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Abstract

The basic principles governing the development and function of living organisms remain
only partially understood, despite significant progress in molecular and cellular biology
and tremendous breakthroughs in experimental methods. The development of system-level,
mechanistic, computational models has the potential to become a foundation for improving
our understanding of natural biological systems, and for designing engineered biological
systems with wide-ranging applications in nanomedicine, nanomaterials and computing.
We describe Z34Bio (Z3 for Biology), a unified SMT-based framework for the automated
analysis of natural and engineered biological systems. Z34Bio enables addressing important
biological questions, and studying models more complex than previously possible. The
framework provides a formalization of the semantics of several model classes used widely
for biological systems, which we illustrate through the treatment of chemical reaction
networks and Boolean networks. We present case-studies which we make available as
SMT-LIB benchmarks, to enable comparison of different analysis techniques, and towards
making this new domain accessible to the formal verification community.

1 Introduction

Many mechanisms and properties of biological systems remain only partially understood, thus
limiting our comprehension of natural living systems and processes. Recently, advanced ex-
perimental techniques have enabled the rational design and construction of biological systems,
delineating a branch of biology as an engineering discipline, with potential applications in
nanomedicine, nanomaterials and computing. However, understanding the system-level behav-
ior of organisms or designing ones with specific behavior remains a major challenge for the
engineering and the reverse engineering of biological systems.

Computational modeling, together with methods enabling the automated analysis of realis-
tic models for diverse biological queries, can help address these challenges and tackle important
questions related to biological computation - the information processing within living organisms.
Along this direction, we introduce Z34Bio (Z3 for Biology) as a framework that allows flexi-
ble and scalable analysis of biological models using Satisfiability Modulo Theories (SMT)-based
procedures. The framework provides a formalization of the semantics of several widely used for-
malisms in biological modeling, which we illustrate through the treatment of chemical reaction
networks (CRNs) and Boolean networks (BNs), as well as combinations thereof. These for-
malisms are useful for describing DNA computing circuits (as well as more general biochemical
mechanisms within natural systems) and biological interaction networks such as gene regulation
networks (GRNs). We formalize the semantics of CRNs and BNs as transition systems, which
we represent and analyze symbolically using SMT to allow flexible and convenient encoding of
(possibly infinite-state) biological models.

The richness of the various SMT logics also allows us to express a range of important
biological properties that are not easily captured by other specification formalisms. For instance,
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we are able to formalize and study certain mass-conservation properties and the effect of gene
knockouts on system dynamics. The availability of efficient decision procedures for some SMT
logics such as uninterpreted functions and bit vectors (UFBV) with quantifiers [25] provides
a foundation for the analysis of such questions, even for large and complex systems. While
the Z3 theorem prover [9] is used in Z34Bio, arbitrary SMT solvers can be substituted in the
framework through the SMT-LIB input language. In [27] we showed how SMT-based methods
can be applied to engineered biological systems, and, more specifically, in DNA computing
and synthetic biology. Here we present a framework supporting this approach accompanied
by an online tool, extend it to allow modeling and reasoning about biological computation
within living systems via Boolean networks, and provide support for hybrid models, composed
of CRNs and BNs. We outline a number of case-studies illustrating the analysis of engineered
DNA circuits and genetic regulatory networks (GRNs), which we curate and make available as
SMT-LIB benchmarks, with the goal of improving the evaluation of existing SMT algorithms,
helping in the development of new methods, and making this auspicious application domain
more accessible to the SMT community.

2 Chemical Reaction Networks and Boolean Networks

In the field of DNA computing, which aims at engineering and understanding forms of computa-
tion performed by biological material (e.g., reacting DNA strands), chemical reaction networks
(CRNs) serve as models of circuits [24, 18]. More generally, CRNs are often used to describe
a number of natural and engineered biochemical mechanisms. Here, we study such systems
with single-molecule resolution, abstracting from the exact reaction kinetics (rates), thereby
approximating probabilistic systems by non-deterministic ones. While certain information is
not captured in this representation of the behavior of a CRN, it is a useful level of detail for
various studies of DNA circuits, including cases where functional correctness is under investi-
gation. Where studies of natural biological systems are concerned, this is often also a useful
abstraction, when the rates of certain reactions are unknown and a precise measurement in a
wet-lab is challenging.

We treat a CRN as a pair (S,R) of species (different DNA strands) and reactions where a
reaction r ∈ R is a pair of multisets r = (Rr, Pr) describing the reactants (inputs) and products
(outputs) of r with their stoichiometries (the numbers of participating strands). We formalize
the behavior of a CRN as the transition system T = (Q,T ) where a state q ∈ Q is a multiset
of species, where q(s) indicates how many strands of s are available in a state q, and T is the
transition relation defined as T (q, q′) ↔

∨
r∈R[on(r, q) ∧

∧
s∈S q

′(s) = q(s) − Rr(s) + Pr(s)],
where on(r, q) is true if in state q there are enough molecules of each reactant of r for it to fire.

The complementarity of DNA sequences, dictated by the binding of Watson-Crick DNA
base pairs (A-T and G-C), provides a mechanisms for engineering chemical reaction networks
using DNA. In this approach, various single and double-stranded DNA molecules are designated
as chemical species. The binding, unbinding and displacement reactions possible between the
complementary DNA domains (subsequences) of these species form the desired CRN structure.
When specific computational operations are implemented using such a strategy, the resulting
system is called a DNA circuit (see [18] and the references therein for additional details on the
formalization and design of DNA circuits).

Figure 1 (left panel) shows a simple DNA circuit implementing a logical AND gate. The
system is represented as a CRN with seven different species (A, B, C, Gate, GateA, GateB, GateAB)
and four reactions, two of which are reversible as indicated by the bi-directional arrows. Species
A and B represent the two system inputs, species Gate is the actual AND gate, and species C
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Figure 1: A simple DNA circuit implementing a logical AND gate. For each species
(Gate,A,B,GateA,GateB,GateAB,C), domains labeled by 1, . . . , 4 represent different DNA se-
quences, while complementary sequences are denoted by ∗ (e.g. domains 1 and 1∗ are comple-
mentary). The binding of complementary domains and the subsequent displacement of adjacent
complementary sequences determines the possible chemical reactions (r0, . . . , r5) between the
DNA species (left panel). The DNA circuit is represented as a transition system (right panel)
where a state captures the number of molecules from each species and the initial state is high-
lighted using a thick black border. For this system, a state can be reached where no additional
reactions are possible (shown with a red border), where computation terminates. For a single
molecule of species Gate, the output C is produced at the end of the computation only if both
input species A and B are present, which captures the required logical AND behavior.

is the output (all other species are intermediates). A state of the system captures the number
of available molecules from each DNA species, which change as reactions take place, leading to
the transition system representation in Figure 1 (right panel).

In some applications, it is sufficient to describe species more coarsely, using a small number
of discrete levels of activity. This has proven to be a most useful abstraction, especially for
analyzing the dynamics of species within gene regulatory networks (GRNs) [17] e.g. during
the life-cycle of a cell or an organism. Unlike the biological engineering applications described
above, the focus here is on understanding natural systems and, often, only the species’ presence
or absence or the activity or inactivity of genes is tracked. A Boolean network is a popular
representation of a GRN, which is given as a pair (S,F) of species and a set of update functions.
We capture the behavior over time in the transition system T = (Q,T ) where Q = B|S|
and q(s) ∈ B indicates the presence or absence of s. The system’s dynamics are defined
by F , which is a set of functions, one for each species, i.e., fs ∈ F , fs : B|S| → B where
the synchronous1 transition relation T (q, q′)↔

(∧
s∈S q

′(s) = fs(q)
)

results in a deterministic,
deadlock-free system. Despite the apparent simplicity of such models, they are tremendously
useful in practice, because often we do not know the quantitative interactions within the system,
and a precise measurement of levels of activation in a wet-lab experiment is challenging.

Z34Bio supports a natural combination of CRN and BN models, allowing for “localized”
abstractions, e.g., to simplify the analysis of parts of a system that do not require a model on
the single-molecule level. These parts may be abstracted by a BN; Figure 3 shows an example
of such a combined model, using the CRN component from Figure 1 and the Boolean network

1This means all species update at each time step, asynchronous updates are also supported by our framework,
but not described here.
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Figure 2: A Boolean network representing three
species D,E, and F. The Boolean update functions
are represented graphically (left panel) using pointed
arrows (positive interaction), T-arrows (negative in-
teraction), and the logical combination of inputs (e.g.
the next state of species F is given by F ′ = D ∧ E).
The Boolean network is represented as a transition
system (right panel) where all nodes are updated syn-
chronously. This representation reveals that the sys-
tem does not stabilize in a single state but instead
reaches a cycle where the values of species D and F
oscillate.

component from Figure 2 (modified to allow the interaction between the two components).
In Z34Bio, we encode a BN as a single bit-vector, which leads to a compact representation,
provides convenient bit-wise and arithmetic operations, while efficient decision procedures even
when quantifier are used (SMT BV and UFBV), are also available [25]. We use integers to
encode CRNs due to their potentially unbounded numbers of strands (or molecules) where
this is required. When this is so, we first use Z34Bio in an attempt to prove the validity of
mass-conservation constraints, providing us with bounds on the integer representation, thereby
allowing the use of bit-vector encodings of appropriate size without sacrificing precision.

3 Analysis Strategies

The basic analysis strategy of Z34Bio is inspired by well-known model checking and deduc-
tive verification algorithms, most prominently Bounded Model Checking (BMC) and inductive
invariants. We describe system behavior as constraints over a set of symbolic, finite paths of
the transition system T . A path is denoted as τ = {q0, . . . , qK−1} where

∧K−2
i=0 T (qi, qi+1) and

τ [k] = qk denotes the (symbolic) state at step k. Initial conditions of the system are described
symbolically through constraints. Once all constraints describing the model as well as the prop-
erty of interest are included, we encode them to a series of SMT queries, which allow us to find
a model and to instantiate the abstract paths to concrete ones, or to report an unsatisfiable
specification.

We use standard logical operations to construct formulas and enforce them for states. This
allows us to find states with certain characteristics as (counter-) examples or prove their absence,
and to test reachability and (certain) temporal properties over paths. For instance, stability
and oscillations are studied in terms of paths with specific features. A cycle of length K is a
path τ where |τ | = K, T (τ [K − 1], τ [0]) and no other states are repeated, and a fixed point is
a cycle of length K = 1. For non-deterministic systems such as CRNs, a cycle τ may be stable
or unstable resulting in persistent or (possibly) transient behavior, which is tested using a path
τ ′ of length 2, such that ∀τ ′.

∧
i=0...K(τ [i] = τ ′[0])→ (τ [i+ 1] = τ ′[1]), unsatisfiability of which

indicates transient behavior.

General system analysis in the case of biology also includes the analysis of existing systems
that occur in nature. While for some applications this can be viewed as the estimation of
black-box behavior, typically, biologists propose models of natural behavior which are meant to
explain observations made in labs and allow predicting the outcome of new experiments. As the
models grow, the task of refuting a model, or verifying that a model indeed explains all known
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Figure 3: A screen shot illustrating the use of Z34Bio. A model (combined CRN and BN)
and a specification (a mass-conservation property) are defined (1). When the “play” button is
pressed, the model is visualized (Boolean, chemical and shared species are drawn as diamonds,
ovals, and octagons, resp.). Interesting states and trajectories fulfilling the specification are
found and displayed (2).

observations to a satisfying degree becomes harder. At the same time, the parts of the behavior
of the models which are not covered by observations remain doubtful and it is imperative that
new experiments for testing such models are performed to finally refine the theory. Therefore,
the task of analyzing a biological model does not only include the establishment of invariants
of such systems and studying their normal behavior, but also the investigation of perturbations
and changes to the system behavior.

One instance of such a task is the analysis of gene knockouts, i.e., the analysis of the system
where one or more of the genes are permanently (or temporarily) disabled. Gene knockouts can
occur naturally by acquiring a certain mutation in a gene, or induced by various experimental
methods while studying model organisms (e.g., fruit fly, worm). To automate the process of
finding knockouts that effect a certain biological phenomena, and lead to interesting behavior,
we augment the definition of a BN to include the bit-vector ko ∈ B|S|, where ko(s) ∈ B
indicates whether species s has been knocked out, in which case it is always inactive. Additional
constraints, (e.g., on the cardinality of ko) and properties regarding the desired behavior are
specified and the missing information (specific gene knockouts) is obtained from the underlying
SMT solver. To close the loop back to the biological science, note that “interesting” behavior
in this type of analysis means that either a new experiment is suggested (when the system
behaves in an unpredicted way), or that a problem in the model is identified because the model
does not explain previous observations (where some gene may have been knocked out during a
wet-lab experiment).

4 Applications

We implemented Z34Bio as an online analysis tool [28], providing basic user-interface and visu-
alization capabilities (Figure 3). Analysis problems can be exported as SMT-LIB benchmarks
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Figure 4: Computation times for the identification of traces of lengths up to K = 100 in the
flawed transducer circuits such that a “good” state (left panel) or a “bad” state (right panel) is
reached (note the difference in scales). BitVec‘ and BitVec (resp. Int‘ and Int) indicate a bit-
vector (resp. integer) encoding with or without the additional mass-conservation constraints.
Results from [27].

and processed offline. To illustrate some potential applications, we present a set of case-studies
which are provided as benchmarks or can be explored interactively online. More details about
these examples as well as additional challenging benchmarks are also available on our web-
site [29]. The experimental results are obtained using the Z3 solver directly on the SMT-LIB
benchmarks. All computation is performed on 2.5 Ghz Intel L5420 CPUs with a 2GB memory
limit per benchmark.

The transducer DNA circuits described in [18, 27] are designed to convert all molecules
of some chemical input to some output molecules (for an example of the structure of these
models, see Figure 5). Computation terminates when a state with no possible reactions is
reached but certain reactive species must also be fully consumed. First, we prove that a set of
mass-conservation constraints hold for these systems, which capture the property that DNA is
not created or degraded but only converted between species. Then, we use these constraints
to prove that no “bad” terminal states (where reactive species remain) are possible for correct
transducer circuits, but such states can be found for “faulty” designs. Finally, we show that
“good” (resp. both “good” and “bad”) states are reachable for correct (resp. “faulty”) circuits
using Bounded Model Checking [27]. Computational results from [27] shown in Figure 4, show
that models take non-trivial runtimes, but are in a feasible range. The tradeoff between using
bitvectors or integer representation is an interesting aspect for further exploration, as it seems
each performs better for different models, sizes, and queries.

Besides the set of transducer circuits, we also applied our method to analyze a design of a
DNA circuit that computes the square root of a 4-bit number [22, 4], which is one of the largest
DNA computation circuits constructed experimentally. This system is designed to compute the
square root of a number represented using DNA species. Our results indicate that the described
methods can be applied to analyze functional correctness of systems of such complexity with
large numbers of copies of the circuit operating in parallel.

Understanding the effects of gene knockouts on the dynamics of gene networks is an impor-
tant biological question. Such GRN perturbations are often caused by mutations leading to a
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Figure 5: A chemical reaction network derived from a transducer DNA circuit.

number of diseases, while experimental techniques for introducing specific gene knockouts are
also available, providing a strategy for the comparison of model predictions and experimental
observations. For synchronous Boolean network models, stabilization is possible only when a
fixed point exists, while oscillations are possible when a cycle of length K > 1 exists. We used
bounded model checking to identify cycles of length up to K = d (the recurrence diameter) and,
while such a procedure is generally expensive, a short diameter is characteristic of some biologi-
cal models. This is the case for the Boolean network models collected in [11] and the large-scale
regulatory and metabolic network reconstruction studied in [23] (Table 1); for an example of
the structure of such models, see Figure 6, which illustrates part of a fruit fly’s GRN. A model’s
diameter also provides interesting information about the underlaying biological system, since it
captures properties related to its response time.

To search for gene knockouts that influence stability, we first introduce the parameter ko
and investigate how this affects the diameters d′. Next we find paths that originate in the same
state but change the stability/oscillatory behavior depending on ko, providing the target set
of knockouts (genes that must be knocked out to achieve the required behavior). Results in
Table 1 show that we can effectively identify single and double mutations that effect system
dynamics, and the method can be effective also for larger cardinality, providing a powerful way
to investigate gene knockouts which is currently very challenging utilizing simulation methods.
Overall, our framework has proven to be powerful enough to tackle important biological models,
suggesting that SMT-based methods have the potential to play a significant role in this emerging
field. Significant advances are still needed to allow biologists to analyze some of the systems
they study, and we hope this work will inspire additional progress and development of methods
towards this goal.
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Figure 6: Boolean network model of Drosophila melanogaster’s segment polarity genes. (Part
of a fruit fly’s gene regulatory network.)

Model name |S| K d Behavior Time d’ Single knockouts Time Double knockouts time

arabidopsis 15 10 10 stabil 0.12 10 LFY, SEP (2) 0.12 {EMF1,SEP},... (19) 2.17
budding yeast 12 18 18 stabil 0.20 18 none 0.5 none 0.5

drosophila 52 34 34 stabil 2.7 43 HH2 (1) 114.96 {SLP3,HH3},... (42) 929.1
fission yeast 10 6 6 stabil 0.09 6 none 0.1 none 0.08
mammalian 10 7 11 both 0.07 13 Rb,Cdc20,...(7) 0.75 {CycE,CycB},...(41) 2.997

tcr 40 6 18 both 0.26 22 CD8,CD45,...(9) 14.6 {CD45,IKK},... (345) 379.1
t helper 23 11 11 stabil 0.12 17 none 0.34 none 0.31

met. regulation 693 7 7 stabil 35.05 8 none 1154.4 none 1094.8

Table 1: Stability analysis and gene knockout identification for the Boolean network models
from [11] and [23]. |S| is the number of species, d is the diameter (d′ when knockouts are
allowed), K is the length of the shortest cycle when one exists or K = d otherwise, and all
times are in sec. Only some of the identified single and double knockouts are shown (total
numbers in parentheses).

5 Related work and Future Directions

The simulation of biological models is now supported by many specialized tools (e.g. Sim-
Biology by MathWorks), and has been used as an analysis strategy, for example, in [23] but
is inherently incomplete and expensive for certain problems. As an alternative, the applica-
tion of formal methods in the context of biology has already attracted attention [3], providing
completeness and more rigorous formalizations of properties. For example, besides simulation
capabilities, Biocham [13] allows the analysis of rule-based models [7] using temporal logics with
numerical constraints, while deriving control strategies for large Boolean networks using CTL
specifications and the NuSMV model checker as described in [19].

Such expressivity is not always sufficient - to capture notions of system stability an extension
is introduced in Anelope [1]. Stability has also been studied through dedicated BDD-based
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(GINsim [20]), SAT-based (BNS [11]) and modular (BMA [2]) algorithms for Boolean networks
and their generalizations. Probabilistic model checking was used in [18] to study DNA circuits
with properties involving probabilities and time, while Petri-nets analysis methods [15] also
serve to study chemical reaction networks and therefore DNA circuits. Synthesis methods
are developed in GNBox [6] based on Constraint Logic Programming (CLP) to uncover genetic
network models from incomplete information while SMT-based approaches have been applied
to computer-aided chemical synthesis planning [12].

When a sufficient number of molecules is present, species concentrations can be described as
continuous values ((e.g. using (non-linear) ODEs) [8]. Such systems, as well as other infinite-
state, continuous and hybrid models used in biology, can be encoded into SMT directly but
might require expensive (or incomplete) decision procedures. As an alternative, (conservative)
finite transition system abstractions can be constructed (e.g. as in [26]), enabling the analysis
and integration of infinite state systems within the framework described here. The application
of formal methods to Petri Nets [5], which also describe chemical reaction networks, has been
studied extensively and can provide useful analysis procedures, which can then be extended
to all the formalisms we consider through their common representation. Chemical reaction
networks have also been studied at steady state using flux balance analysis (FBA) [21].

The available analysis tools often focus on a specific class of models and specifications, while
so far the expressivity of SMT has not been fully exploited to allow a more general framework.
By doing so, we handle logical, temporal and numerical constraints and can express certain
stability properties, while the model-finding capabilities of SMT solvers enable us to seamlessly
synthesize parts of the model. A number of extensions can be introduced immediately in our
current framework (e.g. to capture more general genetic network models) but novel SMT
procedures are required for others e.g. to allow analysis for probabilistic properties when
chemical kinetics are considered [14, 16, 10].

Analysis of biological models is related to hardware and software verification in general.
Due to the special nature of biological models it is often the case that traditional verification
tools do not perform well on models of these systems, as they are highly concurrent and non-
deterministic. A more thorough investigation of the differences between models in biology,
software and hardware, especially on standardized realistic models (e.g., through established
SMT-LIB benchmarks which we initiate here) poses an interesting challenge for future work.
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