
16

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction

KIRA RADINSKY, Technion–Israel Institute of Technology
KRYSTA M. SVORE, SUSAN T. DUMAIS, MILAD SHOKOUHI, JAIME TEEVAN,
ALEX BOCHAROV, and ERIC HORVITZ, Microsoft Research

The queries people issue to a search engine and the results clicked following a query change over time.
For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and
people issuing the query were more likely to click government-related results than they would prior to the
earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We
develop a temporal modeling framework adapted from physics and signal processing and harness it to predict
temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current
and past behavioral data, we develop a learning procedure that can be used to construct models of users’
Web search activities. We also develop a novel methodology that learns to select the best prediction model
from a family of predictive models for a given query or a class of queries. Experimental results indicate that
the predictive models significantly outperform baseline models that weight historical evidence the same for
all queries. We present two applications where new methods introduced for the temporal modeling of user
behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models
of temporal dynamics to enhance other areas of Web search and information retrieval.

Categories and Subject Descriptors: H.3.7 [Information Storage and Retrieval]: Digital Libraries; I.5.4
[Pattern Recognition]: Applications

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Behavioral analysis, predictive behavioral models

ACM Reference Format:
Radinsky, K., Svore, K. M., Dumais, S. T., Shokouhi, M., Teevan, J., Bocharov, A., and Horvitz, E. 2013.
Behavioral dynamics on the Web: Learning, modeling, and prediction. ACM Trans. Inf. Syst. 31, 3, Article 16
(July 2013), 37 pages.
DOI: http://dx.doi.org/10.1145/2493175.2493181

1. INTRODUCTION

The way that people use Web search engines changes over time. We explore the tem-
poral dynamics of Web search behavior, investigating how we can model and predict
changes in queries that people issue, the informational goals corresponding to the
queries, and the search results that they access during Web search sessions.

In information retrieval, models that incorporate user behavior signals typically
aggregate evidence over time and use it identically for all types of queries [Agichtein
et al. 2006]. We learn to predict how the search behaviors of users change over time
and use these predictive models to enhance retrieval. As an example, for a population

Authors’ addresses: K. Radinsky, Computer Science Department, Technion—Israel Institute of Technology;
email: kirar@cs.technion.ac.il; K. M. Svore, S. T. Dumais, J. Teevan, A. Bocharov, and E. Horvitz, Microsoft
Research, Redmond, WA; M. Shokouhi, Microsoft Research, Cambridge.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1046-8188/2013/07-ART16 $15.00

DOI: http://dx.doi.org/10.1145/2493175.2493181

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:2 K. Radinsky et al.

Fig. 1. A time series (February 14 to May 25, 2011) for the query japan (normalized by overall #clicks logged
on each day based on Bing query logs).

Fig. 2. Time series (February 14 to May 25, 2011) for sample clicked URLs for query japan (normalized by
total #clicks on each day based on Bing query logs).

of users, the frequency with which a query is issued and the number of times that
search results are clicked for that query can change over time. In Figure 1, we show
the total clicks.1 We can see a dramatic change in behavior associated with this query
following the Japanese earthquake on March 11, 2011. The number of clicks surges for
the query for a period of time, and then slowly decays. Likewise, the URLs that people
choose to click on following the same query may vary over time, indicating a change
in what people consider as relevant for that query. Figure 2 shows the change in click
frequency for several popular URLs following the query japan around the time of the
earthquake. The frequencies of access of some URLs (e.g., a U.S. government site about

1We define total clicks for a query q as the total number of times that any URL returned by the search engine
in response to it is clicked.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:3

Fig. 3. Different classes of temporal trends in query frequencies.

Fig. 4. Clicked-URLs behavior (February 14 to May 25, 2011) for the query easter (normalized by the total
#clicks on each day and the position of the URL).

Japan) mirror changes in query frequency, while others (e.g., a site for children to learn
about Japan) do not change with query and click frequency.

We model and predict these different kinds of search dynamics, focusing in particu-
lar on predicting query and click frequency. Although the timing of the initial peak for
the query japan may be hard to predict, once it is reached, the subsequent behavior
can be predicted. There are many other cases in which search behaviors are easy to
predict. In Figure 3, the query halloween exhibits periodic trends, and android under-
goes an increasing trend in popularity, but the query justin bieber fluctuates with no
obvious trend. Using time-series modeling, we can estimate these different trends and
periodicities and predict future values of the frequency of queries and clicks. A major
challenge is to select the appropriate model for predicting the dynamics. We present
here a novel algorithm for selecting the best time-series model for each behavior, we re-
fer to as the dynamics model learner (DML). Our model considers numerous factors for
this selection, ranging from the long-term shape of the time series to query-dependent
features.

Learned models of what people search for and then access via clicking on displayed
results can be used to improve the search experience. We shall consider, two search-
related applications: result ranking and query suggestion. When users’ information
needs change over time, the ranking of results should also change to accommodate these
needs. Consider the example presented in Figure 4, which shows the frequency of URL
clicks for the query easter at different times during the year. A user’s information need
several weeks before the Easter holiday (in mid-March) is likely to identify the exact
date of the holiday; indeed, the URL when-is-easter.html is clicked more often than

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:4 K. Radinsky et al.

Fig. 5. (Top) The auto-suggestion candidates ranked by Google on the 13th of February 2012, a day before
Valentine’s Day in the U.S. (Bottom) Query frequencies for valentines day vs. verizon wireless since 2004.

other Easter-related pages during mid-March. A few days before Easter, people issuing
this query appear to become more interested in planning activities for the holiday, and
logs of clickthroughs show that sites such as holidays.kaboose.com are clicked more
often than other pages during this period of time. During Easter itself, people seem
to be more interested in the religious meaning and customs of the holiday, questions
that are answered by pages such as answers.com/topic/easter. To account for changes
in what people click on following a query like easter, we explore time-aware ranking
mechanisms using two ranking scenarios. The first predicts user click behavior for a
given day using only this prediction to rank URLs. The second approach uses temporal
user behaviors as features (along with content-based features) in a learning-to-rank
algorithm. We find that weighting user behavior for each query and URL pair based on
temporal dynamics significantly improves the accuracy of the ranked results in both
types of ranking scenarios across several types of queries.

We also explore the application of our methods for time-aware query auto-suggestion
(QAS), also called auto completion. Consider the example presented in Figure 5. On
February 13, 2012—a day before Valentine’s day—Google suggested verizon wireless as
a top candidate for v (underlined) and did not suggest any Valentine-related candidates
in the QAS ranking (the top plot in Figure 5).2 The query frequency trends in the
bottom plot of Figure 5, however, clearly show that valentines day is a more relevant
suggestion during this time period. We use the same time-series models to predict the
query frequency and demonstrate that modeling the temporal profile of queries can
improve the ranking of auto-suggestion candidates.

2The query was issued from the United States with personalization disabled.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:5

In summary, the key contributions described in this article are as follows.

—We highlight the rich opportunities to study the dynamics of Web search behavior
and explore several time-series models for representing and predicting different as-
pects of search behavior over time. We discuss how these models can be learned from
historical user-behavior data and develop algorithms tailored to address several as-
pects of the dynamics of population behavior on the Web, including trend, periodicity,
noise, and surprise.

—We present a new learning algorithm, which we refer to as the dynamics model
learner (DML), that determines the appropriate model to use for predicting behavior,
based on features extracted from large-scale logs of Web search behavior over time.
We show that DML performs better than more traditional model selection techniques.

—We perform empirical evaluation of our approaches over large-scale logs of real-world
user behavior (obtained from Bing), providing evidence for the value of temporal
modeling techniques for capturing the dynamics observed in populations of users on
the Web.

—We present applications of our temporal modeling methods for improving ranking
and query suggestions, and provide evidence for the superiority of temporal modeling
in both applications.

2. RELATED WORK

Several lines of research are related to modeling and predicting peoples’ Web search
behavior over time [Lau and Horvitz 1998]. We begin our discussion of related work
with a review of studies that have characterized temporal search behavior dynamics
on the Web. We next summarize previous research that has used temporal evidence
for ranking, mostly focusing on content dynamics rather than behavioral dynamics.
Finally, we describe related work in automatic query suggestion.

2.1. Web Search Behavioral Dynamics

The variations of query volume over time have been studied extensively in prior work.
For example, some researchers have examined changes in query popularity over time
[Wang et al. 2003] and the uniqueness of topics at different times of the day [Beitzel
et al. 2004]. Some studies [Jones and Diaz 2007] identified three general types of tem-
poral query profiles: atemporal (no periodicities), temporally unambiguous (contain
a single spike), and temporally ambiguous (contain more than one spike). They fur-
ther showed that query profiles were related to search performance, with atemporal
queries being associated with lower average precision. Kulkarni et al. [2011] explored
how queries, their associated documents, and the intents corresponding to the queries
change over time. The authors identify several features by which changes in query pop-
ularity can be classified and show that presence of these features, when accompanied
by changes in result content, can be a good indicator of change in the intent behind
queries. Others [Chien and Immorlica 2005; Radinsky et al. 2011; Wang et al. 2007]
used temporal patterns of queries to identify similar queries or words.

Vlachos et al. [2004] were among the first to examine and model periodicities and
bursts in Web queries using methods from Fourier analysis. They also developed
a method for discovering important periods and identifying query bursts. Shokouhi
[2011] identified seasonal queries using time-series analysis.

Shimshoni et al. [2009] studied the predictability of search trends using time-series
analysis. Kleinberg [2002, 2006] developed general techniques for summarizing the
temporal dynamics of textual content and for identifying bursts of terms within content.

Researchers have also examined the relationship between query behavior and events.
Radinsky et al. [2008] showed that queries reflect real-world news events, and Ginsberg

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:6 K. Radinsky et al.

et al. [2009] used queries for predicting H1N1 influenza outbreaks. Similarly, Adar et al.
[2007] identified when changes in query frequencies lead or lag behind mentions in both
traditional media and blogs. From a Web search perspective, breaking news events are
a particularly interesting type of evolving content. Diaz [2009] and Dong et al. [2010b]
developed algorithms for identifying queries that are related to breaking news and
for blending relevant news results into core search results. König et al. [2009] studied
click prediction for news queries by analyzing the frequency and location of keywords
in a corpus of news articles. Information about time-varying user behavior was also
explored by Koren [2009], who used matrix factorization to model user biases, item
biases, and user preferences over time.

Although much has been done to understand user Web search behavior over time, few
efforts have sought to construct underlying models of this behavior and then used these
models to predict future behavior. We present the construction of models for behaviors
over time that can explain observed changes in the frequency of queries, clicked URLs,
and clicked query-URL pairs.

2.2. Using Temporal Dynamics for Ranking

Agichtein et al. [2006] were the first to show that user behavior data could significantly
improve ranking. In that work, user behavior was represented as the simple average
of behaviors over time, independent of query, URL clicks, or interactions between the
two.

Researchers have examined how temporal attributes can be used to improve rank-
ing using various kinds of content analysis. Dakka et al. [2008] defined a class of
time-sensitive news queries and suggested an approach that identifies important time
intervals for those queries and augments the weight of those documents for ranking.
Metzler et al. [2009] investigated a subset of temporal year queries, that is, queries
that often include the addition of terms representing a year such as SIGIR 2012, and
modified the language model of the document so that that years found in the docu-
ment are weighted more heavily. Similarly, Efron and Golovchinksy [2011] and Li and
Croft [2003] added temporal factors into models of language likelihood and relevance
for re-ranking results based on the publication date of documents. Elsas and Dumais
[2010] incorporated the dynamics of content changes into document language models
to improve relevance ranking, showing that there is a strong relationship between the
amount of change and term longevity and document relevance. Efron [2010] considered
term popularity in a document collection over time, to adjust term weights for docu-
ment ranking. In summary, these prior studies cited examine how general changes in
content or specific content features (like dates) can be used to improve ranking.

Another line of research centers on methods for improving the ability of search
engines to rank recent information effectively. Diaz [2009] studied how news can be
integrated into search results by examining changes in query frequency, the popularity
of query terms in the news collection, and query click feedback on presented news
articles. Dong et al. [2010b] used Twitter data to detect and rank fresh documents.
Similarly, Dong et al. [2010a] identified queries that are time-sensitive, developed
features that represent the time of Web pages, and learned a recency-sensitive ranker.
Dai et al. [2011] presented a ranking optimization with temporal features in documents,
such as the trend and seasonality of the content changes in title, body, heading, anchor,
and page or link activities. In summary, this line of research focuses on the desirability
of providing fresh results for some kinds of queries.

To the best of our knowledge, temporal characteristics of queries and clickthrough
behavior have not yet been used to improve general ranking of documents. In this work,

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:7

we use time-series models to represent the dynamics of search behavior over time and
show how this can be used to improve ranking and query suggestions.

2.3. Query Auto-Suggestion

In addition to using temporal models for ranking, we also use them to improve query
auto-suggestion (QAS). Previous work on query auto-suggestion can be grouped into
two main categories. The first group (also referred to as predictive auto-completion
[Chaudhuri and Kaushik 2009]) uses information retrieval and NLP techniques to
generate and rank candidates on-the-fly as the user enters new words and characters
[Darragh et al. 1990; Grabski and Scheffer 2004; Nandi and Jagadish 2007]. For in-
stance, Grabski and Scheffer [2004] and Bickel et al. [2005] studied sentence completion
based on lexicon statistics of text collections. Fan et al. [2010] ranked auto-suggestion
candidates according to a generative model learned by Latent Dirichlet Allocation
(LDA) [Blei et al. 2003]. White and Marchionini [2007] developed a real-time query
expansion system that produces an updated list of candidates based on the top-ranked
documents as the user types new words in the search box.

In the second group of QAS techniques—including the one presented here—
candidates are pre-generated and stored in tries and hash tables for efficient lookup.
The list of candidate suggestions is updated by new lookups with each new input
from the user. The filtering of candidates is typically based on exact prefix matching.
Recently, Chaudhuri and Kaushik [2009] and Ji et al. [2009] proposed flexible fuzzy
matching models that are tolerant to small edit-distance differences between the query
(prefix) and candidates.

In the context of Web search, the most conventional approach is to rank candidate
query suggestions according to their past popularity. Bar-Yossef and Kraus [2011]
referred to this approach as MostPopularCompletion (MPC).

MPC(P) = arg max
q∈C(P)

w(q), w(q) = f (q)∑
i∈Q f (i)

, (1)

where f (q) denotes the number of times the query q occurs in a previous search log
Q. They propose a context-aware technique in which the default static scores for the
candidates are combined with contextual scores based on recent session history to
compute the final ranking. Under the MPC model, the candidate scores do not change
as long as the same query log Q is used. We also take MPC [Bar-Yossef and Kraus
2011] as our QAS ranking baseline and show that it can be improved significantly by
considering the temporal characteristics of queries.

Our approach is distinct from prior work in several important ways. We use time-
series analysis to learn how to differentially weight historical click data for queries,
URLs, and query-URL pairs (extending the work by Radinsky et al. [2012]). This en-
ables recent behavior to be weighted more highly for some queries (or URLs or query-
URL pairs) but not others; and similarly for periodic behaviors to be important for some
queries but not others; etc. Second, we extend previous research on ranking fresh re-
sults by addressing the more general challenge of finding the most appropriate results,
even if they are not recent. We extend earlier work by Agichtein et al. [2006] on search
ranking by harnessing time-series analyses to learn the most appropriate weighting of
previous behaviors rather than simply averaging previous behavior. Finally, we show
that the temporal profiles of queries created by our time-series models can be used to
improve the ranking of query auto-suggestion candidates that have historically been
based on static measures of popularity (extending the early results by Shokouhi and
Radinsky [2012] with further experiments and insights).

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:8 K. Radinsky et al.

3. TEMPORAL MODELING OF WEB SEARCH BEHAVIOR

We now present a modeling technique based on state-space models that we use to
capture the dynamics of Web behavior. Of special importance in modeling Web search
behavior are global and local trends, periodicities, and surprises. We summarize in this
section a general theory behind this model and discuss several modeling techniques
we use to capture these important aspects. We conclude the section with a discussion
of how the models can be used.

3.1. Model Framework: State-Space Models

The state-space model (SSM) is a mathematical formulation frequently used in work
on systems control [Durbin and Koopman 2008] to represent a physical system as a
set of input, output, and state variables related by first-order differential equations.
It provides an easy and compact approach for analyzing systems with multiple inputs
and outputs. The model mimics the optimal control flow of a dynamic system, using
some knowledge about its state variables. These models allow for great flexibility in
the specification of the parameters and the structure of the problem, based on some
knowledge of the problem domain that provides information about the relations (e.g.,
linear) among the parameters. We use uppercase letters for matrices and lowercase
for scalars. The linear space state model (with additive single-source error) defines a
system behavior by the following two equations.

Yt = W(θ)Xt + εt, (2)
X(t+1) = F(θ)Xt + G(θ)εt, (3)

where Yt is the observation at time t, Xt is the state vector, εt is a noise series, and
W(θ), F(θ), G(θ) are matrices of parameters of the model. For a longer prediction range
h (also referred to as the prediction horizon), it is usually assumed that Yt+h = Yt.
For simplicity, in the following sections we present equations for h = 1. We shall
assume (as commonly assumed in representations of dynamics in natural systems)
that εt are independent and identically distributed following a Gaussian distribution
with variance σ 2 and mean 0. Equations (2) and (3) are called the measurement and
transition equations, respectively. To build a specific SSM, a structure for the matrices
W(θ), F(θ), G(θ) is selected, and the optimal parameters θ and σ and an initial state X0
are estimated.

The SSM representation encompasses all linear time-series models used in practice.
We show in this section how the SSM can be applied to model query and click frequency
in Web search. We model the state Xt using a trend component and a seasonal (or
periodicity) component, as is often done for modeling time series [Hyndman et al. 2008].
The trend represents the long-term direction of the time series. The seasonal component
is a pattern that repeats with a known periodicity, such as every week or every year.
We first present models for user search behavior using just historical smoothing, and
then present models with trend, periodicity, and their combination. Finally, we explore
models that incorporate notions of unexpected observations or surprises. Each model
is represented by setting the scalars of the matrices W(θ), F(θ), G(θ).

3.2. Modeling with Smoothing (SMT)

For the query justin bieber in Figure 6, simple averaging of past frequencies may give
too much weight to the relatively high popularity of the query before April, and hence
if used for forecasting, it is likely to overestimate the future popularity.

Therefore models that simply average historical data and then extrapolate a con-
stant value as a prediction may perform poorly for predicting the future. The simple
moving average technique, also called the simplest Holt-Winters model [Holt 2004], is

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:9

Fig. 6. Query exhibiting behavior where historical data has little relevance for predicting future clicks
(normalized by overall #clicks on each day based on Bing query logs).

a technique for producing an exponentially decaying average of all past examples, thus
giving higher weights to more recent events. The model is represented by the following
equation,

yt+1 = α · xt + (1 − α) · yt.

Here, for y = x0, solving the recursive equation as follows:

yt+1 = αxt + · · · + α(1 − α)k−1xt−k + · · · + (1 − α)tx0,

produces a prediction yt+1 that weights historical data based on exponentially decay
according to the time distance in the past. The parameter α is estimated from the data
(see Section 3.7). Converting to SSM notation, let lt = yt+1 where lt is the level of the
time series at time t and εt = xt − yt. The measurement and transition equations can
be defined as.

Yt = yt = lt−1, (4)
Xt = lt = lt−1 + αεt.

In this case, W = (1), F = (1), G = (α).

3.3. Modeling Trends (TRN)

In many cases, such as the query harold camping in Figure 7, using only one coefficient
to discount previous data does not have the expressiveness to capture the dynamics of
the system. The figure shows the query-click behavior for the query harold camping,
who predicted that the end of the world would commence on May 21, 2011. The growing
interest in this prediction in the proximity of this date shows a clear local growth trend
in the time series. In such cases, where the time series exhibits a local trend, simple
smoothing of historical data cannot accurately capture the dynamics of interest in the
topic. A potential solution to this problem is the addition of a trend component bt to the
previously described model:

yt = lt−1 + d · bt−1 + εt, (5)
lt = lt−1 + bt−1 + αεt,

bt = bt−1 + β∗(lt − lt−1 − bt−1),

where lt is called the level of the time series at time t, d is the damping factor, and bt
is the estimation of the growth of the series at time t, which also can be written as

bt = bt−1 + αβ∗εt = bt−1 + βεt.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:10 K. Radinsky et al.

Fig. 7. Query exhibiting behavior with local trend (normalized by overall #clicks on each day based on Bing
query logs).

Fig. 8. Query exhibiting a periodic behavior (normalized by overall #clicks on each day based on Bing query
logs).

Let Xt = (lt, bt)′, then:

Yt = (
1 d

)
Xt−1 + εt,

Xt =
(

1 1
0 1

)
Xt−1 +

(
α

β

)
εt.

In this case, W = (
1 d

)
, F =

(
1 1
0 1

)
, G =

(
α

β

)
.

The parameters α, β are estimated from the data (see Section 3.7).

3.4. Modeling Periodicity (PRD)

Figure 8 shows query-click behavior for the query consumer report that exhibits weekly
periodicity. Similarly, the query halloween in Figure 3 exhibits annual periodicity. For
such queries, predictions based only on local trends or smoothing of the data will
perform badly during the peaks. A possible solution is the addition of a periodic or
seasonal component st to the simple Holt-Winters model:

yt = lt−1 + st−m + εt,

lt = lt−1 + αεt,

st = γ ∗ · (yt − lt−1) + (1 − γ ∗)st−m,

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:11

Fig. 9. Query exhibiting periodic behavior with local trend (normalized by overall #clicks on each day).

where m is the periodicity parameter that is estimated based on the data along with
other parameters (see Appendix A.1 for details). In SSM notation, the equation system
can be written as

yt = lt−1 + st−m + εt, (6)
lt = lt−1 + αεt,

st−i = st−i+1,

. . . ,

st = st−m + γ εt,

and for Xt = (lt, s1, . . . , sm), we can represent the parameters F, G, W in a form of the
matrices similar to the Trend Holt-Winters model formulation. The parameters α, γ
are estimated from the data (see Section 3.7).

3.5. Modeling Trends and Periodicity (TRN+PRD)

In the previous models, trend and periodicity were considered separately. However, for
many queries, such as the query vampire diaries shown in Figure 9, the trend and
periodicity components are mixed. In this case, the periodicity is unchanged but the
frequency increases. The addition of trend and periodicity parameters produces the
following model.

yt = lt−1 + d · bt−1 + st−m + εt, (7)
lt = lt−1 + bt−1 + αεt,

bt = bt−1 + βεt,

st = st−m + γ εt,

. . . ,

st−i = st−i+1.

The parameters α, β, γ are estimated from the data (see Section 3.7).

3.6. Modeling Surprises (SRP)

The Holt-Winters models assume the conversion of a set of parameters to a single
forecast variable Yt. However, in many real-world time series, the model itself changes
over time and is affected by external disturbances caused by unmodeled, exogenous
processes in the open world. For example, in Figure 10, we see a periodic query fda
with a disturbance on March 4, due to an external event concerning the announcement

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:12 K. Radinsky et al.

Fig. 10. Query exhibiting behavior with surprises.

that some prescription cold products are unsafe. Inclusion of such outliers might have a
strong effect on the forecast and parameter estimation of a model. We wish to identify
characteristics in the temporal patterns which are not adequately explained by the
fitted model, and try to model them for a better estimation of Yt. If these characteristics
take the form of sudden or unexpected movements in the series, we can model them
by the addition of disturbances that capture the occurrences of surprises from the
perspective of the model.

A disturbance or a surprise is an event which takes place at a particular point in the
series, defined by its location and magnitude. In a time series, the effect of a disturbance
is not limited to the point at which it occurs, but also propagates and creates subsequent
effects that manifest themselves in subsequent observations.

We augment the standard Holt-Winters model with the addition of two surprise
parameters: mt, which is a surprise measurement at time t, and kt, which is the surprise
trend at time t:

yt = lt−1 + d · bt−1 + st−m + mt + εt, (8)
lt = lt−1 + d · bt−1 + αεt,

bt = bt−1 + kt + βεt,

st = st−m + γ εt,

. . . ,

st−i = st−i+1.

We discuss in Appendix A.2 methods for identifying the surprises kt in a time series,
and in Section 3.7 discuss how the parameters α, β, γ are estimated from the data.

3.7. Using the Models to Forecast

Once the model structure is specified, the distribution of the future values of the time
series can be evaluated, given past history. That is, we learn an SSM for time series
Y1, . . . , Yn jointly with the internal states X0, . . . , Xn, and residuals ε0, . . . , εn. During
prediction, future states Xn+1 are generated using the state transition equation (Eq. (3))
and, based on these, a distribution of the future values of Yn+1 is generated using the
measurement equation (Eq. (2)). The final prediction can be generated by using the
expected value of this distribution.

The SSM family provides a predefined structure for forecasting, where the specific
parameters of the model need to be evaluated from the data. We apply gradient descent
[Snyman 2005] to optimize the model parameters based on training data. We assume

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:13

here the following loss function, which is a common criterion for measuring forecast
error.

F =
T∑

t=1

ε2
t . (9)

The initial values of the models, X0, are set heuristically and are refined along with
the other parameters. The seasonal component m is estimated from the data by auto-
correlation analysis (see Appendix A.1 for details).

4. LEARNING THE RIGHT TEMPORAL MODEL

As described in Section 3, different temporal models can be employed to represent user
behaviors over time. We first present a known method for selecting which model is
the best based on the information criterion of the time series (Section 4.1), and then
provide a novel method for inferring the model based on extended and domain-specific
characteristics of Web behaviors (Section 4.2).

4.1. Bayesian Information Criterion

The models described thus far are based on curve fitting, and we have shown via
examples that there is no single model that adequately models trends, periodicities,
and surprise. An alternative approach would be to fit several models and train a
classifier that selects the best predictive model.

Each model adds more parameters. When fitting the models, there is a high likeli-
hood of more complex models fitting the data better. This might result in overfitting,
especially when applying gradient descent. The Bayesian information criterion (BIC)
[Schwarz 1978] resolves this problem by adding a penalty for the number of parameters
in the model. That is, it presents a trade-off between the accuracy and the complex-
ity of the model. It is closely related to the Akaike information criterion (AIC), but
the penalty term is larger in BIC than in AIC. The BIC criteria being optimized is
defined as

BIC = −2 · log(L) + q · log(n), (10)

where q is the number of parameters, n is the length of the time series, and L is the
maximized likelihood function. For a Gaussian likelihood, this can be expressed as

BIC = n · log
(
σ 2

e

) + q · log(n), (11)

where σe is the variance of the residual in the testing period (estimated from the test
data). The model with the lowest BIC is selected to represent the time series and to
issue point forecasts.

4.2. Dynamics Model Learner (DML)

The BIC criterion introduced in Section 4.1 takes only the model behavior on the time-
series values into account. However, in our domain we have access to richer knowledge
about search behavior. For example, we know what query was issued, the number of
clicks on a given URL for that query, and so on. We shall now discuss how to use domain
knowledge to further improve behavior prediction. We focus on learning which of the
trained temporal SSM models is most appropriate for each object of interest and then
on estimating parameters for the chosen model.

4.2.1. Going Beyond Time-Series for Temporal Modeling. We start by formally motivating
the algorithm and defining the learning problem. Let T be the discrete representation

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:14 K. Radinsky et al.

of time and O be the set of objects, and let fi : O × T → F(fi) be a set of features. For
example, O can be a set of URLs, f1(o, t) can be the number of times URL o was clicked
at time t, and f2(o, t) can be the dwell time on the URL at time t.

In time-series analysis, a single object o is modeled over some period t1, . . . , tn, and
a model C : T → R can be trained based on those historical examples. In order to
forecast future trends (classes) at time ti+1, the model is provided with an example of
the object seen at training time ti (e.g., predicting how many times the URL o is clicked
on tomorrow based on its past history).

In regression learning, multiple objects O′ ⊂ O are modeled simultaneously by a
single model C : O → R. During prediction, the regression model may be given an
example of an object oi that has not been seen before to produce the prediction of its
numeric value. Notice that no notation of time is considered.

The time-series approach is capable of making specific predictions about a specific
object at a certain time but does not consider information about other objects in the
system and therefore cannot generalize based on their joint behaviors. Regression
learning, on the other hand, generalizes over multiple objects but does not use the
specific information about the object it receives during prediction, and therefore does
not usually use the information about how this specific object behaves over time.

We combine the two approaches into a unified methodology that first considers gen-
eralized information about other objects to choose a model of prediction and then uses
the specific knowledge of the predicted object to learn the specific parameters of the
model for the object. Formally, given a set of objects O′ ⊂ O over some period of time
t0, . . . , tn, we produce a model C that receives an object o ∈ O (not necessarily o ∈ O′)
over some period t0, . . . , tn and produces the prediction of its numeric value at time tn+1.

4.2.2. DML Learning. In this section, we present the dynamics model learner (DML)
algorithm for learning from multiple objects with historical data. Let O′ ⊂ O be a set of
objects given as examples for training the learning model. Let t1, . . . , tn+σ be the times
dedicated for training the model. For example, O′ can be a set of queries for which we
have user behavior information for the period of time t1, . . . , tn+σ . We divide the objects
into two sets—the learning set, t1, . . . , tn, and the validation set tn+1, . . . , tn+σ . For every
temporal model described in Section 3, we train a model on the learning period and
check the mean squared error (MSE) over the validation period. Formally, let o(t) be
the behavior of object o at time t (e.g., how many times the query o was searched), then

MSE(o, t1, . . . , tn+σ , m) =
∑tn+σ

t=tn+1
(o(t) − ô(t))2

σ
,

where ô(t) is the model m estimation at time t.
Let i be the index of the model with the lowest MSE on the test period for the

object o. We construct a set of examples E = {〈 f1(o, t), . . . , fn(o, t)〉, i|o ∈ O′}—a vector
representing an object and labeled with the index of the best-performing model for
that object. We then use a learner (in our experiments, a decision-tree learner) along
with the examples E to produce a classifier C. During prediction, C is applied on
the object we wish to predict, otarget. The output m = C(otarget) represents the index
of the most appropriate model for the object otarget. We train the model m using the
behavior of otarget during t1, . . . , tn+σ . A detailed algorithm is illustrated in Figure 11.
An example of a learned decision tree is shown in Figure 12. In this figure, we see that
the periodic model should be applied only on objects (queries) considered periodic (as
defined in Appendix A.1), along with other characteristics. If the query is not periodic,
the trend or the smoothing model should be applied, depending on the query shape (see
Section 4.2.3). Thus, by using the DML model, we learn to apply the best equations for
modeling the time series.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:15

Fig. 11. The procedure estimates the model type to learn based on past examples and their features. The
model parameters are estimated and a prediction for the new object is performed.

Is Query Periodic?

urlImpression_quefrancy1 <= 29.66

queryurlAVG <= 0.04

urlImpression quefrancy10 <=
13.72

Query Period <= 130

URL Peaks AVG<= 0

Query Period <= 126:
Smoothing (Eq. 3)

Query Period > 126:
Periodic (Eq. 5)

queryurlImpression_LastValue
<= 6

urlImpression_quefrancy_3 <=
5.12

urlImpression
quefrancy5 <= 5.76:
Local Trend (Eq. 4)

urlImpression
quefrancy_5 > 5.76:
Smoothing (Eq. 3)

NO YES

Fig. 12. A part of the learned dynamic model.

4.2.3. DML Features. DML uses a set of features fi about each object o. In this section,
we discuss the specific features we use to train the DML model used in our experiments.
We devise a total of 973 features (description of the features is available online3.), and
group them into three groups: aggregate features of the time series o, shape features
of the time series o, and other domain-specific features such as the query class.

Aggregate Features. Features include the average, minimum, maximum, and period
of the time series, for example, the average of the query volume. Other features consider
the dynamics of the series, for example, the time series periodicity and number of
surprises. We also consider the size of the spikes during the surprises (i.e., the magnitude
of the disturbance).

Shape Features. Shape features represent the shape of the time series. Our goal is to
produce a representation that is not sensitive to shifts in time or to the magnitude of the
differences. Formally, for a time series y[n] = x[n], we are looking for a representation
that will be equivalent to series of the form y[n] = x[n − h] and y[n] = A · x[n], for any

3http://www.technion.ac.il/~kirar/Datasets.html.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:16 K. Radinsky et al.

shift h and any scalar A. Homomorphic signal processing is a solution that satisfies
these conditions. Intuitively, application of the finite Fourier transform (FFT) operator
on a time series transforms it to what is called the spectral domain, that is, produces
a vector x of size k, where every xk represents the kth frequency of the time series.

xk =
N−1∑
n=0

xne−i2πk n
N .

This procedure eliminate shifts, as both y[n] = x[n − h] and y[n] = x[n] have similar
frequencies. Application of a log function on the resulting frequency vector and an
additional FFT operator transforms it to what is called the cepstral domain [Childers
et al. 1977], and the values of x in this product are called quefrencies. The byproduct
of these procedures is that series of the form y[n] = A · x[n − h] and y[n] = x[n] are
transformed to the same vector X in the ceptral domain. In speech recognition [Bogert
et al. 1967], the values of x1, . . . , x13 in the cepstral domain are considered a good
representation of the series. We consider these features to represent the shape of the
series.

Domain-Specific Features. We also consider a set of temporal and static features that
are domain specific. For the query-click time series, we consider the total number of
clicked URLs, and the query-click entropy at time t, which is defined as

QueryClickEntropy(q, t) = −
n∑

i=1

p(clickt(ui, q)) log p(clickt(ui, q)), (12)

where u1, . . . , un are the clicked URLs at time t, and p(clickt(ui, q)) is the percentage of
clicks on URL ui for query q at time t, among all clicks on query q. If all users click on the
same URL for query q, then QueryClickEntropy(q, t) = 0. We consider an aggregated
version of query-click entropy as the average of the last k = 7 days before the prediction.
For both the query and URL click time series, we consider the topical distribution of
the URL or query. We used a standard topical classifier which classifies queries into
topics based on categories from the Open Directory Project (ODP) [Bennett et al. 2010].
We classify queries into approximately 40 overlapping topics, such as travel, health,
and so on.

5. OVERVIEW OF APPLICATIONS OF TIME-SERIES MODELING FOR SEARCH

Models that take advantage of historical user behavior data often aggregate the data
uniformly, regardless of when the behavior is observed. These techniques fail to weight
older data differently than newer data and may lead to a stale user experience. We
now explore how the time-series modeling techniques presented in previous sections
can be applied to resolve this problem. We first summarize how we predict future
clicks and then describe two important search-related applications: ranking and query
auto-suggestion. In Sections 6, 7, and 8 we provide the experimental results of those
applications.

5.1. Experiments for Predicting Future Clicks

We start with an application of the methods we described for click prediction and
investigate three types of forecast: query click prediction, query-dependent URL click
prediction, and query-independent URL click predictions. We extend the early results
presented in Radinsky et al. [2012]. We provide a deep analysis of the performance of
different temporal models on the different types of predictions and their behavior for
different prediction horizons (Section 6).

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:17

Fig. 13. Search results for the query WSDM conference on August 5, 2012. The 2010 (left image) and 2011
(right image) conference websites are ranked higher than the 2013 conference website.

5.2. Experiments for Ranking Search Results

Web search engines often rely on usage data, such as clicks and anchor text, for ranking
documents. Such techniques tend to favor older documents that have accumulated more
behavioral data over time over fresher and potentially more relevant documents. As an
example (shown in Figure 13), one of the highest ranked results for the query WSDM
conference at the time of writing this paper is the WSDM 2010 (on Bing) or WSDM
2011 page (on Google). However, the current intention behind this query is more likely
about finding information on the forthcoming WSDM 2013 conference. The older pages
have more historical data than the more recent one, which only has sparse click data
because it did not even exist prior to 2012. Accurate predictions of future query and
click frequency can be used directly to re-rank the search results. We refer to those
predictions as temporal features. Alternatively, those features can be used along with
other features to train a ranking function, for example, BM25 features [Robertson et al.
2004]. We refer to those features as base features.

We explore both of these scenarios. In our first set of ranking experiments, we lever-
age temporal features as independent evidence for ranking. To understand how well
our predictions can be used as independent evidence for ranking, we only use our pre-
diction of future user behavior. For each query-URL pair, we compute the predicted
normalized number of clicks and use that prediction to rank the URLs.

In the second set of ranking experiments, we use temporal features as input to a
learning-to-rank algorithm. We employ a supervised learning technique to learn the
ranking function that best predicts the ground-truth ranking of URLs for a given query,
using a variety of query, query-URL and URL features, combining both base features
and temporal features. We show that rankers that use temporal modeling consistently
outperform rankers only considering static user behavior.

We provide an analysis of the temporal models applied to ranking search results in
Section 7.

5.3. Experiments for Ranking Query Auto-Complete Candidates

Query auto-suggestion (QAS) is a feature incorporated in most search engines, where
the goal is to save user time by predicting user’s intent and suggesting other possible
queries matching the first few keystrokes typed. In a typical QAS scenario, the user
is presented with a list of query suggestions that match the prefix text entered in the
search box so far (e.g., “di” in Figure 14). For each prefix P, the list of candidates C(P)
consists of all previous queries that start with P.4 The list of candidates is dynamically
updated at runtime with each new character typed by the user.

4Without loss of generality, we ignore more advanced fuzzy matching techniques [Chaudhuri and Kaushik
2009; Ji et al. 2009] in our work.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:18 K. Radinsky et al.

Fig. 14. Google auto-suggestion candidates after typing di on Sunday, February 13, 2012. The user was
typing from a U.S. IP address with personalization turned off.

Fig. 15. Daily frequencies for queries dictionary (red) and disney (blue) during January 2012, according to
Google Trends (the snapshot was taken on Monday, February 13, 2012). Among the two queries, disney is
more popular on weekends, while dictionary is issued more commonly by users on weekdays.

The common practice for ranking QAS candidates is to use past query frequencies
[Bar-Yossef and Kraus 2011; Chaudhuri and Kaushik 2009] aggregation as a proxy
for the expected popularity in the future. Bar-Yossef and Kraus [2011] referred to this
general form of QAS ranking as MostPopularCompletion (MPC). Those approaches
assume that user intent is static and does not change over time. However, the query
popularity is dynamic and affected by different temporal trends. Consider the example
in Figure 14 where a user has typed di in the Google query box on Sunday, November 6,
2011. At first glance, knowing that dictionary is generally a more frequent query than
disney, it might be difficult to notice how the ranking might be improved. However,
looking at the daily trends for these queries in Figure 15 reveals that disney is more
popular on weekends. Hence, given that the first snapshot was taken on a Sunday,
swapping disney and dictionary could lead to a better ranking at the time of this query.
In summary, the past is not always a good proxy for future particularly for trendy and
seasonal queries. Today’s frequency for query dictionary is not necessarily the best
estimate for its frequency tomorrow.

We propose to use our temporal modeling techniques to enhance this ranking. In our
time-sensitive QAS ranking model, the score of each candidate at time t is determined
according to its predicted value calculated using time-series models that capture tem-
poral trends and periodicity. Our time-sensitive QAS ranking model can be formalized
as a variation of the MPC model (Eq. (1)),

TS(P, t) = arg max
q∈C(P)

w(q|t), w(q|t) = ŷt(q)∑
i∈Q ŷt(i)

, (13)

where P is the entered prefix, C(P) represents its list of QAS candidates, and ŷt(q)
denotes the estimated frequency of query q at time t.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:19

Table I. Summary of Query Types

Data #Queries #URLs Description
General 10,000 35,862 General queries randomly sampled (unique on a

given day)
Dynamic 504 1,512 Queries labeled as requiring fresh results

Temporal Reformulations 330 1,320 Queries reformulated with temporal word added
Alternating 1,836 7,344 Randomly sampled queries whose URLs change

rankings

We extend the early work by Shokouhi and Radinsky [2012] and provide a deeper
analysis of numerous temporal models applied for ranking query auto-complete candi-
dates in Section 8.

6. EXPERIMENTS FOR PREDICTING FUTURE CLICKS

We first describe the setup for the prediction experiments and perform several pre-
diction experiments, namely predicting query, query-dependent URL click, and query-
independent URL click frequencies. In every experiment, five SSM models (Section 3),
two selection models (BIC (Section 4.1), DML (Section 4.2)), and four baseline models
(Section 6.3.1) are evaluated. The prediction results are shown for a variant of the
MSE to avoid numerical errors: MSE(predicted) = E[|predicted − real|0.5]. This error
is averaged over 12 consecutive prediction days (April 14, to April 25, 2011) to avoid
over-fitting of a specific day. To compare the results of the different algorithms, we
perform a t-test on the results.

6.1. Data

The dataset consists of query and URL activity obtained from Bing for the U.S. market
during the period December 15, 2010 to April 25, 2011. The data contains information
about a query’s daily click counts, a URL’s daily click counts, and, for each query, all of
the URLs presented along with their corresponding daily rank positions and daily click
counts. We filter the data and consider only queries and URLs that have more than
five clicks per day. For each query, we consider the top four URLs by click frequency.
We normalize every activity time series by the total number of activities on that day to
mitigate known differences in daily query volume. For query and URL pairs, we also
normalize by the number of clicks on the URL at the position at which it was displayed
in the displayed ranked results for the query, producing a value which is not dependent
on the position.

We describe the dataset in full detail in Section 6.2. Table I gives a summary of the
data.

6.2. Queries

We investigate the effectiveness of different models on various types of queries. For this
purpose, we use multiple sampling strategies to collect queries with different degrees
of time sensitivity.

General Queries. We first present prediction over a general sample of queries issued
to Bing. For this purpose, we use 10,000 queries randomly sampled without repetition
on a given day, and 35,862 clicked URLs.

Time-series modeling is especially interesting in cases where the behavior of the
population of users changes over time. To study such changes, we identified three
types of queries that we believe would benefit from temporal modeling.

Dynamic Queries. Queries, such as japan described earlier, arise because of external
events and require fresh content to satisfy users’ needs. Trained judges labeled queries

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:20 K. Radinsky et al.

that required fresh results at specific points in time. We say that a query q is dynamic
if a human labeled it at time t as a query requiring fresh results. In the experiments,
a total of 504 dynamic queries and 1,512 labeled URLs were used.

Temporal-Reformulation Queries. Another way of identifying queries associated with
time-sensitive informational goals is to examine queries that explicitly refer to a period
of time. We focused on queries that were reformulated to include an explicit temporal
referent (e.g., an initial query world cup might be later reformulated as world cup 2011
or world cup latest results). We say that a query q was reformulated to a query q′ = q+w
if a user issuing a query q at time t issued the query q with an additional word w at
time t + 1 in the same session. We say that a query q was temporally reformulated if w
is of type year, day of week, or if w is one of the following words: current, latest, today,
this week. Reformulation data was obtained for queries issued in the years 2007–2010.
A total of 330 queries and 1,320 URLs were sampled.

Alternating Queries. Queries that exhibit interesting temporal behavior often show
changes in the URLs that are presented and clicked on over time. We focus on a subset
of queries, whose most frequently clicked URLs alternate over time. We say that a query
q is alternating if ∃t1, t2 ∈ T , i, j ∈ N : Click(ui, t1| q) > Click(uj, t1| q), Click(ui, t2 | q) <
Click(uj, t2| q), where u1, . . . , un are the matching URLs to the query q, and Click(u, t | q)
is the number of clicks on u at time t for the query q. A total of 1,836 queries and 7,344
URLs were sampled.

6.3. Models

6.3.1. Baseline Methods. The most commonly used baseline for representing user search
behavior is the averaging of activity over some period of time. Generally speaking, we
consider baselines that perform some kind of uniform or nonuniform mapping of the
data, and output the average of the mapping as the prediction. We call these different
mappings temporal weighting functions. The modeling in this case is of the form

yt =
t−1∑
i=0

w(i, yi)yi∑t−1
j=0 w(j, yj)

,

where w(i, yi) is a temporal weighting function. In this work, we consider the following
baseline functions.

(1) AVG. Simple average of the time series: w(i, yi) = 1.
(2) LIN. Linear weighting function: w(i, yi) = i.
(3) POW. Power weighting function: w(i, yi) = i p (in the experiments we set p = 2).
(4) YES. Yesterday weighting function that only considers the last value of the time

series (“what happened yesterday is what will happen tomorrow”). The YES
weighting function is as follows

w(i, yi) =
{

1, i = t − 1;
0, otherwise.

(14)

6.3.2. Temporal Methods. The temporal models that we use in these experiments are
the five SSM models: the Smoothing model (SMT), the Trend model (TRN), the Peri-
odic model (PRD), the Trend and Periodic model (TRN+PRD), and the Surprise model
(SRP). In addition to the temporal models, we also evaluate two temporal model selec-
tion methods: BIC and the DML method.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:21

Table II. Prediction Error of Different Models for Predicting the total clicks for a Query

Model Selection
Baselines (Section 6.3.1) Temporal SSM Models (Section 3.1) (Section 4)

Query Type AVG LIN POW YES SMT TRN PRD TRN+ SPR DML BIC
PRD

General 0.17 0.40 0.40 0.18 0.19 0.18 0.17 0.16 0.15 0.14 0.19
Dynamic 0.54 0.68 0.68 0.56 0.49 0.49 0.58 0.59 0.60 0.44 0.48

Temp Reform 0.56 0.67 0.65 0.78 0.76 0.77 0.59 0.62 0.63 0.52 0.73
Alternating 0.30 0.34 0.33 0.33 0.30 0.30 0.44 0.45 0.45 0.29 0.33

Note: Lower numbers indicate higher performance. The best performing statistical significant results are
shown in bold.

6.4. Prediction Task

For each of the baseline and temporal methods we learn models from the data from
December 15, 2010 to April 13, 2011, and predict click behavior for April 14 to April 25,
2011. We now present three prediction tasks: query click prediction, URL click pre-
diction, and query-URL prediction. The MSE error is averaged over 12 consecutive
prediction days (April 14 to April 25, 2011) to avoid overfitting of a specific day. To
compare the results of the different algorithms, we perform a t-test on the results com-
paring against the best performing model. Statistically significant results (p < 0.05) of
the best models in each row are show in bold.

6.5. Predicting Query Clicks

We now summarize the prediction results for query and URL click frequencies. The
query click prediction results are shown in Table II. The table reports prediction errors,
where smaller values indicate better prediction accuracy. The best performing model
for each query type is shown in bold. For all of the query types, we observe that the
DML method performs the best. DML always outperforms the well-known BIC method
for model selection as well as all of the SSM models and baselines. This shows that
learning which model to apply based on the different query features is useful for query-
click prediction.

Comparing the temporal SSM models against the baselines, we observe that, for
the General class of queries, the model that smooths surprises performs the best. This
result indicates that many queries are noisy and strongly influenced by external events
that tend to interfere with model fitting. For the Dynamic class, temporal models that
only take into account the trend or learn to decay historical data correctly perform
the best. This result aligns with the intuition that queries that represent new events
happening during the time of the prediction, thus requiring new results, need the most
relevant new information. Thus, data that is too old interferes with prediction. Most of
those queries exhibited a trend in the end of the period. Few disturbances (surprises)
were detected, therefore the Surprise model was not useful for this set. For Temporal-
Reformulations, the best performing temporal models are those that take into account
the periodicity of the query. For all query classes, the baseline that performs simple
averaging of historical data yields the best results.

Overall, predictions are the most accurate for the General class of queries, indicat-
ing that many queries are predictable. The Temporal-Reformulation class of queries
provides the most difficult challenge for predictive models, showing prediction errors
of 0.52 (best prediction model error). Most errors result from queries that are seasonal
with a periodicity of more than a year, for example, holiday-related queries (sears black
Friday) or other annual informational goals, as exemplified by the query 2007 irs tax.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:22 K. Radinsky et al.

Fig. 16. Query total click prediction error over time on the General queries set (lower values indicate higher
performance). Static models are shown in green, Temporal models are shown in yellow, and Temporal model
selection methods are shown in purple.

As we only had data for a period of five months, such longer-term periodicities were
not detected.

We investigated how the models behaved over longer prediction periods h (the pre-
diction horizon). For each such horizon, we trained a new model. We present the error
of the different models on the General set of queries as a function of the prediction
horizon in Figure 16. We observe an interesting phenomenon: almost all methods have
a sharp decrease in performance after a prediction horizon of approximately h = 7.
This demonstrates the complexity of the problem for predicting queries further than
a week, perhaps due to the importance of weekly periodicities in queries. However,
we did not observe the same phenomenon in the DML method, providing evidence
that learning the correct model to apply remains stable throughout all prediction hori-
zons. We observe that the relative performance of the methods remains the same, with
one exception—the DML method did not experience any change in bigger prediction
horizons.

6.6. Predicting Query-Independent URL Clicks

The predictions for URL clicks aggregated over all queries are given in Table III.
We see again that the DML procedure has the best prediction accuracy for Dynamic
and Temporal-Reformulation queries. For these classes of queries, models that learn
to weight historical behavior and trend models achieve the best performance. For
Alternating queries, we observe that predicting clicked URLs benefits from seasonality
modeling. For Temporal Reformulation queries, the baseline and DML models show the
best prediction performance. Interestingly, the Periodic, Trend+Periodic, and Surprise
models perform poorly. Similar to what we observed for query prediction, the majority of
errors stem from URLs that have periodic content with an annual periodicity lag, which
is bigger than the five months of data obtained for training the models. The models

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:23

Table III. Prediction Error of Different Models for Predicting the Query-Independent Number of Clicks for a URL

Model Selection
Baselines (Section 6.3.1) Temporal SSM Models (Section 3.1) (Section 4)

Query Type AVG LIN POW YES SMT TRN PRD TRN+ SPR DML BIC
PRD

General 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02
Dynamic 0.77 0.75 0.71 0.72 0.73 0.72 0.74 0.76 0.76 0.72 0.73

Temp Reform 0.31 0.30 0.27 0.27 0.32 0.29 0.78 0.72 0.72 0.27 0.28
Alternating 0.49 0.49 0.48 0.47 0.51 0.51 0.41 0.42 0.42 0.48 0.51

Note: Lower numbers indicate higher performance. Best performing statistical significant results are shown
in bold.

Fig. 17. URL query-independent click prediction error over time on the General queries set (lower numbers
indicate higher performance). Static models are shown in green, Temporal models are shown in yellow, and
Temporal model selection methods are shown in purple.

incorrectly estimate the lag, which is outside the scope of the data, and therefore the
prediction accuracy is poor.

For URL prediction, the best accuracy is achieved for the General query set. The
most difficult prediction challenge is found on the Dynamic set. The main reason for
the lower prediction performance is that those queries often require new URLs and are
thus harder to predict when no long-term patterns appear.

We present the error of the different models as a function of the prediction horizon in
Figure 17. Similar to the results for query prediction, we see that the performance of
most models decreases after a prediction horizon of approximately seven days. Notable
exceptions are the DML methods and the LIN and POW methods that remain stable
over all prediction horizons.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:24 K. Radinsky et al.

Table IV. Prediction Error of Different Models for Predicting the Query-Dependent Number of Clicks for a URL

Model Selection
Baselines (Section 6.3.1) Temporal SSM Models (Section 3.1) (Section 4)

Query Type AVG LIN POW YES SMT TRN PRD TRN+ SPR DML BIC
PRD

General 0.16 0.20 0.20 0.16 0.12 0.14 0.42 0.23 0.23 0.10 0.12
Dynamic 0.28 0.40 0.39 0.41 0.29 0.28 0.20 0.20 0.19 0.25 0.28

Temp Reform 0.53 0.68 0.67 0.69 0.66 0.69 0.58 0.58 0.59 0.48 0.63
Alternating 0.08 0.12 0.11 0.13 0.13 0.13 0.17 0.16 0.16 0.09 0.12

Note: Lower numbers indicate higher performance. Best performing statistical significant results are shown
in bold.

6.7. Predicting Query-Dependent URL clicks

In the previous section, we compared the forecast models for predicting the overall
clicks on a URL aggregated across all queries. We now repeat the analysis but focus
on query-dependent clicks instead. Query-URL pair click prediction results are shown
in Table IV. We first observe that DML has the best performance for the General,
Temporal Reformulation, and Alternating queries. The temporal model which smooths
across surprises (SPR) is the most accurate for the Dynamic query type.

Across Tables II–IV, there appear to be two groups of SSM models: (1) Smooth and
Trend models, and (2) Periodic, Trend+Periodic, and Surprise models. Smooth and
Trend models show very similar performances to each other. Similarly the Periodic,
Trend+Periodic, and Surprise models behave in the same way. Sometimes one group
performs better than the other, but the groupings are consistent across the three tables
and four query types. The main reason for this is that the second group considers
periodicities and therefore has a larger set of variables to evaluate. These models have
higher expression complexity but are harder to learn. However, when sufficient data
exists and the data is less noisy, we see those models perform better.

We present the error of the different models as a function of the prediction horizon
in Figure 18. We observe very poor performance of temporal models that incorporate
periodicity of any sort (Periodic, Trend+Periodic, Surprise), even for larger horizons.
The problem becomes even more evident at a prediction horizon of h = 7 and longer.
This provides evidence that many of the query-URL predictions are not easily fitted
by periodic models. However, the different selection models had very high and stable
performance.

7. EXPERIMENTS FOR RANKING SEARCH RESULTS

We now apply the methods described in Section 3 to ranking search results. The dataset
used in this experiment is described in Section 6.1.We evaluate our techniques in two
types of ranking experiments. In the first set of experiments, we use our predictions
of future click behavior (derived from the models in Section 6.4) as the only source
of evidence for ranking. In the second set of experiments, we combine our temporal
predictions with other query-dependent features (e.g., number of words in query) and
query-independent features (e.g., the URL depth) in a learning-to-rank framework.

7.1. Ground-Truth Ranking

To evaluate the accuracy of a ranking system, it is common practice to use explicit
human relevance judgments (labels) on query-URL pairs. Since user intent can change
over time, relevance judgments may also change over time. Obtaining daily judgments
on a large set of queries over a long period of time is a difficult challenge. Furthermore,
it may be difficult for judges who are unfamiliar with a query to understand the
time-varying intentions for the query. To overcome these problems, we use implicit

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:25

Fig. 18. The query-dependent URL click prediction error over time on the General queries set (lower
numbers indicate higher performance). Static models are shown in green, Temporal models are shown in
yellow, and Temporal model selection methods are shown in purple.

judgments drawn from query logs as our gold standard. The gold standard ranking for
each day is determined by ordering by the click frequencies of theURL for a query on
that day. Similar methods have been used to study personalized and contextual search
[Teevan et al. 2005; White et al. 2010]. One challenge with using log data is that users
are more likely to click on higher-ranked results than lower-ranked results [Yue et al.
2010]. In order to adjust for this position bias, we normalize by the probability of a click
on the given URL at the displayed position for the given query. This method provides
an unbiased estimate of the number of times a user would click on a given URL for a
given query at a certain time.

7.2. Evaluation Metrics

We seek to compare the quality of the rankings generated by our models with those
from the gold standard. A common way to compare two ranked lists is to consider
the correlation between the two rankings. We computed both the Kendall’s τ rank
correlation and the Pearson product-moment correlation. Rank correlations assess the
extent to which one variable increases as the other increases. Pearson correlation
assesses the linear relationship between two orderings and is especially effective for
comparing two regression variables. The score not only measures the correctness of the
ranking, but also takes into account the magnitude of the difference. Results obtained
from the Kendall’s τ rank correlation and the Pearson product-moment correlation are
similar, so we present only the Pearson correlations in the article.

7.3. Baselines

In experiments where we only use temporal features as evidence for ranking, we com-
pare the ranking performance of the temporal-modeling methods (Section 3) versus the
performance of the static-modeling baselines (Section 6.3.1).

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:26 K. Radinsky et al.

Table V. Quality of URL Ranking Models Produced by Different Forecast Models Using Only Predicted Clicks

Model Selection
Baselines (Section 6.3.1) Temporal SSM Models (Section 3.1) (Section 4)

Query Type AVG LIN POW YES SMT TRN PRD TRN+ SPR DML BIC
PRD

General 0.91 0.92 0.93 0.92 0.98 0.98 0.08 0.98 0.99 0.99 0.98
Dynamic 0.28 0.35 0.38 0.36 0.41 0.41 0.06 0.06 0.46 0.42 0.41

Alternating 0.80 0.82 0.84 0.82 0.89 0.89 0.06 0.06 0.06 0.89 0.87
Temp Reform 0.95 0.95 0.95 0.95 0.97 0.96 0.24 0.25 0.65 0.99 0.95

Note: As measured by the Pearson correlation with the ground-truth URL ranking. The best performing
statistical significant results are shown in bold.

In the experiments where temporal features are added to the feature set of a base
ranker, we compare the performance of the ranking algorithm using three different
sets of features: only base features, the base features plus static modeling features,
and the base features plus temporal modeling features. The feature set of the base
ranker consists of approximately 200 typical information retrieval features, such as
several variants of BM25 [Robertson et al. 2004], to measure the similarity of a query
to document body, title, and anchor texts. Additionally, we used other query-dependent
features, such as the matched document frequency of a term, bigram frequency, number
of words in query, etc., and a set of query-independent features, such as the URL depth
and the number of words in the document’s body and title.

7.4. Ranking Task

For each query-URL pair, we compute the predicted behavior and use that prediction to
rank the URLs. We first divide the data into training and test sets. Behaviors from time
ti, . . . , ti+n are used to estimate the model parameters, and the resulting models are used
to predict the user behavior on the following day ti+n+1. For each query, we compare the
predicted ranking to the gold standard ranking on day ti+n+1. We investigate different
prediction windows (of 1–10 days), and perform prediction on different days (training
was performed from December 15, 2010 until April 15, 2011, and the testing was done
on the subsequent ten days). For each query type (described in Section 6.2), we calculate
the mean of the Pearson correlation (ρ) over the queries in our test set.

7.5. Temporal Features as Only Evidence for Ranking

We begin by looking at how well the predictions for URL click behavior perform com-
pared with several baseline predictions. The results can be found in Table V, which
presents the Pearson scores for each of our four query types.

For every type of query, the proposed temporal modeling approach outperforms all
of the baselines, showing that learning the appropriate weighting for historical data is
preferable to selecting a single weighting for all query and/or URLs. For most classes
of queries, the Pearson scores are quite high, suggesting that the predicted ranking is
very close to the ideal ranking. We observe that ranking based only on predicted user
clicks is consistently better than the baselines for all types of queries. The correlations
are noticeably lower for Dynamic queries, although temporal models still significantly
outperform baseline models. Dynamic queries are ones that have been labeled as re-
quiring fresh information. For these queries, there is limited behavioral data available
related to this fresh information need. Although we observe that models that weight
more recent data more heavily (like the trend and power weight models) tend to per-
form well on this query class, the overall performance is still significantly lower than
the accuracy in other query classes. A closer look at the data reveals that most of those

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:27

queries are celebrity and sports-related queries that have sudden spikes. These sudden
spikes are hard to predict, as they are event driven. However, after such a spike starts,
the prediction of its peak and its decline are more easily predicted, as those spikes
usually persist for 1–2 days. Most errors of those models occur in queries where the
test date is drawn from the beginning of a spike.

For every query class, two of the temporal approaches that we explored, Smoothing
(SMT) and Trend (TRN), show significant improvements over all the baselines. Recall
that ranking with Smoothing creates a short-range prediction assuming a stable mean,
and Trend adds to this model the notion of a trend. The more complex temporal models,
namely Periodic (PRD) and Trend + Periodic (TRN+PRD), do not generally perform as
well. The Periodic model exhibits poor performance for most query sets. The Periodic
model requires the estimation of many parameters—the size of the parameters is
linear by the size of the periodicity. Estimating such a large number of parameters
likely requires more data than we had available; we believe that this is the main
reason for its lower performance. Furthermore, some of the periodicities were yearly,
and therefore not identified well. The poor performance of the model on nonperiodic
queries stems from the miscalculation of the periodicity of those queries, which usually
results in a noisy prediction.

We reported results for the top four URLs. We also examined performance of the
models over different numbers of top ranked URLs. We have experimented on rankings
of up to 12 URLs. We did not observe any statistically significant change in the results,
and hence do not present them here.

7.6. Temporal Features as Input to a Ranking Algorithm

In this section, we investigate the effectiveness of predicted temporal features when
added to a baseline learning-to-rank retrieval model. We employ a supervised learning
technique to learn the ranking function that best predicts the ground-truth ranking
of URLs for a given query, using a variety of query and URL click features. In these
experiments, we use boosted regression trees as our ranking function [Burges 2010].

We divide the data into training queries Qtrain (80% of the total number of queries
Q) and test queries Qtest (20% of Q). The features used in Qtrain are obtained using only
data from the times t1, . . . , tn. For every query in Qtest, we use the data from the times
t1, . . . , tn to predict the user behavior for the following day and use this prediction as
a feature fed into the learner for testing. Using separate train and test queries allows
us to generalize to queries that have not previously been seen. Using the results of the
ranker, we again calculate the average Pearson correlation for every query category.

We performed experiments comparing performance of a ranker using a variety of
query-dependent and query-independent features in addition to temporal features
based on historical patterns of user behavior.

The Pearson correlation results of these experiments can be found in Table VI. In
nearly all cases, the inclusion of features based on user behavior in the ranker improved
performance, regardless of how the behavior was modeled. The level of improvement
observed was often quite significant, confirming that user behavior is a very important
aspect of Web search result ranking [Agichtein et al. 2006]. The rankers that use
temporal modeling consistently performed the best across all query classes.

7.7. Query Effects

We have seen that different models perform differently on different classes of queries.
In this section, we analyze characteristics of the queries that benefit from temporal
behavioral signals when used for ranking. We perform an analysis of the results using
the same 973 characteristics discussed in Section 4.2.3 and identify the characteristics
that differentiate between the ranking results with and without the use of temporal

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:28 K. Radinsky et al.

Table VI. Quality of URL Ranking Models Produced by Different Feature Sets for Learning-to-Rank

Model Selection
Baselines (Section 6.3.1) Temporal SSM Models (Section 3.1) (Section 4)

Query Type AVG LIN POW YES SMT TRN PRD TRN+ SPR DML BIC
PRD

General 0.47 0.97 0.98 0.98 0.91 0.99 0.99 0.60 0.97 0.99 0.72
Dynamic −0.08 0.30 0.30 0.39 0.59 0.46 0.01 0.30 0.62 0.61 0.35

Alternating 0.23 0.64 0.90 0.74 0.78 0.87 0.90 0.23 0.65 0.98 0.84
Temp Reform 0.19 0.73 0.97 0.96 0.99 0.99 0.98 0.98 0.99 0.99 0.96

Note: As measured by the Pearson correlation with the ground-truth URL ranking. The best performing
statistical significant results are shown in bold.

models. For these experiments, we assess statistical significance using paired t-tests
comparing the best performing temporal models to all other models.

Click Entropy. We begin by looking at whether ambiguous queries are more or less
likely to benefit from temporal modeling of user behavior. We use query click entropy as
a measure of the variation in what users click following a query, as defined in Eq. (12).
We calculate the click entropy over the learning period for each of our queries.

We observe that the ranking of queries with higher click entropy (over 0.37) im-
proves when using a model with temporal signals compared to using models with only
baseline user behavior features. Queries with many different distinct search results
clicked at different times benefit from temporal modeling. Because the click entropy
was calculated over the entire study period and not just a single slice of time, it is
likely that high click entropy often indicates the search engine users’ need for different
information over time. For example, the query lottery has high click entropy, as the
different lotteries results are reported on different days, depending on the location.
Therefore, every day, users tend to click on the lottery site of the appropriate location.
As the result are reported periodically in each location, the temporal models manage
to predict the correct ranking of the results.

Click Predictability. We measure the predictability of a query by calculating the
average error in predicting its search volume (query clicks) using either a baseline
model (e.g., Averaging) or a temporal model (e.g., Smoothing) over the seven days
before the prediction. An analysis of the data reveals that temporal ranking performs
poorly compared with the baseline models when the query clicks predictability is low.
Regardless of the model used for predicting query clicks, the error is high (0.5–0.58)
when the performance of the temporal model is worse than the baseline model. The
error is low (0.27–0.36) when the performance of the temporal model is better than
the baseline model. This indicates that if the query search behavior on its own is
predictable, predicting the right ranking for it over time might be a simpler task.

Similarly, we found a high correlation between the predictability of the query-URL
search click volume and the performance of the ranker with time-series modeled fea-
tures. We measure this predictability by measuring the average error of prediction of
every URL for the query. The error is measured by averaging over the temporal model
prediction error for seven days before the prediction over the URLs. Queries for which
the time-sensitive ranker performed well indicate that query-URL features have high
predictability. The error rate is lower (0.20) for instances where temporal modeling
performs better than the baseline, and is higher (0.27) when the temporal modeling
had worse performance. We found those differences to be statistically significant. This
query-URL number of clicks feature is important for ranking, as it is eventually the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:29

Fig. 19. Dominant query shapes for queries where the proposed temporal model yields better rankings than
the baseline rankers.

goal function being optimized. Queries and query-URLs whose search volume changes
in an unpredictable manner pose harder challenges for temporal ranking. We believe
that difficulties arise during learning because extracting meaningful statistics is more
challenging in those scenarios. In these cases, simple average modeling of the query-
URL volume yields better results.

Spiking Trends. It may seem intuitive that the behavior of queries associated with
numerous spikes over time is hard to predict. We analyze the correlation between
ranking performance and the number of spikes in the query, query-URL, or URL time
series. We found no significant correlation. We believe that this is because some spikes
can be predictable with high precision, such as in the case of periodic behavior.

Query Shapes. In this section, we summarize how the different query shapes indicate
which temporal model to apply. As discussed in Section 3, query shape often indicates
whether a temporal model or a baseline should be applied in ranking. We clustered
the different click behaviors in our dataset based on their shapes, using Expectation–
maximization clustering algorithm. Figure 19 shows the four query and query-URL
shapes where the temporal model yielded better rankings than baselines rankers.
These four shapes have upward or downward trends with different slopes. Those can
be modeled well by the Smoothing and Trend techniques with a correctly learned
slope. This clustering result is consistent with the results in Sections 7.5 and 7.6,
where these two modeling techniques tended to yield the highest performance. We did
not find distinctive query clusters for the cases when the baseline ranker outperformed
the ranker using temporal modeling.

8. EXPERIMENTS FOR RANKING QUERY AUTO-COMPLETE CANDIDATES

In this section, we apply the techniques presented in Section 3 to predict query clicks
for QAS ranking. The ground-truth QAS ranking for a prefix P is the list of all queries
that start with P (or are somehow filtered for the prefix) ordered according to their
true popularity. At any given time t, the true popularity values are set according to
the observed query frequency values at that time. Obviously, this information is not
available to QAS ranking models at runtime, and we have to rely on historical data at
time t − 1 and before to predict this unobserved ground truth (G) and rank candidates
accordingly.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:30 K. Radinsky et al.

8.1. Data & Ground-Truth Ranking

We use the dataset described in Section 6.1 and generate an auto-completion trie
based on query frequency predictions for each of the days in the testing period. For
each forecast method at time t, we rank the top-five ground-truth candidates based
on the data available at time t − 1 and before. In an oracle list of QAS suggestions,
candidates are sorted in descending order of their ground-truth popularity. We consider
two types of ground truth: (1) QAS Clicks Ground Truth; and (2) Total Clicks Ground
Truth.

QAS Clicks Ground Truth. We obtained click data for each QAS suggestion for the
period of May 6 until May 12, 2011 (a total of 4,687,814 prefixes and queries). The raw
data consists of a date, a prefix typed, and the suggestion clicked for this prefix on that
date. Therefore, our gold standard for a certain time and prefix is the ranking induced
by the number of times the query suggestion was clicked for this prefix at this time.

Total Clicks Ground Truth. The coverage of QAS clicks is limited to those queries that
were available in the auto-completion trie and were selected from the auto-completion
list by the users. However, a significant fraction of queries submitted by users are not
available in the auto-completion trie. In addition, users sometimes issue the query
directly from the search box even when it exists in the auto-completion list. Therefore,
we generate another ground-truth dataset in which we consider the total clicks on
queries regardless of whether they were chosen from auto-completion lists or not. We
obtained click data for each query for the period of May 6 until May 12, 2011 (a total of
3,384,954 queries). We computed the probability of a click on a query by the volume of
clicks on this query on that date. The raw data consists of a date, a query issued, and
how many times it was clicked at that date. Therefore, our gold standard for a certain
time and prefix is the ranking induced by the number of times queries with this prefix
were issued and had a click on that date. That is, for each prefix P at time t, we match
all the queries that start with P and rank them according to their true total frequency
at time t to generate the ground-truth ranking.

8.2. Evaluation Metrics

We compare the quality of the QAS generated by our models with those from the gold
standard. As in our previous experiments, we use Pearson product-moment correlation
to compare the orderings of the QAS.

8.3. QAS Ranking Results

In Table VII, we present the results for ranking query suggestions based on both ground
truths. We did not observe any significant difference in the results using temporal or
static user behavior models. However, we see that the DML model, which is trained
to choose among the more specific models, achieves the highest performance over all
queries, particularly when total clicks are considered as ground truth. The results
were found to be statistically significant. Periodic models have shown low performance
in both sets, since many of the queries are not periodic, and therefore the periodic
modeling hurts the performance. The results indicate once again that correct modeling
of historical user behavior signals is beneficial.

8.4. Query Effects

We examined the data in more detail to investigate which queries benefit from temporal
modeling. We categorized the queries into two groups: news and periodic queries.

News or Event-Related Queries. Many queries that have sudden spikes benefit from
Trend or Smooth modeling. For example, the query Navy Seals started trending on

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:31

Table VII. Quality of Auto-Completion Ranking Models Produced by Different Learning-to-Rank Feature Sets

Model Selection
Baselines (Section 6.3.1) Temporal SSM Models (Section 3.1) (Section 4)

Ground Truth AVG LIN POW YES SMT TRN PRD TRN+ SPR DML BIC
PRD

QAS 0.88 0.88 0.88 0.88 0.87 0.88 0.83 0.83 0.89 0.91 0.88
Total Click 0.93 0.94 0.94 0.93 0.93 0.93 0.85 0.85 0.95 0.97 0.94

Note: As measured by the Pearson correlation with QAS (top) and total clicks (bottom) ground-truth ranking.
The best performing statistical significant results are shown in bold.

May 2, 2011 during the Osama Bin-Laden mission. In the period following May 2,
we observed that static modeling of this query for the prefix navy had lower perfor-
mance than the Trend and Smooth modeling. This is because this event had not been
observed in the past, so past data was not indicative for the current ranking. An in-
teresting subclass of queries are celebrity queries. Queries about celebrities (such as
Chris Hemsworth and Marie Osmond) are usually event related and benefit from the
temporal modeling. For example, at the time of the prediction, a new film starring
Chris Hemsworth was released and Marie Osmond remarried her first husband. Both
events caused spikes in the query volume which static models have difficulty model-
ing. Although the YES model performed well on the Hemsworth query predictions, it
still had lower performance than that of the Trend model that correctly modeled the
interest over time.

Periodic Queries. Periodic queries also benefited from the temporal periodic model-
ing. For example, the query first friday (for the prefix first) was very poorly modeled
by the static behavior models, but the Periodic models modeled it with very high per-
formance. The periodic models had a Pearson correlation of 0.99 versus −0.34 for the
static models over the periodic queries.

9. CONCLUSIONS

We developed methods for modeling the dynamics of the query and click behaviors
seen in a large population of Web searchers. We modeled temporal characteristics
that are often observed in query and URL click behavior, including trend, periodicity,
and surprise disruptions. We presented several different temporal representations and
learning procedures and showed how we can construct models that predict future
behaviors from historical data.

In almost all cases, we found that temporal models performed better than the base-
line models that use the same weighting of historical data for all queries for predicting
clicks, ranking search results, and ranking query suggestions. We also found that differ-
ent temporal models are appropriate for different types of queries. Query click behavior
tends to be rife with unmodeled disturbances (surprises). Thus, extending models with
the ability to identify and smooth out such disturbances can enhance predictive power.
For specific types of queries, such as Dynamic and Alternating queries, trend models
are more appropriate. URL click behavior tends to exhibit somewhat different tempo-
ral behavior showing fewer disturbances (as we did not see much gain with using the
surprise temporal model). Thus, models that understand trend and smooth historical
data using learned models tend to perform better for these predictions. For Alternat-
ing queries, periodic modeling tends to work better. The dynamics seen in query-URL
click behavior over time provides interesting insight into changes in users’ intentions
over time. For General and Alternating queries smoothing and trend models are the
best temporal models, whereas for Dynamic and Temporal Reformulations modeling

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:32 K. Radinsky et al.

periodicities improves performance. We observed that, in general, the application of
smoothing or incorporating trend is the best methodology.

We introduced the Dynamics Model Learner (DML) algorithm that learns the correct
model to apply for queries, URL, or query-URL pairs without a priori categorization
of queries into groups. We compared the predictive performance of this method with
static baselines, temporal models, and a standard model selection algorithm (BIC), and
found that it has superior performance for all groups of queries. We believe this result
paves the way for incorporating multiple types of models for better time-aware search
procedures.

The kinds of time-aware modeling of user behavior that we introduced in this article
can be incorporated in many search-related applications. In this article, we examined
basic click predictions as well as two end-to-end applications: ranking of results and
query suggestions. Query click prediction can be used to improve query autocompletion
to present the most appropriate suggestions at the time the query is issued. We studied
this application and provided evidence that, in most cases, the temporal models are
more successful in query suggestions. Query-URL prediction can induce better ranking
that is more aware of the user query-URL temporal intent. We evaluated this claim in
a variety of experiments providing support that temporal modeling improves ranking
for many classes of queries.

There are several directions for future work. We believe that further experiments
examining how long it takes for temporal aspects of a new query or URL to suffi-
ciently permeate the search stream so that it can be aided by temporal prediction are
needed to enhance many applications. A more in-depth study with human subjects
could also reveal whether users perceive a qualitative difference in the user experi-
ence with temporal techniques to improve ranking, QAS, etc. Additionally, studies of
other model selection techniques, such as AIC or multimodel approaches, for example,
using Bayesian model averaging, might also shed light on the pragmatic use of these
techniques.

Additional applications of these techniques are also possible and include the use of
URL click prediction to improve re-crawling strategies, by focusing crawling efforts on
URLs that are likely to be clicked. In general, we believe similar techniques might be
used to optimize indexing, storage, and retrieval strategies to improve response time.
Furthermore, the models presented could also be used at different time granularities
and applied on different types of objects (Query, URL, and Query-URL), either ag-
gregated for all users or applied on specific user behavior, thus creating time-aware
personalized retrieval, where the temporal intent is modified to accommodate individ-
ual searchers.

A. APPENDIXES

This section summarizes the details of training surprise and periodicity detection
models.

A.1. Learning to Detect Periodicity

Detecting the periodicity size of a time series is crucial for periodic models. For this pro-
cess, we use a signal processing method called autocorrelation that provides a signal’s
correlation value with itself [Dunn 2005]. This method can be used to detect repeating
patterns with noise, and is defined as

Autocorrelation(f, h) =
∫ ∞

−∞
f (t + h) f (t) dt, (15)

where h is the shift of the series, that is, the periodicity. Several h values are experi-
mented, and the highest value of the autocorrelation for those values is used. A query

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:33

Fig. 20. Comparison of the SC method with the Autocorrelation method for seasonality detection by precision
(y axis) and recall (x axis).

is classified as periodic based on a certain threshold ω.

Autocorrelation(f, h) > ω. (16)

Specifically in the Web domain, we found it beneficial to limit the possible h values to
common Web-periodic intervals, such as weekly, monthly, and yearly.

We performed experiments to evaluate the periodicity detection algorithms. This
component is crucial for initializing the SSM seasonal models. To capture long as well
as short periodicity, search logs for query-click data for the period 2006–2011 were
obtained, and a daily time series was generated for every query. We used the season-
ality dataset [Shokouhi 2011] that contained 259 queries, each annotated manually as
seasonal or not. We compare our method for periodicity detection against the method
described in Shokouhi [2011] (we refer to it as SC), which was applied to perform
seasonal-trend decomposition on the time series, comparing the seasonal component
to that of the time series before the decomposition.

To evaluate our periodicity model, we evaluate performance for different autocorrela-
tion thresholds, ω. Figure 20 shows the precision-recall results for our autocorrelation
model (Autocorrelation) compared to the baseline model (SC). The Autocorrelation
method proposed in this work reaches the same maximum recall as the state-of-the-art
SC autocorrelation method (around 0.85), and outperforms it in precision for every
recall level by up to 15 percent. We also performed experiments for applying autocor-
relation without any lag limiting. The result yields a recall of about 0.25–0.27 with
precision of 0.5–0.6. We conclude that the lag limitation for regular Web periodicity
(h = 7, 28, . . . , 31, 360 . . . 365) is important.

A.2. Learning to Detect Surprises

Queries can be modeled using one of the SSM models introduced previously, but, as we
discussed earlier, sometimes areas of the time series exhibit surprising behavior that
is not well-fitted by the model. We conjecture that when a temporal model encounters
a surprise in the data, the model’s residual error stops behaving linearly. Intuitively, in
the beginning of a spike the model under-predicts the data since the previous data did
not include any indication of a spike. After the spike, the model tends to over-predict
the data, as it still considers the spike’s data. We introduce surprises as significant
changes in the residual during the period of an event. Let r = r1, . . . , rn be the residuals
of the temporal model for the times t1, . . . , tn, where rt = o(t) − ô(t), and ô(t) is the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:34 K. Radinsky et al.

Fig. 21. Detecting surprises in time series.

Table VIII. Surprises Detector Results

Surprises Detector Peak Detector
Precision 96.42% 46.66%

Recall 59.92% 100%

Note: Recall and precision of the different surprises
detectors. Statistically significant results (as mea-
sured by a t-test) are shown in bold.

prediction of the model for time t. Let t′
1, . . . , t′

m be surprise candidates time points such
that rt′

1−1 · rt′
1

< 0 for each t′ ∈ {t′
1, . . . , t′

m}, that is, locations in the time series where
the residual changes signs. Let rt1 and rt2 be two neighbouring sign-change points such
that rt1−1 · rt1 < 0, rt2+1 · rt2 < 0, rt · rt1 > 0, t1 ≤ t ≤ t2. We define an impact of an event as

Impact(t1, t2) = MSE(o, t1, t2, m) =
∑t2

t=t1 r2
t

t2 − t1
.

Intuitively, only unexpected dynamics that have long impact on the model should be
considered as surprises. We propose a greedy procedure that adds the surprise locations
starting from highest to lowest impact to the model and measures the improvement
of the model (using BIC criterion). When the model stops improving, we output the
surprises. The surprise detection algorithm is given in Figure 21.

We performed experiments to evaluate our surprise detection algorithm. We obtained
a set of 24 queries judged by humans as news-related queries. Judges were also asked
to provide a label (event or not) for every week in the series (a total of 313 data points
for query trends between 2006–2011). A total of 61 events were detected. For every
query, we trained the surprise detection model and a baseline method and compare
their results. The baseline model is a method that detects peaks as events. This is a
reasonable baseline, as many of the events can be seen as peaks in the query stream.

Table VIII shows results of our surprise detection algorithm compared to the baseline
peak detection algorithm. We see the surprise detector has high precision and low
recall. On the other hand, the peak detector identifies all surprises but with very low
precision. As most peaks in queries are usually noise and not real events, we prefer

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:35

the surprise detector over the peak detection method. For example, the query credit
rating has some seasonal peaks after S&P declarations, which should not be considered
a surprise. However, the peak detector identifies them as such, while the surprise
detector does not recognize it as an event. On August 8, when the U.S. credit rating
was downgraded, the query volume exhibited an unusual peak, which was identified
as a surprise by the surprise detector.

ACKNOWLEDGMENTS

We thank Dan Liebling for help with obtaining the user behavior data, and Chris Meek and Kuansan Wang
for their fruitful discussions.

REFERENCES

ADAR, E., WELD, D. S., BERSHAD, B. N., AND GRIBBLE, S. D. 2007. Why we search: Visualizing and predicting
user behavior. In Proceedings of the International World Wide Web Conference (WWW).

AGICHTEIN, E., BRILL, E., AND DUMAIS, S. T. 2006. Improving Web search ranking by incorporating user behavior
information. In Proceedings of the Annual Special Interest Group on Information Retrieval Conference
(SIGIR).

BAR-YOSSEF, Z. AND KRAUS, N. 2011. Context-sensitive query auto-completion. In Proceedings of the Interna-
tional World Wide Web Conference (WWW). 107–116.

BEITZEL, S. M., JENSEN, E. C., CHOWDHURY, A., GROSSMAN, D., AND FRIEDER, O. 2004. Hourly analysis of a
very large topically categorized Web query log. In Proceedings of the Annual Special Interest Group on
Information Retrieval Conference (SIGIR).

BENNETT, P. N., SVORE, K., AND DUMAIS, S. T. 2010. Classification-enhanced ranking. In Proceedings of the
International World Wide Web Conference (WWW).

BICKEL, S., HAIDER, P., AND SCHEFFER, T. 2005. Learning to complete sentences. In Proceedings of the European
Conference on Machine Learning (ECML). 497–504.

BLEI, D. M., NG, A. Y., AND JORDAN, M. I. 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022.
BOGERT, B., HEALY, M., AND TUKEY, J. 1967. Cepstrum pitch determination. J. Acoust. Soc. Amer. 41, 2, 293–309.
BURGES, C. J. C. 2010. From RankNet to LambdaRank to LambdaMART: An overview. Tech. rep. MSR-TR-

2010-82, Microsoft Research.
CHAUDHURI, S. AND KAUSHIK, R. 2009. Extending autocompletion to tolerate errors. In Proceedings of the

International Conference on Management of Data (SIGMOD). 707–718.
CHIEN, S. AND IMMORLICA, N. 2005. Semantic similarity between search engine queries using temporal corre-

lation. In Proceedings of the International World Wide Web Conference (WWW).
CHILDERS, D., SKINNER, D., AND KEMERAIT, R. 1977. The cepstrum: A guide to processing. Proc. IEEE 65, 10,

1428–1443.
DAI, N., SHOKOUHI, M., AND DAVISON, B. D. 2011. Learning to rank for freshness and relevance. In Proceedings

of the Annual Special Interest Group on Information Retrieval Conference (SIGIR).
DAKKA, W., GRAVANO, L., AND IPEIROTIS, P. G. 2008. Answering general time sensitive queries. In Proceedings

of the ACM International Conference on Information and Knowledge Management (CIKM).
DARRAGH, J. J., WITTEN, I. H., AND JAMES, M. L. 1990. The reactive keyboard: A predictive typing aid. Com-

puter 23, 41–49.
DIAZ, F. 2009. Integration of news content into Web results. In Proceedings of the ACM International Confer-

ence on Web Search and Data Mining (WSDM).
DONG, A., CHANG, Y., ZHENG, Z., MISHNE, G., BAI, J., ZHANG, R., BUCHNER, K., LIAO, C., AND DIAZ, F. 2010a. Towards

recency ranking in Web search. In Proceedings of the ACM International Conference on Web Search and
Data Mining (WSDM).

DONG, A., ZHANG, R., KOLARI, P., BAI, J., DIAZ, F., CHANG, Y., ZHENG, Z., AND ZHA, H. 2010b. Time is of the
essence: Improving recency ranking using Twitter data. In Proceedings of the International World Wide
Web Conference (WWW).

DUNN, P. F. 2005. Measurement and Data Analysis for Engineering and Science. McGraw-Hill, New York, NY.
DURBIN, J. AND KOOPMAN, S. 2008. Time Series Analysis by State Space Methods. Oxford University Press,

Oxford, UK.
EFRON, M. 2010. Linear time series models for term weighting in information retrieval. J. Amer. Soc. Inf. Sci.

Technol. 6, 7.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

16:36 K. Radinsky et al.

EFRON, M. AND GOLOVCHINKSY, G. 2011. Estimation methods for ranking recent information. In Proceedings of
the Annual Special Interest Group on Information Retrieval Conference (SIGIR).

ELSAS, J. L. AND DUMAIS, S. T. 2010. Leveraging temporal dynamics of document content in relevance ranking.
In Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM).

FAN, J., WU, H., LI, G., AND ZHOU, L. 2010. Suggesting topic-based query terms as you type. In Proceedings of
the International Asia-Pacific Web Conference (APWeb). 61–67.

GINSBERG, J., MOHEBBI, M., PATEL, R., BRAMMER, L., SMOLINSKI, M., AND BRILLIANT, L. 2009. Detecting influenza
epidemics using search engine query data. Nature 457, 7232, 1012–4.

GRABSKI, K. AND SCHEFFER, T. 2004. Sentence completion. In Proceedings of the Annaul Special Interest Group
on Information Retrieval Conference (SIGIR). 433–439.

HOLT, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J.
Forecas. 20, 1, 5–10.

HYNDMAN, R., KOEHLER, A., ORD, J., AND SNYDER, R. 2008. Forecasting with Exponential Smoothing (The State
Space Approach). Springer, Berlin.

JI, S., LI, G., LI, C., AND FENG, J. 2009. Efficient interactive fuzzy keyword search. In Proceedings of the
International World Wide Web Conference (WWW). 371–380.

JONES, R. AND DIAZ, F. 2007. Temporal profiles of queries. ACM Trans. Inform. Syst. 25, 3, 14.
KLEINBERG, J. 2002. Bursty and hierarchical structure in streams. In Proceedings of the ACM International

Conference on Knowledge Discovery and Data Mining (KDD).
KLEINBERG, J. 2006. Temporal dynamics of on-line information systems. In Data Stream Management: Pro-

cessing High-Speed Data Streams, Springer, Berlin.
KÖNIG, A. C., GAMON, M., AND WU, Q. 2009. Click-through prediction for news queries. In Proceedings of the

Annual Special Interest Group on Information Retrieval Conference (SIGIR).
KOREN, Y. 2009. Collaborative filtering with temporal dynamics. In Proceedings of the ACM International

Conference on Knowledge Discovery and Data Mining (KDD).
KULKARNI, A., TEEVAN, J., SVORE, K. M., AND DUMAIS, S. T. 2011. Understanding temporal query dynamics. In

Proceedings of the 4th International Conference on Web Search and Data Mining (WSDM’11).
LAU, T. AND HORVITZ, E. 1998. Patterns of search: Analyzing and modeling Web query refinement. In Proceed-

ings of the 7th International Conference on User Modeling.
LI, X. AND CROFT, W. B. 2003. Time-based language models. In Proceedings of the ACM International Conference

on Information and Knowledge Management (CIKM).
METZLER, D., JONES, R., PENG, F., AND ZHANG, R. 2009. Improving search relevance for implicitly tempo-

ral queries. In Proceedings of the Annual Special Interest Group on Information Retrieval Conference
(SIGIR).

NANDI, A. AND JAGADISH, H. V. 2007. Effective phrase prediction. In Proceedings of the Conference on Very
Large Databases (VLDB). 219–230.

RADINSKY, K., AGICHTEIN, E., GABRILOVICH, E., AND MARKOVITCH, S. 2011. A word at a time: Computing word
relatedness using temporal semantic analysis. In Proceedings of the International World Wide Web
Conference (WWW).

RADINSKY, K., DAVIDOVICH, S., AND MARKOVITCH, S. 2008. Predicting the news of tomorrow using patterns in
Web search queries. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence
(WI).

RADINSKY, K., SVORE, K., DUMAIS, S., TEEVAN, J., BOCHAROV, A., AND HORVITZ, E. 2012. Modeling and predicting
behavioral dynamics on the Web. In Proceedings of the International World Wide Web Conference (WWW).

ROBERTSON, S., ZARAGOZA, H., AND TAYLOR, M. 2004. Simple bm25 extension to multiple weighted fields. In
Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM).

SCHWARZ, G. E. 1978. Estimating the dimension of a model. Ann. Stat. 2, 6, 461–464.
SHIMSHONI, Y., EFRON, N., AND MATIAS, Y. 2009. On the predictability of search trends. Tech. rep. Microsoft

Research.
SHOKOUHI, M. 2011. Detecting seasonal queries by time-series analysis. In Proceedings of the Annual Special

Interest Group on Information Retrieval Conference (SIGIR).
SHOKOUHI, M. AND RADINSKY, K. 2012. Time-sensitive query auto-completion. In Proceedings of the Annual

Special Interest Group on Information Retrieval Conference (SIGIR).
SNYMAN, J. A. 2005. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and

Classical and New Gradient-Based Algorithms. Springer, Berlin.
TEEVAN, J., DUMAIS, S. T., AND HORVITZ, E. 2005. Personalizing search via automated analysis of interests

and activities. In Proceedings of the Annual Special Interest Group on Information Retrieval Conference
(SIGIR).

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction 16:37

VLACHOS, M., MEEK, C., VAGENA, Z., AND GUNOPULOS, D. 2004. Identifying similarities, periodicities and bursts
for online search queries. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 131–142.

WANG, P., BERRY, M. W., AND YANG, Y. 2003. Mining longitudinal Web queries: trends and patterns. J. Amer.
Soc. Inf. Sci. Techno. 54, 8, 743–758.

WANG, X., ZHAI, C., HU, X., AND SPROAT, R. 2007. Mining correlated bursty topic patterns from coordinated text
streams. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining
(KDD).

WHITE, R. W., BENNETT, P. N., AND DUMAIS, S. T. 2010. Predicting short-term interests using activity-based
search context. In Proceedings of the ACM International Conference on Information and Knowledge
Management (CIKM).

WHITE, R. W. AND MARCHIONINI, G. 2007. Examining the effectiveness of real-time query expansion. J. Inf.
Process. Manage. 43, 3, 685–704.

YUE, Y., PATEL, R., AND ROEHRIG, H. 2010. Beyond position bias: Examining result attractiveness as a source
of presentation bias in clickthrough data. In Proceedings of International World Wide Web Conference
(WWW).

Received May 2012; revised January 2013; accepted March 2013

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 16, Publication date: July 2013.

