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Abstract 

Given a classification task, what is the best way to teach the 
resulting boundary to a human? While machine learning 
techniques can provide excellent methods for finding the 
boundary, including the selection of examples in an online 
setting, they tell us little about how we would teach a human 
the same task. We propose to investigate the problem of ex-
ample selection and presentation in the context of teaching 
humans, and explore a variety of mechanisms in the interests 
of finding what may work best. In particular, we begin with 
the baseline of random presentation and then examine com-
binations of several mechanisms: the indication of an exam-
ple’s relative difficulty, the use of the shaping heuristic from 
the cognitive science literature (moving from easier exam-
ples to harder ones), and a novel kernel-based “coverage 
model” of the subject’s mastery of the task. From our exper-
iments on 54 human subjects learning and performing a pair 
of synthetic classification tasks via our teaching system, we 
found that we can achieve the greatest gains with a combina-
tion of shaping and the coverage model. 

 Introduction   

Machine learning has yielded a broad variety of impressive 

results on how best to train a classifier, but what is the best 

way to teach a classification task to a human? The literature 

has mostly neglected this question, despite the potential for 

education as well as other scenarios. This raises the ques-

tion of why one might wish to teach humans this particular 

type of task. Beyond the underlying questions about how 

best to teach human subjects in this scenario, we believe 

there are several practical applications. The first and most 

direct is that of teaching a real-world discrimination task. 

As humans we are often required to make such classifica-

tions: is this a safe link to click on or not, is this a safe place 

to use a credit card, is this peach sufficiently ripe, is this a 

morel mushroom or a poisonous false morel – if we can do 

better than picking random examples for teaching such 

tasks, we may be able to improve human performance in 

the real world. A second scenario that is increasingly im-
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portant is training (calibrating) human labelers for high 

inter-annotator agreement with past labelers. By teaching 

new raters using labels from past raters, we can train them 

to produce more consistent and thus higher quality data.  

We know from both theoretical and empirical findings 

that classifiers learn best from data that constitute a repre-

sentative sample, i.e., a random sample that has the same 

distribution as the target data. There are variations such as 

active learning, in which a classifier can pick from a palette 

of unlabeled points to be labeled. Humans are quite differ-

ent from classifiers, though: simply seeing representative 

examples does not mean they will perform optimally with 

respect to them. They will be more sensitive to some fea-

tures than others, they will not perfectly consider all the 

information from all the samples, and they will be confused 

by items that are similar. They may have “blind spots” or 

inherent biases that lead them to make less than optimal 

decisions. Active learning approaches where the human 

could pick the next sample to be labeled may help in lim-

ited scenarios, but when there are multiple dimensions (of 

features), the perplexity of possible choices could prove 

overwhelming. Similarly, automatically choosing examples 

that would be “best” for a classifier can be disastrous for a 

human; we found this in our own pilot experiments. 

Given the possible benefits and inherent questions, we 

investigate in this paper what might be the best way to 

teach a classification task to a human from a palette of 

available methods. The obvious baseline is random pre-

sentation, i.e., picking examples from the same distribution 

as the test set, but we suspected that it would be possible to 

do better. We thus developed a set of mechanisms we hy-

pothesized could be helpful to humans in the learning task, 

some based on the cognitive science and machine learning 

literature, others based on our models of task mastery. In 

particular, these mechanisms were (1) an indicator of indi-

vidual example difficulty, (2) a means of selecting exam-

ples in order of increasing difficulty (curriculum learning), 

and (3) the estimation of a “coverage model” of the sub-

ject’s mastery over the data space and then sampling from 

its complement. To test the effectiveness of our methods, 
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we developed a synthetic learning task: subjects learned to 

classify parametrically drawn mushrooms based on present-

ed examples and then took a quiz to determine how much 

they learned. As a result of these experiments, we found 

that indeed we can do substantially better than random 

presentation with some combinations of these methods.  

Related Work 

There is a wealth of literature on the general area of teach-

ing with the help of computers, an area known as Interac-

tive Tutoring Systems, but most of this work is focused on 

aiding with traditional classroom curricula; the recent com-

pilation of Woolf (2008) provides an excellent overview. 

The closest to our topic is the work on teaching categories, 

specifically in the context of teaching vocabulary. The em-

phasis in that research has been on spacing effects, i.e., se-

lecting the interval of study to maximize retention; see for 

instance the recent work of Mozer et al. (2009). If we reach 

further afield into the cognitive science literature, there is 

much work examining how humans form and learn catego-

ries, like the classic work of Markman (1989). 

The closest research to our own appears in the machine 

learning literature, in an investigation by Castro et al. 

(2008) which sought to examine how active learning heuris-

tics would fare in the context of teaching humans. As active 

learning is focused on finding the best order of examples to 

present to an online learning algorithm (see (Settles 2010) 

for a current review of active learning), it was a natural 

choice to apply these algorithms to humans. The authors 

presented subjects with a 1-D (single parameter) classifica-

tion problem, where their goal was to identify the location 

of the boundary. Subjects were shown examples with the 

parameter illustrated with synthetic “eggs” of varying 

shapes. They found the best results came via an approach 

they termed “yoked learning,” in which they bisected the 

posterior for the location of the boundary at each step given 

the presented examples, getting ever closer to the solution. 

We note that in 1-D, the boundary is just a point, whereas in 

higher dimensions (such as in our experiments), the bound-

ary is an N-1 dimensional hyperplane, and there is no corre-

sponding bisection approach. While such a method could be 

used to find a single point on the boundary, our goal is to 

teach the human the difference between the classes, and for 

that they need to know the entire classification boundary.   

Another approach Castro et al. found helpful was letting 

humans choose the next location to view. Again, that makes 

sense in a 1-D space – subjects can quickly converge on the 

boundary. In the 4-D space of our experiments there are far 

too many possibilities, and no simple way for subjects to 

visualize the space. In our study, we had 10,000 points 

sampled uniformly from the space, and showing all of these 

or even a representative sample in a random ordering would 

be quite overwhelming. Furthermore, we were also interest-

ed in the case where the feature space could be latent, i.e., 

the correspondence to a vector space is not explicit, as with 

a real-world classification task with only a similarity metric 

available, and as such, we didn’t want to focus on methods 

that took advantage of an explicit representation of the fea-

ture space. We also note that their methods were independ-

ent of the user’s performance during training. In their work-

flow, the user was shown labels for the examples they or 

the algorithm picked (users were tested at intervals on the 

location of the boundary); as such their performance was 

not recorded or used. In our work, with every training ex-

ample the subject was required to test their knowledge be-

fore the label was revealed. Our work leverages this infor-

mation during training via our “coverage model.” 

Another thread of related work comes from the “shaping” 

work in the classic cognitive science literature via its recent 

application in the machine learning community. The origi-

nal work, by Skinner and others (Peterson 2004) was based 

on the theory that it is possible to teach a complex 

task/behavior by building up and reinforcing smaller sub-

tasks. A generalization of this theory is that it may be more 

efficient to teach a difficult concept by starting off with 

easy versions of it (Kreuger and Dayan 2009). The latter 

interpretation has found success in recent work on online 

learning, in which easier examples are presented before 

more difficult examples for online training of classifiers; 

this approach is known as “curriculum learning,” as ex-

plored in (Bengio et al. 2009) and (Kumar, Packer, and 

Koller 2010). Given the success of this approach in teach-

ing classifiers (recently) and animals/humans (classically), 

we added this strategy for teaching to our suite. The work 

on curriculum learning led Khan, Zhu, and Mutlu (2011) to 

a related investigation, though with the converse of our 

goals, in which the authors studied how humans might 

choose to teach a classifier (robot).  

In summary, other than (Castro et al. 1980), ours is the 

only work we are aware of to teach classification bounda-

ries, and the first to teach higher dimensional boundaries. 

Learning Task 

For this study, we wanted to choose a classification task of 

sufficient complexity that users would not master it with a 

few examples, but not so difficult that it would take egre-

giously long to learn. We also wanted to be able to generate 

a large number of unique learning problems of equivalent 

difficulty; as such we focused on using synthetic data with 

randomly selected boundaries. Through extensive piloting, 

we found 4-dimensional data to be a good compromise: 

subjects could quickly get a good understanding of the 

problem without saturating their performance too early.  

As we wished to make the task as natural as possible, we 

chose to represent the data as parametrically drawn mush-

rooms instead of directly showing the numerical values of 

the four-dimensional instances (see Figure 1). The four di-



 

mensions, all between 0 and 1, were mapped to ranges of 

the stem width, stem height, cap width, and the cap height.  

 

Figure 1: Examples of parametrically drawn mushrooms. 

The classification boundary was an N-1 dimensional hyper-

plane; we did not add any label noise, and as such the prob-

lems were linearly separable. In order to ensure that the 

tasks would be of equal difficulty and that random guessing 

would result in a base rate of 50% on average, we required 

the boundary to pass through the origin.  Formally, we ran-

domly chose a 4-dimensional w, normalized it to unit 

length, and computed the label � for each exemplar � as 1 if 

��� � 0 and 0 otherwise. As such, we were able to con-

struct a new problem for every task and every subject: for 

each trial we would begin by sampling 10,000 points from a 

uniform distribution and then generating a boundary. 

Teaching Methods 

As our goal was to investigate what methods might work 

best for teaching, we developed several mechanisms to 

compete with our baseline of random presentation. 

Baseline 

We initially considered two baseline methods, random 

presentation and the active learning heuristic of the points 

closest to the boundary. We initially included the boundary 

method as well because it seemed like a good instance of a 

scheme that was ideal for a learning algorithm but terrible 

for human learners attempting to perform a classification 

task. Our intuition was correct: in an experiment with a 

three-dimensional feature space (also represented as a 

mushroom), a set of 13 users achieved 53.6% performance, 

far worse than random presentation (on which they 

achieved 71.7%), a difference that was significant (two-

tailed t-test, unequal variances: p=0.001, df=22.7, t=3.76). 

Furthermore, subjects complained bitterly about how frus-

trating and confusing this condition was. As its inferiority 

was clear, we left out this method for the final experiment.  

Difficulty Indicator 

The first mechanism we considered was an indicator for the 

difficulty of a given training example. This was shown as a 

small colored square in the upper right corner of the view 

(see Figure 2). The color varied from bright green (easy) to 

bright red (hard). The difficulty value was computed as the 

negative of the projected absolute distance to the boundary, 

normalized to be between 0 (easiest) and 1 (hardest): 

� � 	 
 |���|
	  

In this formulation, z is a normalizing constant equal to the 

maximum possible value for ��� given the choice of w.  

Curriculum Learning 

Our next proposal originated from the cognitive science 

work in shaping as well as the machine learning work in 

curriculum learning, i.e., the idea that one could train a 

learner more efficiently by presenting easier examples first 

and then showing progressively harder examples. For our 

study, we used the same measure shown above for the diffi-

culty indicator. For any given training example number, we 

chose a ��
� linearly related to the example number, such 

that the maximum hardness was achievable by the 20th ex-

ample (out of 30). Examples were still drawn randomly, but 

if the drawn instance had difficulty greater than ��
�, it 

was returned to the set and a new example was chosen. This 

process continued until an example was found with difficul-

ty less than ��
�. We also added a balance constraint that 

prevented the difference between the number of seen posi-

tive and negative examples to be no more than one.  

Coverage Model 

Our final scheme for improving learning involved what we 

term a “coverage model:” we model the areas of the exam-

ple space in which the subject had gained expertise, and 

then sample from the complement of that distribution. This 

method has analogies to the boosting approach of classifier 

combination, in which examples where the classifier per-

forms poorly are reweighted to focus the efforts of succes-

sive learners (Freund and Schapire 1999). As we are not 

doing batch learning, we cannot explicitly apply the re-

weighting used in boosting, but instead use a kernel-based 

approach to represent the expertise distribution and use it to 

guide example selection. 

Since points near each other would be similar in mush-

room appearance and typically in label, we modeled the 

user’s knowledge as a mixture of Gaussian kernels of fixed 

variance. The kernel centers were at every point the subject 

had been given a training example, as well as 100 random 

samples chosen from the unlabeled points to prevent over-

fitting. The form of the function was as follows: 

����� �	1	 � �����; �� , ���
�∈�,�

											�� � 0	

The set   represents the indices of the examples that have 

been labeled by the subject during training, the set ! is the 



 

randomly selected set of 100 unseen examples, 	 is a nor-

malizing constant such that the distribution sums to one 

over all possible examples, and �� is a fixed kernel width 

that we determined via pilot experiments. We require the  

�� to be positive to ensure that ��  is positive everywhere. 

We define the probability of coverage (user knowledge) 

to be 1 on those indices in   that the user labeled correctly, 0 

on those that she labeled incorrectly, and 0.5 on those in ! 

(which have not been seen yet).  Since we only have target 

values at these points, we can solve this as an  + ! dimen-

sional discrete minimization problem: 

#��� �‖% 
 &�‖� 													&'(, )* � ����; 	�+ , ��� 

In this expression, #��� is the loss function, and % is the 

vector of target probabilities. To constrain the �� to be posi-

tive, we parametrize them as ,��. We can then take partial 

derivatives of the loss with respect to , via the chain rule: 

�#
�� � 2&��&� 
 %�																									���

�,�
� 2,� 

Given these partials, we use L-BFGS Quasi-Newton opti-

mization (Nocedal 1980) to minimize the loss. 

 

Figure 2: The teaching interface. 

Teaching Interface 

We designed a teaching interface to test the different meth-

ods with our human subjects (Figure 2), consisting of three 

vertical panes. During training, the leftmost pane shows the 

current training example, along with buttons with which the 

subject can indicate whether it is “safe” or “poisonous.” 

The interface then reveals the answer, and places the exam-

ple into the appropriate (safe/poisonous) history pane. The 

subject can thus review past training examples when mak-

ing future judgments during both training and testing.  

There are some important differences to the workflow 

during testing. First, the subject is not told whether her in-

dividual answers are correct, nor are examples added to the 

history panes; this is to prevent the subject from doing fur-

ther training during the testing period. Finally, the hardness 

indicator is never shown on new examples during testing. 

Experiments 

We recruited a total of 90 subjects at our institution; 54 

completed the entire study. As we found individuals’ capa-

bilities varied widely in our pilot studies, we used a within-

subjects design in which each subject went through two 

train/test conditions, the baseline and one other condition. 

Each condition had a different class boundary for each user. 

In this way, we were able to measure the relative perfor-

mance of a given individual between the baseline and one 

of our methods. To protect against ordering effects, we pre-

sented the two conditions in random order.  

There were a total of five teaching methods; each subject 

experienced the baseline as well as one other method. 

• Base: training examples were chosen randomly. 

• Ind: the difficulty indicator was shown; examples were 

chosen randomly. 

• Covg: the coverage model was used to select examples. 

• IndCurr: the difficulty indicator was shown, and exam-

ples were filtered by difficulty using the curriculum 

learning approach as described above. 

• IndCurrCovg: the difficulty indicator was shown; exam-

ples were chosen via the coverage model and also filtered 

by difficulty via curriculum learning. 

Subjects were divided into the four possible condition pairs 

based on the order they started the task; as not all complet-

ed the task, there is some variance in the number of subjects 

(see Table 1). Each subject completed two learning tasks, 

each with 30 training examples followed by 20 test; the test 

examples were always drawn from a uniform distribution. 

They then filled out a short survey about the tasks. 

Results and Analysis 

Given the data from the subjects, we sought to understand 

the differences in performance as well as what may have 

led to those differences. Below, we consider subjects’ per-

formance and perceptions under the various conditions. 

Relative Performance by Condition 

The core results of our study are in terms of relative per-

formance on the test set between each of the teaching con-

ditions and the baseline. We used the dependent t-test for 

paired samples (two-sided) to compare the subjects’ per-

formance in the two conditions they saw (Table 1). The first 

two (Ind and Covg) did not show significant differences 

from the baseline, though Ind had a nearly-significant nega-

tive effect. While not conclusive, it seems possible that the 

difficulty indicator on its own may have hurt subjects’ per-

formance. We hypothesize this might have been due to sub-

jects ignoring more difficult training examples as being too 

hard, or being frustrated by wildly fluctuating difficulty. 



 

Method p 
d.f.  

(N-1) 

 

t 

Improve 

ment 

Base vs. Ind  0.12 12 -1.71 -0.09 

Base vs. Covg  0.43 13 -.81 -0.05 

Base vs. IndCurr  0.08 15 1.88 0.08 

Base v. IndCurrCovg  0.007 10 3.36 0.12 

Table 1: Test performance improvements (mean differences in 

per-condition accuracy scores across subjects) with respect to 

baseline. Statistically significant results (p<0.1) are in bold. 

The last two conditions, IndCurr and IndCurrCovg, did 

produce significant improvements; the strongest effect was 

for IndCurrCovg, both in magnitude (12 points absolute 

improvement, from 61% to 73%) and in significance 

(p=0.007). This implies that the coverage model in conjunc-

tion with curriculum learning has a stronger effect on per-

formance than either on their own. In the remainder of our 

analysis, we will examine the fine-grained differences in 

behavior and performance to better understand these results. 

 

Figure 3: Mean cumulative subject performance during train-

ing for the Base vs. IndCurr condition (N=16). 

Performance During Learning 

Our first area of investigation involves seeing how subjects 

performed during training by looking at their cumulative 

training performance (over all examples presented so far). 

In Figures 3 and 4, we look at the mean performance across 

subjects for the IndCurrCovg and IndCurr conditions.  

In both sets of conditions, we see that when subjects are 

in the baseline condition, their performance improves for 

the first few examples, but then saturates by example 15 or 

so. For IndCurr, they do better earlier on and improve in 

the same way but also saturate in performance at a similar 

point, albeit at a higher level. For IndCurrCovg, on the oth-

er hand, we see what appears to be a faster and longer rise 

in performance before learning saturates.   

While both the IndCurr and IndCurrCovg conditions 

have the benefit of curriculum learning, we believe the 

greater gain in the latter is coming from the coverage mod-

el’s ability to model and highlight areas the subject per-

formed poorly in or had not covered. This may be allowing 

the subject to continue learning longer, whereas the other 

models may start presenting examples that are redundant. 

 

Figure 4: Mean cumulative subject performance during train-

ing for the Base vs. IndCurrCovg condition (N=11). 

Distribution of Training Example Difficulty 

Given the difference in effect of the coverage model in the 

IndCurrCovg condition vs. the Covg condition, we suspect-

ed that without restriction, the model might quickly con-

verge onto the most difficult examples and confuse the user. 

In Figure 5, we examine the distribution of examples for 

Base, Covg, and IndCurrCovg over quartiles of difficulty. 

For IndCurrCovg, it is biased towards easier examples. For 

Covg, though, it is indeed biased in the other direction. 

 

Figure 5: Distributions of training example difficulties. 

Performance vs. Example Difficulty 

We next wished to investigate how the different strategies 

affected performance at different levels of example difficul-

ty during testing. We plotted the relative performance for 
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condition pairs over quartiles of difficulty in Figures 6-8. 

Both IndCurrCovg and IndCurr show improvements over 

Base across all levels. We also show the relative perfor-

mance for the Base vs. Covg condition in Figure 8 to inves-

tigate why the coverage model was not helpful on its own. 

Note that while performance for medium hardness in-

creased slightly, performance on the easiest examples 

dropped substantially. This is potentially a consequence of 

the more difficult training examples shown in this case (see 

Figure 5); the fact that the users did worse on the easiest 

examples implies they did not learn the concept well at all.  

 

Figure 6: Test perf. vs. difficulty: Base vs. IndCurrCovg. 

 

Figure 7: Test performance vs. difficulty: Base vs. IndCurr. 

 

Figure 8: Test performance vs. difficulty: Base vs. Covg. 

Survey Results 

Finally, we examine the qualitative feedback from users. In 

Table 2 we look at the answers to “which condition was 

more enjoyable?” and in Table 3 “which condition was eas-

ier?” Subjects overwhelmingly felt the IndCurrCovg condi-

tion was better in both respects: the mechanism that most 

improved performance, then, also improved most user ex-

perience, perhaps because of the greater feeling of mastery. 

We see this to a lesser extent for IndCurr as well. 

The results for the other two methods were also interest-

ing: subjects were split on both questions for Base vs. Covg, 

consistent with their performance. In Base vs. Ind, on the 

other hand, subjects overwhelmingly preferred the baseline. 

This adds to our earlier suspicions that the difficulty indica-

tor may have led to confusion and/or frustration.  

 

 Base Other Same 

Base vs. Ind  9 3 0 

Base vs. Covg  5 7 2 

Base vs. IndCurr  2 12 3 

Base vs. IndCurrCovg  3 8 0 

Table 2: Survey results for the question “Which condition was 

more enjoyable? 

 Base Other Same 

Base vs. Ind  9 3 0 

Base vs. Covg  5 6 3 

Base vs. IndCurr  4 11 2 

Base vs. IndCurrCovg  1 9 1 

Table 3: Survey results for the question “Which condition was 

easier?” 

Discussion and Future Work 

While teaching classification tasks to humans is different 

from teaching algorithms, it is encouraging to see that some 

ideas from machine learning are indeed helpful. Given the 

strong, highly significant (p=0.007) effect on performance, 

we can say with some confidence that the combination of 

the difficulty indicator, curriculum learning, and the cover-

age model (IndCurrCovg strategy) does improve subjects’ 

performance at learning classification boundaries. With less 

confidence, we can say that the IndCurr strategy (difficulty 

indicator and curriculum learning) improves performance as 

well. As such, it seems the combination of curriculum 

learning and the coverage model are more powerful than 

either on its own, as the Covg condition did not produce a 

significant change in performance. As we had suspected 

upon seeing the results, the coverage model on its own 

seemed to emphasize examples that were too hard, whereas 

when coupled with curriculum learning it helped subjects 
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address their areas of difficulty while not overwhelming 

them with hard examples early on. 

The difficulty indicator, while intuitively a helpful addi-

tional source of information about each training example, 

seemed to both reduce subject’s performance (though not 

quite statistically significant in effect) and their enjoyment, 

as well as increasing their perception of task difficulty. We 

hypothesize that subjects became frustrated with and/or 

ignored examples marked as difficult, and suspect this con-

dition was particularly vexing in the absence of curriculum 

learning, since hard and easy examples would be appearing 

in random sequence. Perhaps seeing the hardness increase 

in a controlled way (in the IndCurrCovg condition) reduced 

or removed the negative effects of the indicator. However, 

it’s also possible that removing the indicator and running a 

CurrCovg condition would show even greater gains; we 

hope to investigate this in future work. It may be that sub-

jects are happier and learn better when they simply don’t 

know the relative difficulty of the training example; this 

could have interesting ramifications for other educational 

domains as well.  

As we outlined earlier, we believe there are a variety of 

applications for which teaching classification boundaries to 

humans can be important: we hope these methods and re-

sults can be helpful in such contexts, but also that they may 

extend to a broader set of teaching problems. 
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