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ABSTRACT

Energy drain in mobile devices is well recognized to
be a serious problem. Most mobile operating systems
provide facilities to mitigate energy drain, but they are
usually heavy handed and often require shutting down
an offending application or uninstalling it. In this pa-
per, we describe an alternative that controls the behavior
of an energy hungry application rather than kill it. Our
system offers a finer-grained approach to energy drain
and is cognizant of specific application energy charac-
teristics as well as interactions amongst multiple appli-
cations that can affect energy drain in unexpected ways.
Using our system, we believe users can avoid the annoy-
ance of sudden and unexpected battery loss, particularly
when operating in standby mode.

Our system, called E-Loupe, consists of components
running on each device as well as in a centralized data
center. E-Loupe gathers per-device data, analyzes this
data, and implements energy sandboxing in the device
kernel to control how often an energy hungry applica-
tion is run and what resources it is allowed to consume.
Our experimental results on data from over 73,000 users
shows that we can identify the cause of more than 85%
of the energy spikes, and upper bound the energy drain
in nearly all of these cases.

1. INTRODUCTION

Mobile devices such as phones and tablets are
now commonplace. At the same time, there is an
abundant supply of applications (“apps”) for these
devices that are viewed as practically indispensable
by their users. Many of these apps are sophisti-
cated, and like applications that execute on PCs,
make non-trivial demands on the host device’s re-
sources. One such resource is the charge in the de-
vice battery, which unlike its PC counterpart, is
quite limited and therefore a significant resource
that must be husbanded.

Much prior work on energy management for mo-
bile devices has focused on energy savings at the
lowest level of the system, e.g., the radio, or the

CPU, or the system-on-a-chip of the mobile device.
These efforts are indeed very important, but they
provide only limited help to app developers in mak-
ing their apps more energy efficient or to users in
avoiding energy-hungry apps. In fact, manufactur-
ers of mobile devices complain that their hardware
and low-level systems are energy efficient and that
the apps are the culprits [5, 4]. However, charac-
terizing the end-to-end energy used by an app is
difficult for multiple reasons.

First, and perhaps surprisingly, the straightfor-
ward approach of estimating an app’s energy by
executing it in isolation and measuring its energy
usage does not work well. This is primarily because
covering all usage and execution scenarios is non-
trivial due to the following:

e Configuration. For example, one instance of
an app may be configured to poll the network
more frequently than another instance.

e User-specific variation. For instance, one user
of a social media app may have many more
contacts than another that must be updated
by the app.

e Concurrent apps. An an example, two apps
that simultaneously use a resource like the GPS
can consume less power than if they ran sepa-
rately because of the fixed cost of powering up
the GPS is not amortized.

Second, estimating energy usage of an app by
measuring resource (e.g., CPU, display, disk, net-
work etc.,) usage does not work satisfactorily be-
cause high energy consumption does not necessar-
ily imply high resource usage. We demonstrate this
effect using energy and resource usage data that
we sampled from a large collection of mobile de-
vices (Table 1) . Figure 1 shows the cumulative dis-
tribution (CDF) of our samples versus the average
power. We plot two separate CDFs: one for sam-
ples with high resource usage (network, disk and
CPU usage above median) and one for those with
low resource usage (network, disk, and CPU usage
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Figure 1: Cumulative distributions of samples with
high resource consumption and low resource con-
sumption. Values greater than 0.4W denote high
energy drain for tablet device with a 42Wh battery.

below median). The CDF for the low resource sam-
ples indicate that over 30% of these consume high
power. Likewise, the CDF for the high resource
samples shows that 42% of these, in fact, consume
low power. If resource usage were a good indicator
of energy drain, we would expect almost all of the
high resource records to show large average power
(and mutatis mutandis for low resource records).

Finally, we must account for both foreground and
background jobs. Mobile platforms run a foreground
task that uses the screen and interacts with the user,
as well as multiple background tasks that do not
interact with the user, but consume a significant
fraction of the total energy. Energy profiling back-
ground tasks is prohibitively expensive and as far
as we are aware, existing systems only measure the
foreground task and do not fully account for the
energy drain. Instead, existing operating systems
restrict the set of processes that are allowed to run
in the background(iOS, Android, and Windows) or
limit the amount of resources these background jobs
can use (i0S and Windows). Yet, despite these ap-
proaches, these systems can incur significant energy
drain when there are background jobs because the
restrictions imposed by the OS are only indirectly
addressing the problem of energy drain.

The goal of our system, called E-Loupe, is to pro-
vide fine-grained, on-demand control over energy
hungry apps while overcoming the challenges men-
tioned above. It effectively characterizes the en-
ergy consumed by apps and uses a technique, energy
sandbozxing, to control when energy hungry apps are
scheduled, and how much resources they are allowed
to consume. This is unlike current mobile operating
systems that provide relatively coarse-grained con-
trol over apps [1, 2]. For example, in most cases,
energy hungry apps are typically killed, rather than

controlled, to reclaim resources. A novel aspect of
our approach is that it can account for multi-app
interactions. Another attractive feature is that it
offloads some of the work to each mobile device and
thus accommodates scale. It is important to note
that our system does not per se. improve the en-
ergy consumption of a specific app (the app must
consume a certain quantity of energy to perform a
certain task), but we reduce the rate of energy con-
sumption and prolong battery life to meet a tar-
geted standby battery lifetime. This feature is in-
strumental in avoiding sudden and unexpected bat-
tery loss, particularly because of background pro-
cesses.

E-Loupe has three components

1. The first component runs on each user’s de-
vice and collects energy and resource usage
samples. Our current population has about
73,000 users. The collected data is uploaded
to a service in a datacenter.

2. A second component running in the datacenter
uses statistical inferencing techniques to diag-
nose the cause of an energy anomaly, and de-
termines kernel policies to isolate and contain
it. As others have independently observed [14],
statistical analyses of energy data from a large
population yields signficant insights.

3. A final component, running in the device ker-
nel implements the policies to limit the impact
of the errant app by restricting its resource us-
age to meet a desired energy goal.

We implemented our system for Windows 8 mo-
bile devices. Using data collected from over 73,000
devices, we show that E-Loupe can successfully iso-
late the causes of high energy drain for 87.5-92.3%
reported energy spikes. The energy sandboxing mech-
anism is able to reduce the average power consump-
tion by 5-6 times from the peak. Finally, our trace-
based simulation suggests that E-Loupe can reduce
the energy discharge rate by 3 times for real user
reported energy spikes.

2. RELATED WORK

E-Loupe manages the end-to-end energy consump-
tion of mobile devices — from monitoring their en-
ergy consumption, to isolating the culprit processes,
and when possible, recovering from anomalous en-
ergy behavior (or energy spike). To the best of our
knowledge, prior work has only looked at subsets
of the problem without an obvious way to combine
them.

A common technique to identify energy hungry
processes is resource-based modeling [13, 15, 16, 21].
The system monitors the resources (CPU, display,



network, disk, etc.,) used by the process, and then
applies per-resource models, e.g. CPU [12], net-
work [17, 8], display [10], to additively determine
the total energy consumed by the process. This
technique has also been used in commercial prod-
ucts, such as BatterBatteryStats for Android [6].

Although simple, this technique cannot always
identify the culprit process(es). First, resource mod-
els are only as accurate as the granularity of mon-
itoring. Although one could monitor CPU DVFS
states every few milliseconds, and the display pix-
els 60 times a second, such a monitoring framework
will itself consume significant energy. In contrast,
measuring resource consumption at a coarser gran-
ularity leads to false negatives (Figure 1). Second,
developing models for all system components, un-
der all possible operating conditions is difficult. For
example, the same network load will draw different
amount of energy depending on the cellular chipset
and signal strength [13, 21]. Third, when resources
are shared, e.g. a shared GPS, or a common service
is used in background mode (BroadcastReceiver
in Android, or the svchost process in Windows),
per-process resource consumption does not capture
the energy consumed by other processes on its be-
half.

An alternative to computing energy using resource-
based modeling is to do the reverse: measure energy
consumption and attribute it, using statistical tech-
niques, to the active processes. Carat [14], a concur-
rent work, applies statistical techniques on energy
data collected across several devices to identify the
faulty app. However, Carat is unable to detect cases
where a cluster of processes cause the energy spike,
which as we show is common in screen-off mode.
(Section 7).

In fact, E-Loupe goes further, and tries to recover
from the energy spike. Modern OSes use several
techniques to reduce the energy consumed by each
component, such as CPU DVFS, shutting off cores,
memory frequency scaling, display brightness, Wi-
Fi power save mode, 3G fast dormancy, and many
others. They can also be configured to implement
power policies based on the battery level. However,
these preventive actions are unable to contain high
energy drain. The OS is unable to react since it can-
not attribute energy drain to a faulting process (or
processes). The only work we are aware of that en-
ables per-process energy accounting is Cinder [18].
However, since this would require an OS redesign
and a knowledge of existing app energy require-
ments, we instead propose a new concept, called
energy sandboxing, that requires small changes to
the OS, and can yet upper bound the amount of

energy the entire system drains in screen off mode.

3. SYSTEM OVERVIEW

E-Loupe consists of two privileged components
that run on the client device and a server-side com-
ponent that runs in a datacenter. A lightweight
client-side data logger gathers coarse-grained en-
ergy consumption data samples from the mobile de-
vice, batches them, and uploads them to the server
whenever it has access to Wi-Fi. This datalogger
also feeds a client-side module that constructs a
model for energy consumption that is specific to the
device. A server-side module stores the uploaded
data, processes them to detect energy spikes, and
helps infer the cause of energy drain. This informa-
tion is sent back to the client, where a client-side
module calls into our kernel API to effect resource
and energy sandboxing.

In this section we give an overall architecture of
our system. The two sections that follow describe
the functioning of our system in greater detail.

Data Logger

To minimize overhead, the E-Loupe data logger typ-
ically gathers only coarse-grained data (on the order
of tens of minutes). We refer to these as long-term
reports. However, when the logger detects that en-
ergy discharge rate exceeds a threshold, currently
set at 0.4W (Figure 8), it transmits a set of spe-
cial short-term reports, which occur on the order of
minutes.

Both data reports are created by sampling the
“fuel gauge” on the battery systems. We do not
collect finer-grained data because the fuel gauges
on existing systems does not report accurate bat-
tery drain over short periods. We are actively con-
sidering logging more fine-grained information while
maintaining the lightweight nature of the data log-
ger. However, in this paper we show that such
coarse-grained information is enough to get us most
of the way in energy diagnosis and recovery.

Both long-term and short-term records consist of
the following fields

e timestamp: The end time of the interval.

e process list: List of processes that were ac-
tive in the sample interval (system and non-
system processes). We focus on processes rather
than apps because in many cases, on nearly
all mobile platforms, the system processes per-
form tasks on behalf of the apps, particularly
when the apps are in the background. Our
goal is to learn relationships between these
processes, and attribute energy drain to the
appropriate process, or group of processes, so
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Figure 2: The system architecture

that we can be specific in our recovery actions.

e energy: Energy drained during this interval,
retrieved by polling the battery fuel gauge.
This is a cumulative figure attributed to all
the processes in the list above. It does not
measure instantaneous power, only the energy
e; drained during each internal At; denoted
by the ith report. The energy discharge rate
e;/At; has the same unit as power, and we
refer to this as “power” in the sequel.

e cpu usage: For each process, the foreground
and background CPU cycles used by each pro-
cess during the interval.

e disk usage: For each process, the number
of disk reads, writes, and flushes, in terms of
bytes, during the interval.

e network activity: For each process, the num-
ber of bytes sent and received on each network
interface during the sample interval.

Server

This service runs in the datacenter and stores energy
reports from the data logger in a database. The
server process statistically analyzes these records for
energy anomalies.

The power we compute based on energy and time
is the mean of the instantaneous power for a given
duration. With a large number of samples drawn
from random i.i.d variables, we can therefore use a
normal distribution to approximate the distribution
of the computed power values, in accordance with
the Central Limit Theorem [20]. Likewise, when-
ever we have sufficient samples from a specific de-
vice, we also use a normal distribution to approxi-
mate the power distributions from that device.

Using our samples, the server calculate two met-

rics that are useful for users and publishes on a Web
site. The first, called the Consumed Power is a per-
process indication of how much power the device
consumes when that process is active. The second
metric, called the Occurrence Frequency is a per-
process indication of how often a process is likely
to be active if it is installed. These metrics are use-
ful in two ways: first, they provide a ranking of
apps and second, they also help in troubleshooting
energy spikes. In the interest of space we do not
describe these further in this paper.

Detecting Energy Spikes

When the data logger transmits a set of short-term
reports to indicate the potential for an energy spike,
the server analyzes the data to confirm it.

The analysis is fairly straight forward: Assuming
that the average power follows a normal distribution
N (11, 02) (with g and o2 estimated from data), then
for each report with power P;, E-Loupe computes
the probability of P; coming from N '(u,0?). If this
probability is smaller than a predefined threshold
(e.g., 0.05 in our experiment), E-Loupe marks this
event as an energy spike.

Isolating the Cause of Energy Spikes

When an energy spike is confirmed, the isolation
step addresses what caused it. The server catego-
rizes the causes of an energy spike: e.g., is this a
problem specific to the device, or is it because there
is a problem with a specific process, or is a group
of processes responsible for it. We describe this ap-
proach in greater detail in Section 4. After isolating
the potential cause, the server communicates this
information back to the client.

We use a centralized service to detect and isolate



the cause of an energy spike rather than doing this
on a client because it allows us to aggregate energy
records from a very large ensemble and use statis-
tically significant techniques. As a simple example,
an energy anomaly that persistently occurs only on
a specific device would be hard to identify as such
if the analysis were done only at the device.

Client Diagnostic & Recovery Daemon

When a client receives feedback from the server
about the cause of an energy spike, it further diag-
noses the cause and effects recovery from the spike
where possible. We describe the details in Section 5.

Diagnosis of Energy Spikes

The diagnosis function answers why the energy spike
occurred. Based on server inputs and a locally de-
rived energy model (described in Section 5.1), the
client determines if the energy spike is caused by (i)
high resource consumption (CPU, network, disk),
or (ii) if the device is unable to enter low power
state, or (iii) if the lowest power state itself con-
sumes excessive power, a situation that commonly
arises when there are peripherals attached to the
device.

Recovery

The result of the diagnosis is used by the daemon
to invoke a set of OS APIs. This allows the OS to
either slow down the entire system, or slow down
the resource consumption of the relevant processes,
so as to contain the spikes in energy consumption.
We describe this technique in detail in Section 5.2.
Our technique has the desirable property that the
faulty processes don’t necessarily have to be killed.

Users need not be involved during data collec-
tion and diagnosis, except in the recovery step. De-
pending on the diagnosis results, if a recovery policy
must be applied to a particular app, a user will be
prompted to enable this “energy-aware” OS policy
so that E-Loupe does not violate application seman-
tics.

4. ISOLATING THE CAUSE OF AN EN-
ERGY SPIKE

The server classifies the cause of an energy spike
into four categories: process issues or the interac-
tions among different processes, device issues, the
specific combinations of processes and devices, and
others. E-Loupe tests each factor separately in se-
quential order, as explained below.

A typical mobile platform has three class of pro-
cesses running on it: ordinary processes, worker
processes, and system processes. Worker processes

are started by either ordinary or systems processes
to do work on their behalf, and are often shared
amongst multiple ordinary processes. System pro-
cesses are OS daemons that execute on the device
on behalf of the OS and consume some power in all
energy records. Thus any energy attribution scheme
must be cognizant of the interactions between these
process types. We exclude system processes from
our analysis of causes and only consider individual
ordinary and worker processes and their mutual in-
teractions.

Individual Processes and Mutual Process In-
teractions

The first step is to identify individual ordinary pro-
cesses, since limiting a specific process is less likely
to have an adverse impact on the user than lim-
iting the whole device. However, achieving this is
not straightforward due to two factors. The first
is coverage. Not all energy spikes are caused by a
small number of pre-classified energy-hungry pro-
cesses. Second, the presence of worker processes
complicate matters. A process may cause energy
spikes only when it is performing a subset of tasks,
often with the help of worker processes. For exam-
ple, svchost . exe is such a worker process that does
work on behalf of others.

E-Loupe examines all the processes that are present
when an energy spike occurs, excluding system pro-
cesses. For each process j, we categorize the en-
ergy reports into two classes: one that contains j,
denoted by D;, and one without j, denoted by Dj,
across all devices and over time. We use two normal
distributions N (u1,0%) and Nj(u2,03) to approx-
imate D; and Dj, and estimate the means and the
variances from data.

We adopt Student’s t-test to determine whether
Dj; and Dj, with unequal sizes and unequal vari-
ances, are drawn from the same distribution, with
95% confidence error bounds. If the two distribu-
tions are different and py — pe > 6, then E-Loupe
outputs process j as a possible suspect. Here 6 is an
adjustable threshold based on the desired granular-
ity of isolation, and we set 6 to 10% of the normal
platform power in our current implementation.

If a non-worker process is identified in this step,
then we know that this process alone will trigger
higher energy consumption. So E-Loupe does not
further consider its interactions with other processes.

If instead, a worker process W is identified in
this step, then we need to identify the process (typ-
ically an ordinary process) that W is working for.
Without application semantics, we use a heuristic
to infer the process that may have triggered W.
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Figure 3: An example to identify energy-hungry

processes that triggered a helper process.

The idea is that if a process j often relies on W to
perform work, then j and W are likely to co-occur
frequently. Thus, we consider all ordinary processes
in the report and examine their co-occurrences with
W in history. We then pick the top processes that
co-occurred most frequently with W as candidate
factors, each with a probability. Figure 3 illustrates
this inference process. In this example, the worker
process W can co-occur with process A, B, or C.
Only A and C occurred in the report. So we com-
pute the probability of W co-occurring with A and
C, respectively. According to the probability, A is
the most likely real factor behind W, but C' is also
a possible candidate. Picking the co-occuring pro-
cesses can be time-consuming if the history is long.
To avoid long histories, the server periodically sum-
marizes and caches the results in the background.
If no individual process is identified as a cause
by itself, we examine all process pairs (j,k), where
at least one of j or k is an ordinary process. For
each such pair treated as a unit, we apply Student’s
t-test as above to compare the two sets of powers
with and without the pair. Notice that we need
O(N?) such tests. N is on the order of 10 and the
tests can be done quite efficiently in these cases.

Device Issues

After excluding process and process- interaction is-
sues, E-Loupe proceeds to check whether an energy
spike has a device specific cause.

If so, we expect to observe consistent high av-
erage power from this device d, modeled as a nor-
mal distribution Ny(ug,02) with sufficiently many
data points. E-Loupe then tests whether the energy
spike with reported power P; is just a normal vari-
ation that fits into Ny(ua,03), based on estimated
wq and og4. If so, we classify the cause as device
specific.

Process and Device Interactions

In some cases, a process does not generally consume
much energy, but becomes energy-hungry when run-
ning on certain devices, either because of miscon-
figurations, or because the specific usage pattern
triggers a bug. Therefore, for all non-system pro-

cesses' that are not isolated as energy-hungry in
the reported spike, E-Loupe additionally examines
the interactions between the process and the device,
using Student’s t-test in a similar way.

Others

If none of the above steps identifies a likely cause,
E-Loupe classifies the issues as the “other” cate-
gory. For example, an energy spike could just be
caused by a large number of concurrently running
processes, causing high aggregated resource con-
sumptions. We leave this case to the diagnosis pro-
cess for further analysis in future work.

S. DIAGNOSIS AND RECOVERY

On receiving the likely reason from the E-Loupe
server, the client daemon: (i) diagnoses the cause
of the energy spike as either a resource or device
issue, and (ii) accordingly attempts to recover and
improve energy efficiency.

If the energy spike happened while the screen is
on, it is difficult to recover since the user is often ac-
tively interacting with the mobile device, and recov-
ery is likely to adversely affect user experience. For
example, a CPU-intensive game may legitimately
use high energy, and attempts to restrict its CPU
usage (to save energy) will have unintended conse-
quences. Thus, in cases when the screen is on, if the
high energy drain is caused by a foreground process,
this information is logged for the user to revisit at a
later point in time. When perceived to be effective,
we provide generic suggestions to the user, such as
dimming the display and closing unused open appli-
cations. In addition, if an app is using substantial
network resources, we recommend switching to Wi-
Fi instead of the cellular network.

We therefore focus our diagnosis and recovery ac-
tivities when the screen is off, where background
processes can consume significant amount of energy
that can materially affect battery life.

Mobile operating systems try to maximize energy
usage. Typically, when the screen is off and there
are no active processes, the operating system takes
steps to maximize the mobile device’s standby life-
time [2, 1, 3]. In particular, it puts the device in
the lowest power state, where it consumes very low
power (called the power floor, P;). Ideally the de-
vice stays in the lowest power state whenever the
screen is off. However, in order to support back-
ground tasks, the device needs to frequently come
out of the lowest power state (see Figure 4).

'If a system process has this issue, then we expect to
output device issues in the previous step, since system
processes tend to trigger persistent energy spikes.
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Figure 4: An example of the system power con-

sumption when the screen is off.

When there is an energy spike, as shown in Fig-
ure 4, it is usually caused by (i) background apps
that either consume too many resources, (ii) apps
that retain locks on resources that prevents the de-
vice from entering the lowest power state, and/or
(iii) the power floor itself is high because of a pe-
ripheral, such as a headset or keyboard.

5.1 Diagnosis

Isolation Results

Process(es) NO i el YES
n resource
issue?
energy?
YES NO
High
YES per-process No No Less time in
resource lowest power?
energy?
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High resources used SEETp CElED I?Ck Peripheral/accessory ot resourc4e5
P held by culprit o used by multiple
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Resolution:
Resource Sandbox
all processes

Resolution:
Release locks, if any,
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Slowdown system, possibly
disable accessories

Resolution:
Resource Sandbox process

Figure 5: The decision tree used by the E-Loupe

diagnosis routine.

Figure 5 presents a simple flow chart that E-
Loupe uses to diagnose an energy spike. Our basic
strategy is to resolve energy spikes through a recov-
ery process (described later) wherever possible, and
if that is not possible, to mitigate the effect.

If results of the isolation step from the server in-
dicate that one or more processes are responsible
for the spike, we first try to ascertain if these pro-
cesses consume excessive resources. The rationale
for this is that it is relatively easy to constrain high
resource usage. To identify excessive energy due to
resource usage, we use the resource utilization fig-
ures from the energy report to determine if they
would have resulted in high energy usage. In order
to make this determination, we need a model of en-
ergy usage. Fortunately, we do not need a highly
accurate model for our purposes because prior work

indicates that accurate models for the energy con-
sumed by CPU, network, and disk are difficult to
construct(Section 2). If we are not able to account
for energy due to resource usage, we categorize the
problem as a device specific problem, where either
a process is holding on to a lock, or peripherals, or
the device is not in the lowest power state.

We use an approximate model, tailored for E-
Loupe’s recovery module, where we only need to
model the worst case energy that could have been
consumed by CPU, network, and disk. For this pur-
pose, we use a simple mathematical model, where
the energy F for a given duration is computed as:
E = E; + E,.. Here Ej is the energy that a de-
vice spends in the lowest power state, and E,. is the
energy caused by active computation. Specifically,
E; = Aty % P, where At; is the duration of the low-
est power-state, and P, refers to the power floor for
this case. The energy used by active computation
FE,. can be computed as

E,. = At,. xa+ b cpu + ¢ * disk 4+ d * network

where At, is the active computation time and At =
At; + At, is the total duration in which E is re-
ported. Also note here we need to use separate val-
ues of network for cellular and Wi-Fi.

One approach for determining the model coeffi-
cients is to measure them using controlled exper-
iments. A more lightweight approach, which we
take, is to leverage the collected energy reports on
the mobile clients to derive the coefficients from the
data on each device. This approach has the ad-
vantage that the derived model naturally captures
the individual device deviations from platform av-
erages, and thus is more accurate compared with a
general model.

In the above formulas, the power floor P, is a
constant parameter that can be estimated from re-
ports when no process is running, i.e., with zero
CPU cycles. The time spent in the lowest power
state At; can be approximately set using the worst
case assumption so that we derive larger than actual
coefficients. We set At; to a large value (99% of the
time in our case) so that the energy consumed by
CPU, disk and network is the upper bound of the
actual value. Each E-Loupe clients derives the co-
efficients (a, b, ¢, d) using linear regression. E-Loupe
then uses the derived model to gauge the worst-case
energy consumed due to common resource used by
processes, process groups, or the entire device.

5.2 Recovery

We propose a new mechanism, called energy
sandboxing, that reduces the maximum amount of
energy a system draws in a given interval in screen-



off mode. This preserves the user perception that
the battery is not draining too quickly, while still
getting the work done, albeit slowly. It prevents the
user from being surprised by unexpected drainage
of his system’s battery when the screen is off.

We implement energy sandboxing using two tech-
niques:

Resource Sandboxing: If the energy spike is
caused by high resource consumption by a pro-
cess or group of processes, we limit the maximum
amount of resources these processes are allowed to
use within a time interval. For example, using this
technique, we could limit the culprit processes to
use at most 10 seconds of CPU time in a 15 minute
interval, or 1 MB of data download in a 15 minute
interval.

To determine how much to sandbox, we use the
energy model described previously. We compute
the maximum amount of resources the culprit pro-
cess(es) is allowed to consume in a given time pe-
riod, while meeting the desired power requirement
of the device. Note that maximum coefficients
in the approximate model (Section 5.1) prevents
us from overly constraining the maximum resource
limit for the processes. Once the processes reach
their specified limit, we suspend them until the next
time period when its quota is refreshed. We release
the resource limit on these processes once the user
turns on the screen. Note that other well-behaved
processes are not affected by this approach.

Slowdown: When the energy spike is caused by
a device problem, we slow down the frequency of
OS timers. This reduces the frequency with which
the OS wakes up to service the processes, thereby
prolonging the time it is in the lowest power state.
Linux introduced the concept of tickless timers, us-
ing which the OS would poll the system at a dy-
namic frequency [19]. We use a similar approach
in screen off mode, to help the system stay in the
lowest power state for longer. Note that system in-
terrupts are still delivered in a timely fashion; for
example, an incoming VoIP call would still wake up
the OS and complete the call. Slowdown only af-
fects software timers that the OS uses, for example,
for periodic wakeups, or for checking the state of
connected devices.

To determine the new software timer frequency,
we use the approximate energy model and note
that At; is inversely proportional to software timer
polling frequency; so a higher polling frequency re-
duces the amount of time the system is in the lowest
power state.

Discussion: We note that both these approaches
might affect user experience. They will prolong the

standby time, but may also delay the completion
of jobs. To avoid an adverse user experience, we
do not trigger energy sandboxing unless the user
opts in for this policy. Second, we show the slowed-
down processes on the user’s screen next time they
turn the screen on. This enables them to exempt a
process from this policy. Finally, we do not sandbox
real-time processes, such as IM, VoIP, radio, and
music clients.

As we see in Figure 5, there are cases when the
energy spike is caused by a process that keeps the
system in high power state for long, or when the
power floor itself is high. While slowdown helps
slightly mitigate the problem, it does not address
the root cause of the problem: a device lock, a wake-
lock, or a connected accessory. Therefore, when the
diagnosis module flags that resource consumption
is not the cause, we inspect all resource locks and
enabled accessories, and try to disable the devices
or suspend processes that hold the locks for that
time interval. Our current technique is ad hoc, and
only works for sensors or accessories we have black-
listed. We plan to explore this resolution space in
more detail in future work.

6. IMPLEMENTATION

We have implemented the E-Loupe client on Win-
dows 8, and the E-Loupe server using a combination
of a SQL server and a machine cluster.?2 The client
consists of about 150 lines of code in the kernel, and
approximately 1000 lines of code at the user level.
The web service is approximately 5000 lines of code.

Data Logger

We leveraged the existing data collection framework
in Windows 8 to obtain the energy consumed in an
interval, and the names of running processes. The
OS also maintains the CPU cycles, network bytes
and disk operations consumed by each process in
foreground and background mode, and for different
network types. The data logger runs every minute
in screen on mode, and every 15 minutes in screen
off mode, and captures the battery level, set of pro-
cesses, and their respective resource utilization over
the entire duration.

Server

The server is implemented as two separate inter-
acting components that work with each other. The
first is a back end data-processing component, writ-
ten in C# and PLINQ, which periodically computes

2Since the Windows Phone system uses the same Win-
dows 8 kernel, we believe it should be easy to port our
system to the phone.



the isolation results and outputs metrics (the Con-
sumed Power and Occurrence Frequency). The sec-
ond component, written in ASP.NET, is a Web ser-
vice component that generates and updates Web
contents to a Microsoft IIS Web server and inter-
acts with the clients. It handles incoming energy
reports as well as outgoing results of the statistical
analysis.

Unlike detection, which is relatively easy to com-
pute, the isolation stage is more expensive as we
need to perform many Student t-tests, which are
both I/O and computation intensive. To improve
efficiency, we aggressively cache the t-test results
from processing different reports to avoid redundant
computation. In addition, we leverage PLINQ to
parallelize the computations across different cores
for efficiency.

Note that we do not restrict the number of re-
ports submitted by a client for it to benefit from
the service. In fact, since we aggregate data from a
large number of clients, a client that submits a sin-
gle energy report can still reap the benefit. To en-
sure meaningful statistics with enough data points
for each process, we exclude from our analysis pro-
cesses that are installed on fewer than five devices.
An energy spike caused by such processes cannot be
identified as factors by our system. Likewise, apps
that are newly available in the marketplace are in
a similar situation. In Section 7.2.4, we study how
different amount of data impacts the detection and
isolation results.

6.1 Client Diagnosis & Recovery Daemon

We implemented this component using a user-
level daemon and modifications to the kernel sched-
uler. The mechanisms are implemented in the ker-
nel, while the policies are implemented in the dae-
mon, as shown in Figure 6. The user daemon com-
putes the amount of sandboxing to be implemented
and calls into kernel APIs to implement the sand-
boxing.

We implement the following mechanisms in the
kernel.

Per-process resource sandboxing: The Win-
dows 8 kernel maintains per-process resource con-
sumption (cpu, network, disk) in the process control
block. Each process is allocated the same fixed re-
source quota (CPU, network). When this quota is
exhausted, processes are allowed to access a shared
global pool of resources when available [3]. We mod-
ified this implementation to (i) significantly increase
the global pool for all processes, so that non-culprit
processes do not run out of resources (ii) enable each
process to have an independent resource quota, and
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Figure 6: The user level energy recovery service
inputs from the E-Loupe service and either applies
resource sandboxing, or the slowdown policy, which

are implemented by the kernel.

(iii) prevent the sandboxed processes from accessing
the global pool. Every time the process is scheduled
to run, the scheduler checks its current utilization
with its permissible quota. If it exceeds the assigned
quota, the process is put in a suspended state. The
per-process quota is assigned for a 15 minute in-
terval (synchronized across processes) and the pro-
cess’s utilization is reset to 0 at the beginning of
each interval.

Slowdown: We use the dynamic timer imple-
mentation in the kernel to implement slowdown.
We exposed this as a configurable parameter, which
is called by the user level daemon to change the
timer frequency. Processes continue to run as nor-
mal during the slowdown. However, all OS timers
are dilated in time. As soon as the user turns on
the screen, the timer is set to the normal value.

7. EXPERIMENTAL RESULTS

We first present details of our dataset, and then
show that E-Loupe can (i) accurately isolate the
faulting processes, and (ii) mitigate the energy
spike.

7.1 Datasets

[ # platforms [ # devices [ # reports [ # popular apps ]
[ 16 [ 73,119 [ 16,119,233 | 13,190 |

Table 1: Dataset statistics.

Our dataset consists of about 16 million reports
from over 73K devices (Table 1) spanning 14 weeks.
These device were configured to submit energy re-
ports at different collection intervals and each de-
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most popular platforms over time.

vice submitted only a subset of its reports. Our
dataset contains over 13K processes that were ac-
tive on more than 5 machines.

A concern when collecting coarse-grained data is
the loss of fidelity with increasing collection inter-
vals. To understand this variation we plot (Fig-
ure 7) the power value and the number of processes
in the record vs. the collection interval. Indeed, as
we increase the interval, the power value tends to
become smaller, and so we may miss energy spikes
in the detection phase. On the other hand, increas-
ing the window size does not make our isolation in-
effective because the number of candidate processes
for each report does not increase much, implying
that the scope of isolation remains relatively con-
stant.

7.2 Isolating the Causes of Energy Spikes

We apply the E-Loupe server to detect and iso-
late energy spikes in our dataset. We then present
experiments to determine the validity of our results.
Figure 8 plots the average power for the three most
popular platforms (named P1, P2, and P3) over 14
weeks.. The screen-on power (P1-ON, P2-ON, and
P3-ON) figures are roughly 10 times that in the
screen-off mode (P1-OFF, P2-OFF, and P3-OFF),
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but the results are similar and consistent over time.
In the rest of this section we present results from
one representative week on the most popular plat-
form.

7.2.1 Breakdown of Isolation Results

Using the detection method described in Sec-
tion 4, we identify around 2.4-3.8% reports as hav-
ing energy spikes from total 731,865 reports. We
perform the isolation process on these reports and
present the results in Table 2. Overall, E-Loupe
is able to attribute energy spikes to specific fac-
tors such as device or process in the majority of
cases—87.5% for screen-on reports and 92.3% for
screen-off reports. The remaining 12.5% and 7.7%
cannot be classified, and we can use the local energy
model based on the cumulative resource consump-
tions (e.g., CPU, disk, network) to further diagnose
them.

When the screen is on, we find that device it-
self is a major factor of high energy drain (47.1%),
followed by a combination of process and device
(31.9%). This observation suggests that the device
settings (e.g., display brightness) or usage patterns
(active gaming activities) are more likely the domi-
nant cause of high energy drain. In contrast, when
the screen is off, only 14.6% of energy spikes are
device-related; most are caused by process issues.
In particular, 76.7% of them are due to individual
processes.

7.2.2  Top Processes Causing High Energy Drain

We now examine the types of processes or process
groups that caused high energy drain.

Screen-On Cases

In the screen-on case, E-Loupe outputs 34 individ-
ual processes as causing high energy drain, with no
systems processes amongst them. The biggest con-
tributors to energy are games (e.g., Hydro thunder
hurricane, Solitaire), typically with intensive CPU,
network, and disk usage as well as high display dy-
namics. Apart from games, a few communication
apps, such as QQ, also cause high energy drain,
probably because of their video chat feature.

Some communication apps, such as Skype and
Lync, are not identified as a significant factor by
themselves, but in conjunction with game apps (e.g,
Solitaire), these are selected, possibly because both
of them tend to use more energy than regular apps
and their combined usage is significant. Such pro-
cess combinations are in fact the most common fac-
tors for explaining energy spikes in the screen-on
case.



Device Process related Other
issues Total Single process | Process groups | Process and device
Screen on 47.1% 44.4% 7.8% 20.8% 31.9% 12.5%
Screen off 14.6% 77.7% 76.7% 7.1% 38.8% 7.7%

Table 2:

Isolation result breakdown. A high energy drain can be isolated into a combination of process-

related factors, around 3-4 in the average case. Each column refers to the percentage of energy spikes that

had the corresponding factors output by the isolation analysis.

[ Worker process

FlashUtil_ActiveX.exe
‘WSHost.exe

[ Corresponding app description |

Internet Explorer
Windows store

svchost.exe [WerSvcGroup] Skype app
IMEbroker.exe QQ app
msfeedssync.exe Skype app

Table 3: Example popular process groups with

worker processes.

Screen-Off Cases

In the screen-off case, however, the most com-
monly observed energy spikes are from a few worker-
processes, which perform tasks for other appli-
cations. In total, we identified 10 such worker-
processes and they are correlated with 114 other
processes that may have triggered them to work.
We list a few of them that occur frequently in Ta-
ble 3. Thus when the screen is off, a common source
of energy drain are those workers that silently per-
form tasks in the background for long-lasting apps
that users may leave to run.

In addition to worker processes, there also exist
74 non-worker, app processes identified as respon-
sible factors. Some top frequent ones include pro-
ductivity processes, music, video, and radio stream-
ing apps, news and social network apps and a fi-
nance app. A common characteristic of these apps
is that they often require network communications
and may also use additional hardware resources
(e.g., audio).

The isolation also outputs in total 181 pro-
cess interactions as potential factors, and similar
to the screen-on cases, many of them include in-
stant messenger and VoIP apps (34 out of 181
process groups). We also observe combinations
of worker and app processes, where the worker-
processes alone are not selected in isolation. For ex-
ample, we find 3 combinations where audiodg.exe
working with music or radio apps, and 15 combina-
tions involving different instances of svchost.exe.

7.2.3  Validating the Isolation Results

To evaluate the isolation results, ideally, we would
like to use ground truth information regarding
known causes of high energy drain (e.g., via user
reports). Lacking such ground truth, we validate
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High-power reports
15.48%
33.80 %

Low-power reports
1.32%
3.16%

Screen on
Screen off

Table 4: Validation.

our approach by testing the results generated from
one portion of the dataset, and applying them to
new part of the dataset. We perform two sets of
experiments — to validate the set of energy-hungry
processes, and to validate the device issues.

First, we validate the set of processes or process
groups as high energy factors. We apply the isola-
tion results derived using data from three consecu-
tive weeks (i.e., training data) to the data from the
fourth week data (i.e., testing data). To be gen-
eral, we pick only the set of processes or process
groups from the training data that have triggered
at least two energy spikes. For testing, we select top
2% of high-power testing reports and sample 2% of
low-power testing reports for comparison. For each
testing report, we examine if the flagged process or
process groups occur and if they consume CPU cy-
cles. If so, we mark this report as flagged by our
previous isolation results.

Table 4 shows the percentage of flagged testing
records. The process-related factors occur in 15.48-
33.80% of high power reports, but the chance of
them showing up in low power reports is around
10 times lower, suggesting that these are likely the
correct high-energy causes. Although these factors
do not explain all high-energy reports, we note that
not all energy spikes are caused by process issues, as
presented in Section 7.2.1. Furthermore, we picked
only the most commonly occurring processes and so
ignored cases where an energy spike is caused by an
unusual process or process combinations.

The second experiment attempts to validate the
reported device issues or process and device combi-
nations. In our dataset, the device IDs are unique
only within a week. So we take half of a week’s data
as training, and apply the results on the second half
of the week. We focus on only the set of devices that
have submitted sufficient reports (> 30). The vali-
dation results are highly encouraging. Once we flag
a device as a cause by itself (or device and process



issues), all its future reports indeed exhibit consis-
tent high-energy drain and we flag 100% them in
our experiments.

7.2.4  Data Sensitivity

The premise of our isolation technique is that we
have access to a large amount of data for statis-
tical tests. A natural question is “how does the
amount of data affect isolation results?”. There are
two cases where the amount of data matters: First,
we require a process to be observed across at least
5 devices for it to be included in analysis. Second,
in performing t-tests, we require at least 5 sample
points from each distribution.

To answer the above question, we run isolation on
differently sampled datasets. As expected, we found
that less data decreased the success rate, but we
could still isolate a large fraction of energy spikes.
Even with 20% of the samples, E-Loupe is able
to find causes for over 40% of high energy drain
reports. Therefore, we believe that E-Loupe can
be incrementally deployed, and its effectiveness will
keep getting better with more data.

7.3 Diagnosis and Recovery

We first show that the approximate energy model
works as expected. We then show the effectiveness
of our recovery techniques on real machines, and
then use a large trace based simulation to evaluate
the expected improvement in the wild.

7.3.1 Diagnosis

We first validate the approximate energy model,
and then evaluate the diagnosis on our trace data.

We derive the model on short term reports, since
they are over shorter periods of time and are more
accurate. We aggregate these reports for the entire
platform so that we have sufficient data for our ex-
periment. Table 5 shows the coefficients of resources
derived using linear regression. We separate the co-
efficients for disk read and write, as well as network
send and receive, as these activities each consume
different amount of energy. To test regression ac-
curacy, we divide the data into training and testing
data. Our testing errors are around 14% - 19%.
Since high energy consumption can be caused by
reasons other than high resource usage, the linear
resource model is expected to have errors. However,
the less than 20% error is sufficient for E-Loupe to
determine if an energy spike is related to high re-
source consumption.

7.3.2  Recovery on the Real Device

We first study the effect of Resource Sandboxing
on the power consumption of the device, and the
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Figure 9: (a) Impact of CPU sandboxing on the
power consumption and task completion time. The
results are from a prototype Windows RT device.
(b) Impact of system slowdown on average power

consumption.

completion time of the task. We wrote a custom app
that created background CPU load on the device
when the screen was on. We then let the E-Loupe
recovery mechanism take over but with different,
carefully chosen, target power levels. This resulted
in our custom process getting anywhere from 2 to
300 seconds of execution time every 15 minutes.
We used the fuel gauge to measure the power con-
sumed across runs that lasted several hours. We
also accounted for non-linearities in reported bat-
tery values by starting each fresh experiment at
100% charge.

In Figure 9 (a), we show the total completion time
and the actual power that was consumed for each
of the power levels. At the lowest power level, our
sandboxed process gets only 2 seconds of execution
time every 15 minutes. While this works well for in-
creasing the standby battery life, the process takes
very long to complete. This policy is best for rogue
apps, or when the battery is running low. When the
target power is high, the process completes much
faster, but at a cost of significantly higher power
consumption.

We next study the impact of slowdown on energy
consumption. On a system with several installed
processes, but in airplane mode, we changed the
OS tick frequency (described in Section 5.2). We
measured the battery level in the beginning and at
the end of run, where each run lasted at least a cou-
ple of hours. As we see in Figure 9 (b), changing
the frequency from 1s to 60s reduced the average
power consumed by more than one-third. However,
as mentioned earlier, this reduction in power comes
at a cost — a few OS services get delayed notifica-
tions.

7.3.3  Expected Improvement on Trace Data

We perform trace-based simulation to evaluate
the improvement on energy spikes detected in real

60



Coeflicients

Regression error

PL a

[ CPU (Mcycle) [ Disk read (KB) [ Disk write (KB) [ Net send (KB) [ Net rcvd (KB)

Median [ Mean

200 | 1667 | 0.38 0.054 |

0.150

| 13.341 | 3.048 14% | 19%

Table 5: Energy model derived from data. All the units are in mJ, except P; is in the unit of mW.
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Figure 10: The improvement ratio of using energy
sandboxing. We compare only the portion of power
coming from resource consumptions (CPU, disk, net-

work).

data. We use the average platform power (420mW)
as our target power for sandboxing, and use this
target to compute the upper bound for CPU cycles
that a device can consume based on data in Fig-
ure 9, which is 400Mcycles/min. To estimate the
energy consumed from resources, we use the energy
model derived in Section 7.3.1.

We consider two cases in our simulation, depend-
ing on the isolation results: (1) if we see a device
issue, then we simulate device slowdown. The slow-
down factor is determined by the actual aggregated
CPU cycles observed and the targeted CPU cycles;
(2) if the problem is caused by processes, then each
process may have a different slowdown factor. For
simplicity, we compute a fair share of CPU for each
process. Well-behaved processes, not reported by
the isolation strategy, are not sandboxed. The re-
maining culprit processes are then sandboxed so
that they do not exceed their fair share.

We then use the energy model to compute just
the portion of power due to resource consumptions,
using coefficients b, ¢,d. Figure 10 shows the ratio
of energy before sandboxing vs. after sandboxing.
We can reduce resource-based power by 1-3 times
for most of the spikes, sometimes the benefit can
be more than that. The remaining 18% of energy
spikes do not benefit. They have process-related
issues but these processes do not trigger high re-
source consumptions. This early result is promising
in suggesting that energy sandboxing is an effective
primitive to control energy usage.
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8. SUMMARY AND FUTURE WORK

E-Loupe takes the first step in end-to-end energy
management. We leverage the ability to gather de-
vice energy readings and statistical techniques to
provide nuanced, on-demand control over energy
hungry applications. Since a part of the work is
offloaded to individual clients, and the statistical
analysis in the centralized service is parallelized, we
believe our approach will scale adequately. Our ap-
proach does not make a particular application more
energy efficient, but it prevents the battery from un-
expectedly and prematurely draining.

There exist prototypes to monitor the energy con-
sumed by various components on a mobile device [7,
11]. In the future, we will likely be able to more
accurately attribute energy consumption to some
components. We also need a way to attribute ag-
gregate energy consumption to various processes.
Moving forward, we plan to expand the isolation
techniques in Section 4 to work with the new fea-
tures that might become available.

Consulting with the cloud on every energy spike
might consume energy, and might also consume cel-
lular data bandwidth. We realize this limitation
and are investigating a local mini-E-Loupe that can
try to make a first cut guess and apply recovery
mechanisms locally, and consult the cloud service
only if the local techniques do not work.

Research and industry are proposing new tech-
niques to save energy, such as ARM’s Big.Little low-
power processor architecture, core-gating to shut off
unused cores, cloud offloading [9], etc. We are ac-
tively exploring these and other strategies as part
of system’s recovery component, such as offloading
the culprit processes to a low power core, or to the
cloud.
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