained using

cross entropy criterion is used as the feature extractor for our

DNN-GMM-HMM systems. The result reported in [30] by fur-

ther fine-tuning the DNN-HMM with a sequence based MMI

criterion is also included in Table 5 for comparison. It is ob-

served that using more training data reduces the WER of DNN-

HMM system moderately by 0.8% absolute (or 5.2% relative).

It also improves the DNN feature extractor, therefore the DNN-

GMM-HMM systems are improved compared with the ones us-

ing the feature extractor trained with 309-hour data. With tied-

state based training using cross entropy criterion, both DNN-

HMM and DNN-GMM-HMM systems achieve very close re-

sults (14.6% vs. 14.5%). After sequence-based MMI train-

ing, the DNN-GMM-HMM system achieves a WER of 13.0%,

which is slightly better than the WER of 13.3% achieved by

its DNN-HMM counterpart. Finally, after unsupervised adap-

tation, the WER of the DNN-GMM-HMM system is reduced

to 12.3%. To the best of our knowledge, this is the best result

reported on this benchmark evaluation.

3.3. Discussion

From the results in Tables 4 and 5, using the 2,000-hour trained

DNN-HMM, the WER after MMI training (13.3%) is only 0.5%

absolute (or 3.6% relative) better than the 309-hour trained

DNN feature extractor combined with the 2,000-hour trained

GMM-HMMs (13.8%). However, such a gain comes at a con-

siderable cost in DNN training. Using a GPU implementation,

it takes approximately 100 hours to perform a full data sweep on

the 2,000-hour set using cross entropy criterion, and 170 hours

using MMI criterion [30]. The whole training process needs to

run several sweeps. In contrast, the GMM-HMM training al-

gorithms can be easily parallelized to leverage large-scale CPU

clusters. For example, our training tool only takes about sev-

eral minutes to 3 hours for ML, WE-RDLT and MMI training,

respectively, to perform a full data sweep on a cluster of 1,024

CPU cores.

On top of cross entropy criterion, sequence training of

DNN-HMMs can bring additional WER reduction (e.g., [4,30]).

A relative WER reduction of around 10% can usually be

achieved, which is similar to what can be achieved by perform-

ing sequence training on GMM-HMMs. We are just wondering

how sequence training would affect the DNN feature extractor

as used in our approach, which could be one of our future ex-

periments.

4. Conclusion

In this paper, we have demonstrated that using DNN-derived

features for GMM-HMM based acoustic modeling can achieve

similar or even better recognition accuracy than its DNN-HMM

counterpart. The proposed approach combines the best of

both worlds in deep learning and well-established GMM-HMM

framework to offer a short-term practical solution. Our ongo-

ing work include the investigation of different sampling strate-

gies in the proposed approach and a truly scalable DNN train-

ing method to leverage large-scale training data for improved

LVCSR accuracy. We will report those results elsewhere.
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