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Abstract Since the beginning of the Semantic Web ini-
tiative, significant efforts have been invested in finding effi-
cient ways to publish, store, and query metadata on the Web.
RDF and SPARQL have become the standard data model and
query language, respectively, to describe resources on the
Web. Large amounts of RDF data are now available either
as stand-alone datasets or as metadata over semi-structured
(typically XML) documents. The ability to apply RDF anno-
tations over XML data emphasizes the need to represent and
query data and metadata simultaneously. We propose XR, a
novel hybrid data model capturing the structural aspects of
XML data and the semantics of RDF, also enabling us to rea-
son about XML data. Our model is general enough to describe
pure XML or RDF datasets, as well as RDF-annotated XML
data, where any XML node can act as a resource. This data
model comes with the XRQ query language that combines
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features of both XQuery and SPARQL. To demonstrate the
feasibility of this hybrid XML-RDF data management set-
ting, and to validate its interest, we have developed an XR
platform on top of well-known data management systems
for XML and RDF. In particular, the platform features sev-
eral XRQ query processing algorithms, whose performance
is experimentally compared.
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1 Introduction

The XML format [1] is by now universally used to represent
structured documents. Initially employed primarily for Web
pages, it soon became the standard for text documents pro-
duced by major office suites, and the go-to solution for most
structured documents at large, be it bills, bank account data,
contracts, content produced and shared in the workspace,
social network and blog data, etc.

In parallel, W3C’s Resource Description Framework
(RDF, in short) [2] is becoming the de facto standard for
describing data rich in semantics. Its provisions (embodied
in the RDF Schema language [3]) for defining semantic rela-
tionships (e.g., subsumption relations or typing), which are
used for reasoning over the data and deriving new knowl-
edge, make it an ideal candidate for representing such data.
RDF adoption has recently registered an additional boost
due to the Linked Open Data (LOD)1 movement. Under the
LOD vision, users independently author and share informa-
tion, which they can then link to already existing data pub-
lished by others. Linking the data is facilitated by assigning

1 http://linkeddata.org
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each data item a unique identifier, a.k.a. URI [4], which is
one of the cornerstones of the RDF data model. Representa-
tive examples are government-issued open data portals, such
as http://data.gov in USA, http://data.gov.uk in the UK, and
http://data.gouv.fr in France. Another famous source of RDF
Linked Open Data is DBPedia [5], a corpus of facts extracted
from Wikipedia.

While XML and RDF are primarily aimed at different
types of data (the first at structurally rich data and the second
at semantically rich data), there are emerging applications at
their juncture that need formal models and semantics. The
main objective of this work is to show that combining XML
and RDF yields more than the juxtaposition thereof. Recent
initiatives such as the Open Annotation Collaboration2 show
that using RDF to compensate for the lack of semantics in
XML is a promising research direction. Although, in the-
ory, one could simply convert RDF into XML or vice versa,
the tremendous amount of data available on the Web and
the frequency at which it is updated plead for efficient tech-
niques for managing this data in its native formats. Moreover,
converting RDF to XML (or XML to RDF) would lose the
opportunity to exploit existing research and systems for effi-
ciently storing and querying RDF (resp., XML) data. Below
we present three scenarios that highlight the interest of com-
bining XML with RDF data.

Scenario 1: semi-automated fact-checker

The internet has reshaped journalism in important ways,
one of the most important being the instant dissemination
capabilities of the Web. Moreover, journalists have suddenly
had to compete with bloggers, activists, and other concerned
citizens, establishing themselves as alternative sources of
information, and reaching out, collectively, to a far wider
reality on the ground than a news agency (let alone a single
journalist) could hope to have access to. This has led to the
emergence of new professionals, called data-journalists, and
online fact-checkers. These specialists are trained to examine
and aggregate data from many sources (“official” or not, such
as Data.gov or WikiLeaks3) and use online services (such
as Twitter4 or Google Maps5) to integrate and corroborate
facts found online. Journalists have become data publish-
ers themselves as witnessed in sites such as The Guardian6,
FactCheck7, and Politifact8. However, as skillful as these pro-

2 http://openannotation.org
3 http://wikileak.org
4 http://twitter.com
5 http://maps.google.com
6 http://guardian.co.uk/data
7 http://www.factcheck.org
8 http://www.politifact.org

fessionals may be, their work is still very manual as demon-
strated by Storyful9 founder in a recent presentation10 and, as
of today, they lack powerful tools for analyzing, consuming,
and producing data.

As a concrete example, consider an election campaign,
where candidate :Joe publishes on his Web site transcripts
of his speeches, expressing his opinions on the situation in
:Turkey or :Japan, or the local economy, citing a :Month-
lyUnemploymentRate for :July 2012 as being “8 %”. 11

Using an officially issued database such as http://data.gov,
one can automatically check whether the cited number is cor-
rect. Moreover, archiving the candidate’s speeches allows
finding, e.g, “the earliest and latest dates at which his dis-
courses mentioned an Asian country,” or (if the candidate’s
official agenda is also added to the analysis) “for each for-
eign country, the visits the candidate received from or made
to that country, and the mentions he subsequently made of
the country in his speeches.” Although such queries are too
ambiguous to yield any valuable results if posed in natural
language, with proper knowledge of the datasets in hand and
their semantics, an expert should be able to express them in
a structured language through a single query or some com-
position of queries.

Scenario 2: focused Web warehouse

The ACME company wants to keep up with the image
of its products as reflected by content published on the Web
(on news sites, blogs, social networks, etc.). To this end, it
sets up a set of specialized feeders, one from each source of
content (e.g., one for crawling open Web content, others as
subscriptions to specific Twitter hashtags, etc.), and archives
the XML results brought by these feeders in a database. The
documents are then parsed, analyzed, and compared with
ACME’s RDF knowledge database containing brands, mod-
els, clients, sales, information about ongoing marketing cam-
paigns, etc. The warehoused XML content is thus connected
to the objects and contents of the knowledge base, and can
be subsequently exploited by asking, e.g., for “the authors
and affiliation (if any) of all blog posts from July 2012, men-
tioning ACME :Prod1 products (regardless of their model).”
This query involves reasoning through an RDF Schema to
understand that :Prod1v1 and :Prod1v2 are all versions of
ACME’s :Prod1, querying the XML warehouse for blog posts

9 http://storyful.com
10 http://on.ted.com/MarkhamNolan
11 Here and subsequently in this paper, we make the convention that
strings starting with : are URIs. Formally, URIs consist of two parts: a
namespace and a local name [4], separated by the : symbol. A URI with-
out a specified namespace is of the form :LocalName and is interpreted
to refer to a default namespace.
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mentioning :Prod1, :Prod1v1, or :Prod1v2, and returning the
desired blog author affiliation. Observe that if the authors’
affiliations (e.g., organizations they work for) are also recog-
nized in the RDF database, one may refine the query result
by further exploring their links in this database, finding, for
instance, in which country each organization is located or
how many employees it has.

Scenario 3: patient records

Another use case for annotated documents is in the area
of electronic patient records (EPR). French hospitals seek-
ing more interoperability among their respective patient files
(partly paper-based and partly electronic) set up systems
where paper-based records are scanned and then subjected to
text recognition. Subsequently, they apply natural language
processing techniques on these electronic files, annotate them
with entities (diseases, symptoms, etc.) recognized from a
domain ontology, and index them accordingly. Physicians
can then more easily find “admission dates of female patients
with heart problems” or “the list of drugs targeting eating dis-
orders that have been administered to patients diagnosed with
diabetes.” These queries typically touch upon data that may
exist in different models.

This work aims at enabling such scenarios, by propos-
ing a unified model allowing the combination of XML data
with RDF data into a single instance. We have designed the
model and the corresponding query language and imple-
mented a system for storing and querying instances of the
proposed model. Moreover, we showcase optimizations that
are possible when XML and RDF are combined in the same
instance.

A separate class of applications that calls for a combina-
tion of XML and RDF, e.g., [6], focuses on extracting data
and semantics (which can be encoded in RDF) from struc-
tured XML documents. Such applications typically adhere
to the following workflow: the text (and possibly the struc-
ture) of an XML document is analyzed with the help of nat-
ural language processing tools, named entities are recognized
and extracted, and phrase patterns are matched to convert the
information in an XML document to RDF facts. For instance,
the text “Einstein was born in Ulm” would be translated into
an RDF statement of the form (:AlbertEinstein, :birthPlace,
:Ulm).

This work makes the following contributions:
Data Model for Annotated XML Documents. Our data

model naturally allows the representation of XML data, RDF
data, and the union thereof, but more importantly, it also
allows for instances where XML and RDF are interconnected
(e.g., where an RDF triple refers to an XML node).

Query Language. To allow existing users of XML and
RDF platforms to easily transition to our combined platform,

we designed a query language that not only allows querying
inter-connected XML and RDF instances, but does so by
staying close to the standard query languages employed for
each of the data models in isolation.

Implementation & Optimizations. As a first cut, we
implemented a system for annotated XML documents by
leveraging existing XML and RDF engines. However, as we
will explain, there are multiple ways in which a query over
a combined XML and RDF instance could be decomposed
into separate queries that are shipped to the XML and RDF
engine. In this work, we explore this space of possible query
evaluation strategies and present optimizations to speed up
query processing.

Experimental Results. Our experiments highlight classes
of query evaluation strategies that are very inefficient and
some that provide better performance and scale linearly on
datasets of an overall size of 17 GB, intelligently exploiting
pre-existing XML and RDF engines. We study the impact of
our proposed optimizations and identify the classes of prob-
lems where they have the biggest impact. It is worth noting
that among similar works focusing on the combined query-
ing of XML and RDF, very few provide experimental results,
and those that do [7] present query evaluation strategies that
do not scale beyond 100 MB. Thus, our experiments vali-
date the interest of our techniques for large-scale querying
of annotated documents.

The paper is structured as follows. Sections 2 and 3
describe the data model and query language, respectively.
We discuss query evaluation strategies in Sect. 4, outline our
implemented platform in Sect. 5, and present the experimen-
tal results in Sect. 6. Section 7 describes related work, and
Sect. 8 concludes the paper.

2 The XR data model

To represent annotated documents, we introduce the XR data
model. In keeping with the widely accepted standards for
representing semi-structured data (i.e., XML) and semantic
relationships (i.e., RDF), an instance of the XR data model
comprises two sub-instances: an XML sub-instance, consist-
ing of a set of XML trees, and an RDF sub-instance, con-
sisting of a set of RDF triples. The connection between the
two sub-instances is achieved by assigning to each XML
node a unique uniform resource identifier (URI), which can
then be referred to from an RDF triple, as we will explain
below.

Next, we formally define XR sub-instances. We rely on
a set U of URIs as defined in [4] and a subset I ⊆ U of
document URIs acting as document identifiers. We denote by
L the set of literals [8] (which for simplicity can be seen as the
set of all strings). N is the set of possible XML element and
attribute names, to which we add the empty name ε. Finally,
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B is a set of blank nodes (accounting for unknown literals or
URIs, as we will explain later on). An XML tree is defined
as usual:

Definition 1 (XML Tree) An XML tree is a finite, unranked,
ordered, labeled tree T = (N , E) with nodes N and edges
E , where each node n ∈ N is assigned a label λ(n) ∈ N
and a type τ(n) ∈ {document, attribute, element, text}.
An attribute node must be the child of an element node; it
has a value belonging to L, and it does not have any children.
A text node can only appear as a leaf. Finally, an XML tree
can have at most one document node. The document node
can only appear as the root of the tree, has exactly one child,
and has the empty name ε.

Most frequently, we are concerned with trees that are also
documents, i.e., those rooted in document nodes. However,
we may also consider trees rooted at simple XML elements,
for instance, when XML trees are passed from the output of
one query to the input of another, without being permanently
stored within a document. A set of XML trees forms an XML
instance:

Definition 2 (XML Instance) An XML instance IX is a finite
set of XML trees.

We assume available a function assigning a unique URI to
each node in an XML instance. Notably, the URIs assigned to
document nodes correspond to the aforementioned document
URIs. The URI assignment function is crucial for intercon-
necting the XML and RDF sub-instances, since the URIs
assigned to the nodes allow the RDF sub-instance to refer to
nodes of the XML sub-instance. While discussing our system
implementation in Sect. 5, we present such a URI assignment
function that can be used in practice. However, for the pur-
pose of the definitions, it suffices to consider any URI assign-
ment function acting like a Skolem function, i.e., returning
a new (“fresh”) value every time it is called for the first time
with a given input, and consistently returning that value to
any subsequent call with the same input.

The RDF sub-instance is defined as a set of triples, which
can among others refer to the URIs of XML nodes:

Definition 3 (RDF Instance) An RDF instance IR is a set of
triples of the form (s, p, o), where s ∈ (U ∪ B), p ∈ U , and
o ∈ (L ∪ U ∪ B).

Following the common nomenclature, the components of
a triple (s, p, o) are referred to from left to right as its subject,
property, and object, respectively.

As defined above, the subject or the object of the triple
can be bound to a so-called blank node. Blank nodes
are used in RDF [2] to denote unknown URIs or liter-
als, similarly to labeled nulls in the database literature [9].

For instance, one can use a blank node b1 in the triple
(b1, countr y, “France”) to state that the country of b1 is
France, without using a concrete URI. Blank nodes can be
repeated in an RDF instance, thus allowing multiple triples
to refer to the same unknown URI or literal. For example, a
second triple (b1, ci ty, “Paris”) could specify that the city
of the same b1 is Paris. Finally, multiple blank nodes can co-
exist in a dataset, thus allowing the representation of several
unknown URIs or literals. For example, one may also state
that the country of some other unknown URI b2 is Japan,
while its population is an unspecified literal b3.

Furthermore, RDF does not only model explicit triples,
but also implicit (a.k.a. entailed) triples. The latter can be
derived from the former based on a set of entailment rules.
More details on this process, known as RDF entailment, can
be found in [10]. For the purposes of our discussion though, it
suffices to be aware of the following: Given an RDF instance
IR , its semantics is the RDF instance I∞R , called the satura-
tion (or closure) of IR , consisting of IR plus all the implicit
triples derived from IR through RDF entailment. RDF entail-
ment is central to RDF query answering, and thus to XR (as
discussed in Sect. 3.2), since we need to take into account
the implicit answers in order to guarantee the completeness
of query answers. The interconnection between XML and
RDF opens the way to cross-model inference, by allowing
one to query intensional XML data, derived by combining
extensional XR data with entailment rules. We believe this is
a novel perspective on XML data management that deserves
to be further explored in the future works.

We can now define an XR instance as follows:

Definition 4 (XR Instance) An XR instance is a pair (IX , IR),
where IX and IR are an XML and an RDF instance, respec-
tively, built upon the same set of URIs.

It is important to note that the XML and the RDF sub-
instances are defined over the same set U of URIs, thus
allowing RDF triples to annotate nodes of XML trees. The
following example illustrates such an interconnected XR
instance.

Example Figure 1 shows a sample XR instance correspond-
ing to a political news scenario, which we will use hereafter as
our running example. The RDF sub-instance is shown on the
top part of the figure, while the XML sub-instance is shown at
the bottom. The instance consists of three XML trees linked
through RDF annotations. The first XML tree includes a post
on a blog concerning a campaigning politician named :Char-
lie. The second XML tree is :Charlie’s micro-blogging site,
whereas the third is an article in an online newspaper. XML
node URIs are shown as subscripts next to each node. The
dashed edges in the XML tree denote some levels of XML
hierarchy omitted for simplicity.
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Fig. 1 XR instance representing annotated documents

URIs are used to allow the RDF triples to annotate the
XML trees. For instance, the first two triples, coming from a
social site, specify that :Alice worked with :Bob in the past
and that :Bob follows :Charlie’s micro-blog. The next three
triples state that :Charlie posted an entry on his blog at 12pm
on Sept. 5, 2012. Note that, a blank node (denoted _:x) is used
here as a means of gathering facts around a single concept;
we follow the usual convention of denoting blank nodes by
_:-prefixed names.

The triple (_:x, owl:sameAs, #205) states that the blank
node _:x and the XML node #205 of the blog stream are the
same (the owl:sameAs property is frequently used for encod-
ing such statements in RDF [11]). The RDF sub-instance
further states that :Alice posted the blog entry found on the
node #106 of the leftmost document, and that :Bob is the
author of the entry #305 on the newspaper page. The two
following triples specify that :Alice’s blog post (#106) refers
to :Bob’s article for further information, using the :about
property. Similarly, :Bob’s article links to :Charlie’s post, as
one source of his report. The RDF instance also states that
:Charlie’s attendance of Congress sessions is rather low.

Finally, the triples in gray do not appear explicitly in the
instance. They can be inferred from an RDF Schema (RDFS)
characterizing this application (the RDFS is not shown in the
figure) and stating that: (i) if a resource A is about another
resource B, then B is a story, (i i) if a person A worked with
a person B, then necessarily A knows B, and (i i i) someone
whose :congressAttendance property is defined is a member
of the Congress.

3 The XRQ query language

XRQ allows querying an XR instance w.r.t. both its struc-
ture (described in the XML sub-instance) and its semantic
annotations (modeled in the RDF sub-instance). We intro-
duce XRQ’s constructs in Sect. 3.1, and then, we give its
semantics in Sect. 3.2.

3.1 XRQ syntax

XRQ allows querying an XR instance based on com-
monly used primitives: XML tree pattern queries, intro-
duced, e.g., in [12], and the Basic Graph Pattern queries (or
BGPs, in short) for RDF [13]. Tree patterns express structural
constraints on the expected trees in the XML sub-instance,
while BGPs (a fragment of SPARQL) allow constraining the
expected triples of the RDF sub-instance.

Definition 5 (Tree Pattern) A tree pattern is a finite, unorde-
red, unranked, N -labeled tree with two types of edges,
namely child and descendant edges. We may attach to each
node at most one uri variable, one val variable, and one cont
variable. We may also attach to a node one equality predicate
of the form [val=c] for c ∈ L, denoting a selection on the
val variable, i.e., it must be bound to c.

A tree pattern may also have at most one ‘special’ docu-
ment node. This node can only appear as the root of the tree,
has exactly one child, and has a uri variable constrained by
an equality predicate of the form [uri=u] for u ∈ I, denot-
ing that the tree pattern must be evaluated against the XML
document of URI u.

Such variable-annotated patterns have been previously
used, e.g., in [14,15] to represent XML queries and/or mate-
rialized views. The variables attached to nodes serve three
purposes: (i) to denote data items that are returned by the
query (in the style of distinguished variables in conjunctive
queries), (i i) to express selections on the document to query
or on node values, and (i i i) to express joins between tree (or
triple) patterns. The variable type specifies the exact infor-
mation item from an XML node, to which the variable will
be bound. When a node nt of a tree pattern is matched against
a node nd of an XML tree, the variables attached to the node
nt will be bound as follows, according to the variable’s type.
First, a uri variable is bound to the URI of nd . If nd is a doc-
ument or element node, a val variable is bound to the con-
catenation of all text descendants of nd ; if nd is an attribute
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Fig. 2 Sample XRQ query

node, a val variable is bound to the attribute value; if nd is a
text node, a val variable is bound to nd ’s text value. Finally,
a cont variable is bound to the serialization of the subtree
rooted at nd . The semantics of val variables are copied from
the XPath (and XQuery) specification. Indeed, an XPath snip-
pet of the form $x=“Paris”, where $x is bound to some
XML element, is interpreted as: check if the concatenation of
all text descendants of that element equals “Paris.” We rep-
resent such predicates by annotating a tree pattern node with
[val=“Paris”]. Similarly, a comparison of the form where
$x=$y is interpreted as: the value of $x (as we defined it
above) is equal to the value of $y. Our queries also allow
expressing such comparisons, as we will explain later on.

Example The bottom part of Fig. 2 shows two tree patterns
for our running example. As usual, single (double) edges
correspond to parent–child (ancestor-descendant, resp.) rela-
tionships. For instance, the tree pattern on the left looks for a
message node with a descendant body node. For each match
of the pattern against the tree, $A will be bound to the URI
of the matched body node, while $C A will be bound to the
serialization of the node itself and its entire subtree.

A Basic Graph Pattern query is a conjunction of triple
patterns.

Definition 6 (Triple Pattern) A triple pattern is a triple
(s, p, o), where s, p are URIs or variables, whereas o is a
URI, a literal, or a variable.

Example The top part of Fig. 2 depicts four triple patterns.
For instance, the left-most triple pattern finds all pairs of
resources connected via the property :authorOf.

By combining tree and triple patterns and endowing them
with a set of projected (head) variables, we obtain an XRQ
query:

Definition 7 (XRQ Query) An XRQ query consists of a head
and a body. The body is a set Q X of tree and a set Q R of
triple patterns built over the same set of variables, whereas
the head h is an ordered list of variables appearing also in the
body. We denote such a query by Q = (h, Q X , Q R).

Note that, by using variables in multiple places within the
query, one can express joins. In general, three types of joins

are possible: (i) between tree patterns; (i i) between triple
patterns; (i i i) between tree patterns and triple patterns. In
particular, the latter type of joins allow correlating struc-
tural and semantic constraints within queries. The following
example illustrates the expressivity of XRQ.

Example Figure 2 shows an XRQ query, whose body (shown
on the right) comprises four triple patterns (shown on the
top) and two tree patterns (shown at the bottom). It asks
for all authors of some resource (first triple pattern) that is
known to be the same (second triple pattern) as the body of
a message from the microblog stream (first tree pattern). In
turn, the query filters html pages containing a div node,
with a header (h2 node) equal to the title of the microblog’s
stream and retrieves thediv node containing the article body
(second tree pattern). The selected microblog posts must be
referred by the article (third triple pattern), and their authors
must be congress members.

To sum up, the query returns the member of the congress
who authored microblog posts referred by articles of the same
title, as well as the posts contents. Note the use of variables
for expressing joins. Three types of joins are illustrated in
Fig. 2: between two tree patterns (through variable $V C),
between two triple patterns (through variables $A, $X and
$Y ), and between a tree pattern and a triple pattern (through
variables $A and $B).

3.2 XRQ semantics

We now define the semantics of XRQ. To this end, we first
define the notion of matches and variable bindings for each
of its components (i.e., tree patterns and triple patterns).

A match of a tree pattern against an XML instance is
defined as usual through tree embeddings [12]:

Definition 8 (Match of a tree pattern against an XML
instance) Let Q be a tree pattern and IX an XML instance.
A match of Q against IX is a mapping φ from the nodes
of Q to the nodes of IX that preserves (i) node labels, i.e.,
for every node n ∈ Q, φ(n) ∈ IX has the same label as n,
and (i i) structural relationships, that is: if n1 is a /-child of n2

in Q, then φ(n1) is a child of φ(n2), while if n1 is a //-child
of n2, then φ(n1) must be a descendant of φ(n2).
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Moreover, φ satisfies the equality predicates as follows:
(i) if n is a document node constrained with the predicate
[uri=u], then φ(n) is the document node of the XML doc-
ument whose URI is u and (i i) if n is any node constrained
with the predicate [val=c], then the value of φ(n) equals to c.

A match of a tree pattern Q against an XML instance
IX defines the mapping of nodes of Q to nodes of IX . How-
ever, recall that a tree pattern, apart from nodes, contains also
variables for expressing selections on values or joins, which
have to be bound to objects. This mapping of such variables
to objects, referred to as variable binding, is formally defined
below:

Definition 9 (Variable binding of a tree pattern against an
XML instance) Let φ be a match of a tree pattern Q against an
XML instance IX and V the set of variables in Q. Let v ∈ V
be a variable associated with a node n. Then the variable
binding f of Q against IX corresponding to φ is a function
over V such that: (i) if v is a uri variable, then f (v) is the
URI of φ(n) in IX , (i i) if v is a val variable, then f (v) is
the value of φ(n) ∈ IX , and (i i i) if v is a cont variable,
then f (v) is the serialization of the subtree of IX rooted at
φ(n).

As explained above, a variable binding f of a tree pattern
Q against IX is associated with a match φ of Q against IX .
For simplicity, however, in the following, we will assume
the existence of a match and refer to f simply as a variable
binding of Q against IX .

Similarly, we also define matches and variable bindings
for triple patterns:

Definition 10 (Match of a triple pattern against an RDF
instance) Let Q be a triple pattern (s, p, o), IR an RDF
instance and I∞R the saturation of IR . A match of Q against
IR is a mapping from {s, p, o} to the components of a sin-
gle triple tφ = (sφ, pφ, oφ) ∈ I∞R , such that φ(s) = sφ ,
φ(p) = pφ and φ(o) = oφ , and for any URI or literal ul
appearing in s, p or o, we have φ(ul) = ul (φ maps any URI
or literal only to itself).

It is important to note that in accordance with the RDF
semantics as specified by the W3C, a triple pattern is matched
not against an RDF instance IR , but against the saturation of
IR , denoted I∞R . As defined in Sect. 2, I∞R contains in addition
to the explicit triples of IR , a set of implicit triples.

We recall the notion of restriction of a function to a subset
of its domain. Let f be a function over a set A. The restriction
of f to a subdomain A′ ⊆ A, denoted by f |A′ , is a function
f ′ over A′, s.t. f ′(x) = f (x),∀x ∈ A′. Based on this, we
can define the variable binding of a triple pattern as follows:

Definition 11 (Variable binding of a triple pattern against
an RDF instance) Let φ be a match of a triple pattern Q

against an RDF instance IR . Then the variable binding of Q
against IR corresponding to φ is the function φ|V , where V
is the set of variables in Q.

We now provide the semantics of an XRQ query:

Definition 12 (XRQ Semantics) Let Q be an XRQ query, V
its set of variables, and 〈v1, v2, . . . , vn〉 the head variables of
Q. Let I = (IX , IR) be an XR instance.

A variable binding f of Q against I is a function over V ,
such that for every tree (resp., triple) pattern P ∈ Q whose
variables we denote VP , where VP ⊆ V , f |VP is a variable
binding of P against IX (resp., IR).

The result of Q over I , denoted Q(I ), is the set of tuples:

{〈 f (v1), f (v2), . . . , f (vn)〉 | f is a variable binding of Q

against I }
In case of a boolean query, the singleton set {〈〉} containing
the empty tuple corresponds to true and the empty set of
tuples {} to false.

The definition combines in the intuitive fashion the notion
of variable bindings in the RDF and XML sub-instances.
When a variable is shared by a tree pattern and a triple pattern,
the XRQ semantics ensures that it is bound to the same value
(URI or literal) within the XML trees in IX and the RDF
triples in IR .

Example Applying the XRQ query of Fig. 2 to the XR
instance of Fig. 1 yields the result: ($CA=〈body〉Visiting
Iowa today〈/body〉, $X=Charlie).

Figure 3 shows the match found for each tree/triple pattern
and the variable binding for the entire XRQ query.

All joins allowed. We stress that XRQ queries may fea-
ture all the types of joins one may encounter within a con-
junctive RDF query or within an XML query, in addition
to the aforementioned joins across the RDF and XML sub-
instances (by sharing variables within tree and triple patterns
of an XR query). It is worth noticing that join variables may
be used in places having disjoint types. For instance, a vari-
able may appear in the subject of a triple pattern (denoting a
URI value) and as the val of a tree pattern’s node (denoting
a literal). Rather than considering type mismatches as errors
in queries, we adopt the permissive approach of converting
all variable bindings to literals and comparing their string
representations.

Cartesian products. XRQ enables users to specify
queries comprising Cartesian products. The latter occurs
when some tree (or triple) pattern(s) do not share any vari-
able with some other tree (or triple) pattern(s). At the same
time, even when an XR query does not feature such Cartesian
products, the sub-query consisting only of its XML (or RDF)
patterns may have Cartesian products. For instance, consider
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Fig. 3 Pattern matches and variable bindings of the query of Fig. 2 on the XR instance of Fig. 1

a query Q consisting of two XML tree patterns tx and ty and
a triple pattern px,y , such that a variable $X is shared by tx
and px,y , a variable $Y is shared by px,y and ty , while tx and
ty share no variable. In this case, the restriction of Q to its
XML sub-expression is tx × ty . This aspect requires some
extra care when evaluating XRQ queries, as we will discuss
in the next section.

Finally, for the clarity of the query evaluation discussion
in the next section, we also define the result of a set of
tree patterns (resp., triple patterns) in isolation over an XML
(resp., RDF) instance. Let Q X be a set of tree patterns and
IX an XML instance. Then the result Q X over IX , denoted
Q X (IX ), intuitively corresponds to evaluating the set Q X

of tree patterns against the XML instance IX and returning
tuples of bindings for all variables appearing in Q X . For-
mally, Q X (IX ) equals to Q′(I ′), where Q′ = (h X , Q X ,∅)
is an XRQ query that contains in its body only the set Q X of
tree patterns and in its head h X all variables appearing in Q X

and I ′ = (IX ,∅) is an XR instance having IX as its XML
sub-instance and the empty instance as its RDF sub-instance.
The result Q R(IR) of a set of triple patterns Q R over an RDF
instance IR can be defined in a similar way.

4 XRQ query evaluation

This section discusses evaluation strategies for XRQ queries.
Since there are by now many platforms for handling XML
and RDF separately, we aimed, whenever possible, to reuse
the functionalities developed by such platforms and develop
our XRQ processor as a layer on top. In the following,
Sect. 4.1 introduces some preliminary notions which will
help us present various query evaluation strategies. The

remainder of the section presents the set of strategies of this
study.

4.1 Preliminaries

We introduce a set of useful notions before presenting con-
crete query evaluation algorithms.

XDM stands for an XML data management platform,
i.e., any XML data management system supporting tree pat-
tern queries. Such queries can be expressed in XQuery, thus
any XQuery engine falls into this category. We denote by
XEval(Q, I ) a function provided by the XDM, which returns
the result of the XML query Q, consisting of a set of tree
patterns possibly connected through joins, over the XML
instance I .

RDM stands for an arbitrary RDF data management plat-
form, i.e., any RDF data management system supporting at
least (unions of) Basic Graph Pattern queries of SPARQL.
Similarly, we denote by REval(Q, I ) a function provided by
the RDM, which computes the result of the RDF query Q
(that is, a set of triple patterns) over the RDF instance I .

XURI denotes URIs [4] of XML nodes. A determinis-
tic method assigning an XURI to every node from a given
document is termed a labeling scheme.

QX and QR are the XML and RDF sub-queries, respec-
tively, of a given XR query Q. Let |Q X | be the number of
tree patterns in Q X and |Q R | the number of triple patterns in
Q R . We will denote the XML tree patterns in Q by Q1

X , Q2
X ,

. . ., Q|Q X |
X and, similarly, the triple patterns of Q by Q1

R , Q2
R ,

. . ., Q|Q R |
R .

IXand IR are the XML and RDF sub-instances, respec-
tively, of an XR instance I .
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XURI hypotheses. To facilitate the integration of any
XML or RDF data management system in our XR plat-
form, we should interface with the XDM/RDM at the level
of standardized data declaration and data manipulation lan-
guages, such as XQuery and SPARQL, avoiding more spe-
cific assumptions regarding their implementation. One cru-
cial issue that is specific to XR, however, is the support for
XURIs within the XDM. While URIs are explicit in RDF
data, in the XML data model [16], the closest notion to XURIs
is that of node identity, which by default is implicit.12 Most
XDMs [18,19] (including recent ones [20]) use internal node
IDs, which can easily be mapped to XURIs as soon as one
gains access to the system internals. For the purpose of eval-
uating XR queries, we identify two important properties that
an XDM may have (or, alternatively, hypotheses which may
or may not hold about XEval):

XURI-out: the outputs of XEval include the XURI of
each XML node participating in this result.
XURI-in: given an XURI as input, XEval is capable of
recognizing the (unique) XML node having this XURI.
In other words, XEval can perform selections on XURI
values, thus XEval understands the special semantics of
XURIs.

These hypotheses are independent, i.e., an XDM may
adhere to one, the other, none, or both. Concrete ways of
implementing them will be discussed in Sect. 5. The algo-
rithms we present next have specific requirements in terms
of XDM hypotheses, as we explain in each case.

What to delegate? The XRQ processor delegates sub-
queries for evaluation of the underlying XML, respectively,
RDF engines. As explained in Sect. 3.2, if we decide, e.g., to
send Q X as such to the XDM, this may introduce Cartesian
products whose evaluation may be very inefficient.

An alternative consists in sending to the XDM the con-
nected components of Q X , if one considers Q X as an undi-
rected graph where (i) each tree pattern is a node; (i i) there is
an edge between two nodes if the corresponding tree patterns
share some variable(s), in the spirit of the classical Query
Graph Model [21]. Each connected component thus obtained
is an XML query without Cartesian products and is indepen-
dently sent to XEval. Clearly, the symmetric discussion holds
regarding Q R .

Going one step further, one could question the distribu-
tion of join operations between XEval, REval and the XR
platform itself. Intuitively, the native XDM engine should
be able to best optimize the computation of tree pattern

12 The W3C’s xml:id recommendation [17] makes node identity
explicit as an xml:id attribute; however, this has not been widely
adopted. We explore the xml:id idea as one option in our implementa-
tion (see Sect. 5).

Algorithm 1: XML||RDF
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TX ← XEval(Q X , IX ); TR ← REval(Q R, IR)

2 TX R ← πh(TX �
 TR)

queries, that is, if Q X is of the form t x1 �
$X tx2, we could
send Q X as such to XEval. However, it turns out that XML
queries with numerous value joins are still challenging for
current XML query processors, as was initially noted in [22].
Therefore, it may be more efficient to send t x1 and t x2 to
XEval and join the results outside the XDM, within the XR
platform.

To mitigate such issues, we adopt the following approach.
Whenever Q X (respectively, Q R) must be delegated to XEval
(respectively, REval), a specific optimizer is invoked to deter-
mine which fragments of these queries to actually delegate;
the remaining joins are handled in the XR platform. This
decomposition is achieved based on (i) heuristics (e.g., never
push unnecessary Cartesian products), (i i) query cardinal-
ity estimations, and (i i i) some empirical calibration tests to
gauge how the XDM (respectively, RDM) performance com-
pares with XR’s own execution engine.

In the sequel, to simplify the presentation, we will just
write XEval(· · · ), respectively REval(· · · ), to denote: find
out the best way to decompose the respective query between
the XDM (resp. RDM) and XR, and execute it according to
that decomposition of work.

4.2 Independent executions

The simplest approach for evaluating an XRQ query consists
in evaluating independently Q X and Q R , and then evaluating
any remaining joins (on XURIs or values) outside the XML
and RDF engines. We denote this approach XML||RDF, for
“independent evaluation of Q X and Q R .” To enable the
join on XURIs outside the XDM, this approach requires
hypothesis XURI-out. Moreover, to the extent that XEval
and REval can run in parallel, this method has a good poten-
tial for parallelization. Algorithm 1 outlines the XML||RDF
strategy.

Example Recall the query in Fig. 2, and assume we send the
whole Q X and Q R , respectively, for independent evaluation.
XEval(Q X , IX ) produces two tuples of bindings:

($A = #205, $B = #305, $C = #303,
$C A = 〈body〉Visiting Iowa today〈/body〉,
$V C = “Charlie’s campaign”),
($A = #205, $B = #306, $C = #303,
$C A = 〈body〉Visiting Iowa today〈/body〉,
$V C = “Charlie’s campaign”)
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Algorithm 2: XML→RDF
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TX ← XEval(Q X , IX )

2 UC Q ← ∅
3 foreach tuple tX ∈ TX do
4 UC Q ← UC Q ∪ Push Joins(tX , Q R)

5 TX R ← πh(REval(UC Q, IR))

Moreover, REval(Q R, IR) returns the following tuple:

($X =: Charlie, $Y = _:x, $A = #205, $B = #305)

Combining the two binding tuple sets through a natural
join on $A, $B and projecting on the head attributes of the
query results in the single tuple:

($C A = 〈body〉Visiting Iowa today〈/body〉,
$X =: Charlie)

4.3 Bind XML, then RDF

The second approach consists in evaluating tree patterns
first and, assuming XURI-out, pushing the resulting vari-
able bindings into Q R which is then handed to the RDM.

Algorithm 2, named XML→RDF, details the process.
First, Q X is evaluated, then for each resulting tuple of vari-
able bindings, the Q R variables on which Q R and Q X join
are bound to the respective values (XURIs and literals). This
substitution is achieved by the function PushJoins. If there
are several tuples in the result of Q X , this substitution trans-
forms Q R into a union of conjunctive queries (UC Q in the
algorithm), one for each tuple retrieved by Q X .

Example Pushing the result of XEval(Q X , IX ) into Q R

results in the following union:

Q R($X, $Y,“Visiting Iowa today”) :-
($X, :authorOf, $Y ),
($Y, owl:sameAs, #205),
(#305, rdfs:seeAlso, #205),
($X, rdf:type, :MemberOfCongress) ∪

Q R($X, $Y,“Visiting Iowa today”) :-
($X, :authorOf, $Y ),
($Y, owl:sameAs, #205),
(#306, rdfs:seeAlso, #205),
($X, rdf:type, :MemberOfCongress)

whose evaluation is then delegated to the RDM.13

13 As can be seen in the example, in practice PushJoins also extends the
projection list of Q R to include the bindings for the variables of Q X that
exist in Q’s head but do not exist in Q R (e.g., the binding for variable

Note that, the SPARQL 1.1 recommendation [23] intro-
duced the BIND and VALUES operators to pass inline one
or more sets of bindings to a SPARQL query. The union of
conjunctive queries described above can easily be rewritten
using this new syntax. However, the way such queries are
evaluated and optimized remains platform-dependent.

4.4 Bind RDF, then XML

The main idea of this approach is to evaluate Q R first and
inject the bindings thus obtained into XEval. When consid-
ering concrete algorithms for implementing this approach,
two independent choices can be made, leading to a total of
four possible algorithms. We explain these choices first and
then present the resulting four algorithms.

Does XURI-in hold? Observe that the bindings returned
by Q R may include XURIs. To exploit these bindings in
XEval we need the XURI-in assumption, that is, the engine
must be capable of retrieving an element having a specific
XURI; this is generally not possible with an off-the-shelf
XDM, since the implicit XML node IDs are not visible
in the XML data and thus are not accessible to the XML
queries.

When XURI-in does not hold, we may still exploit XURI
bindings brought by Q R as follows.

We term dereferencing the process of obtaining from
a node XURI, the URI of its XML document, as well as
the (unique) linear parent–child XPath expression (possi-
bly with positional predicates) from the root of the docu-
ment, down to the node itself. For instance, dereferencing the
XURI #305 leads to the document URI “doc200.xml” and the
linear XPath /microblog/message[12]/body[1].
Dereferencing is easily supported if XURIs are implemented
using some Dewey-style XML node identifiers, of which [24]
is a recent representative. Alternatively, an XURI-to-XPath
index can be materialized to support dereferencing through
a look-up by the XURI.

When dereferencing is available, the RDF-then-XML
approach can be implemented by:

1. evaluating Q R ;
2. dereferencing any resulting XURIs to linear parent-child

XPaths (XURIs correspond to the bindings of the vari-
ables in Q R that also appear as uri variables in Q X );

3. composing these XPaths with Q X and sending the result
to XEval.

One or several XML queries? A second dimension of
choice concerns the way in which we handle multiple tuples

Footnote 13 continued
$C A in this example). However, to keep the presentation simple, this
detail is omitted from the algorithm’s pseudocode.
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Algorithm 3: RDF⇒XML-URI
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TR ← REval(Q R, IR)

2 TX R ← ∅
3 foreach tR ∈ TR do
4 q ← Push Joins(tR, Q X )

5 TX R ← TX R ∪ πh(XEval(q, IX ))

of bindings returned by the RDM. We could send several
XML queries to the XDM, one for each tuple of bindings
(this approach can be seen as a union of multiple queries); or
we could gather all these tuples in a collection (i.e., use the
union of these tuples) and issue a single query to the XDM,
involving this collection.

The difference between these options basically boils down
to the relative order between a union and a join. One would
expect the XDM to transparently pick the best evaluation
order, regardless of the query syntax used. In practice,
however, we experienced significant differences in perfor-
mance, with the single XML query solution being much more
efficient.

Algorithms. Based on the above analysis, we have devised
four concrete algorithms:

– Algorithm RDF⇒XML-URI assumes XURI-in
(i.e., pushes XURIs into the XDM) and sends one XML
query per tuple of bindings from Q R ;

– Algorithm RDF⇒XML-XPath uses dereferencing
(i.e., pushes linear XPaths into the XDM) and sends one
XML query per tuple of bindings from Q R ;

– Algorithm RDF→XML-URI assumes XURI-in and
sends a single query to the XDM;

– Algorithm RDF→XML-XPath uses dereferencing and
sends a single query sent to the XDM.

Algorithm 3 details the RDF⇒XML-URI procedure.
Here, the function PushJoins propagates to Q X values
(XURIs and literals) from the tuples of bindings resulting
from Q R .

Example (RDF⇒XML-URI). Recall the XR query from
Fig. 2, where for simplicity we only consider the first XML
tree pattern Q1

X , and the full Q R . An XQuery serialization
of Q1

X is:

for $x1 in collection(’’XMLDB’’)//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

return ($x2/text(), $x4)

Algorithm 4: RDF⇒XML-XPath
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TR ← REval(Q R, IR)

2 TX R ← ∅
3 foreach tuple tR ∈ TR do
4 t ′R ← Deref(tR)

5 q ← Push Joins(t ′R, Q X )

6 TX R ← TX R ∪ πh(XEval(q, IX ))

Suppose that the evaluation of Q R(IR) has led to the
tuple of bindings with $A=#205, and assume XURI-in holds.
Then, Algorithm RDF⇒XML-URI pushes this XURI into
Q1

X , which turns into:

for $x1 in collection(’’XMLDB’’)//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where XURI($x4)=’’#205’’
return ($x2/text(), $x4)

where the function XURI($x4) is assumed to return the
XURI of the node to which $x4 is bound.

Algorithm 4 outlines RDF⇒XML-XPath. Here, the func-
tion PushJoins is slightly modified w.r.t. Algorithm 3: it
adds where clause conditions to Q X , stating that every
node labeled with a URI variable in Q X and participat-
ing in a join between Q X and Q R , should be on the path
obtained by dereferencing the respective URI retrieved by
Q R . Dereferencing is achieved in Algorithm 4 by the Deref
function.

Example (RDF⇒XML-XPath). Continuing on the last
example above, assume now that XURI-in does not hold
and that dereferencing #205 has led to the document URI
doc200.xml and the XPath/microblog/message[12]
/body[1]. Algorithm RDF⇒XML-XPath injects this
XPath into Q1

X transforming it into:

for $x1 in collection(’’XMLDB’’)//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where $x4 is doc(’’doc200.xml’’)/microblog/
message[12]/body[1]

return ($x2/text(), $x4)

where we used the XQuery predicate is to ensure that $x4
element is the one having the XURI #205. Clearly, the query
could have been written in a more compact manner as:
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Algorithm 5: RDF→XML-URI
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TR ← REval(Q R, IR)

2 UC Q ← ∅
3 foreach tuple tR ∈ TR do
4 UC Q ← UC Q ∪ Push Joins(tR, Q X )

5 TX R ← πh(XEval(UC Q, IX ))

for $x1 in doc(’’doc200.xml’’)/microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message[12],
$x4 in $x3/body[1]

return ($x2/text(), $x4)

We leave the task of recognizing this equivalence to
the XDM. Algorithms for simplifying such “intersection”
queries (in our example, node $x4 is reached by two differ-
ent paths) can be found in [25,26].

Algorithm 5 spells out RDF→XML-URI, which assumes
XURI-in and sends a single XML query to the XDM.

Example (RDF→XML-URI). Based on the previous exam-
ple, assume XURI-in, and that Q R returns two tuples with
$A = #205 and $A = #405. In this case, RDF→XML-URI
sends the single XQuery:

let $XURIList:=(’’#205’’, ’’#405’’)
for $x1 in collection(’’XMLDB’’)//microblog,

$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where XURI($x4)=$XURIList
return ($x2/text(), $x4)

in which the existential XQuery semantics of the list com-
parison in the where clause ensures that the URI of $x4
belongs to the $URIList.

Our example assumed that Q R returns bindings for just
one URI variable (namely $A). Along the same lines, at the
cost of more complex XQuery syntax (which we omit), this
single XQuery approach generalizes to the case where Q R

returns tuples of bindings for several URI variables.
Finally, Algorithm 6 describes RDF→XML-XPath,

which uses dereferencing and issues a single XQuery.

Example (RDF→XML-XPath). Consider XURI-in does
not hold and that Q R returns the two tuples with $A = #205
and $A=#405, dereferenced into/microblog/message
[12]/body[1] and /microblog/ message[22]
/body[1], respectively. In this case, Algorithm
RDF→XML-XPath issues the query:

Algorithm 6: RDF→XML-XPath
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TR ← REval(Q R, IR)

2 UC Q ← ∅
3 foreach tuple tR ∈ TR do
4 t ′R ← Dere f (tR)

5 UC Q ← UC Q ∪ Push Joins(t ′R, Q X )

6 TX R ← πh(XEval(UC Q, IX ))

let $NodeList:=(/microblog/message[12]/body[1],
/microblog/message[22]/body[1])

for $x1 in collection(’’XMLDB’’)//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where XURI($x4)=$NodeList
return ($x2/text(), $x4)

4.5 Materialize RDF, then query XML

Other approaches to query joined XML and RDF data involve
materializing data retrieved from one sub-instance into a tem-
porary container of the other sub-instance. In short, these
approaches push bindings into the data itself, rather than
pushing them into the query. Although the materialization
step may entail I/O costs, the advantage is that the query sent
to the target sub-instance does not contain any union and
can be kept small compared with those of the approaches
previously described.

We first turn to the case where Q R is evaluated first. Algo-
rithm 7 details how this join is executed. After extracting
tuples that result from answering Q R over IR (line 1), the
Materialize function stores these bindings into IX , creat-
ing a new sub-instance containing the actual data and the
newly added tuples (line 2). This new sub-instance, called
I ′X , is temporary and ceases to exist at the end of the algo-
rithm’s execution. Then, a new query Q′X is built (func-
tion TripleToTreePatterns) by turning all triple patterns in
Q to tree patterns (line 3). The last instruction of the algo-
rithm (line 4) retrieves the final result simply by evaluating
Q′X over I ′X . There are potentially many ways to material-
ize the additional tuples in the I ′X and converting triple pat-
terns to tree patterns directly depends on the representation
used. The representation we chose is presented in the next
example.

Example (RDF→XML-Data) From our running example,
suppose the bindings returned by Q R are:

($X =:Charlie, $Y = :x, $A = #205,
$B = #305)

($X =:Charlie, $Y = :x, $A = #205,
$B = #306)
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Algorithm 7: RDF→XML-Data
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TR ← REval(Q R, IR)

2 I ′X ← Materiali ze(TR, IX )

3 Q′X ← T ripleT oT reePatterns(Q)

4 TX R ← XEval(Q′X , I ′X )

Fig. 4 Additional tree pattern added to Q X

These bindings are stored in the XDM as a new document
such as:

<constraints>
<constraint>
<X>:Charlie</X><Y>:x</Y>
<A xuri=’’#205’’ /><B xuri=’’#305’’/>
</constraint>
<constraint>
<X>:Charlie</X><Y>:x</Y>
<A xuri=’’#205’’ /><B xuri=’’#306’’/>
</constraint>
</constraints>

Q′X is obtained by removing all triple patterns from Q
and adding the new tree pattern depicted in Fig. 4. Observe
that, once extracted from the RDM, XURIs cannot be stored
strictly as XML node URIs anymore. If we did so, the XDM
would contain distinct XML nodes with identical URIs,
which goes against our data model. To work around this,
we store XURIs as the value of a reserved attribute. This
explains why URI variables are typed as VAL variables in
the newly added tree pattern.

4.6 Materialize XML, then query RDF

Our last algorithm is the converse of the one presented above.
In this case, Q X is evaluated first. The tuples thus obtained
are stored in the RDM, and then a single query made of triple
patterns only is answered from the newly created RDM sub-
instance. Algorithm 8 details the process.

Example (XML→RDF-Data) Assuming the evaluation of
Q X over IX returns the following bindings,

($CA = <body>Visiting ..., $A = #205)

Algorithm 8: XML→RDF-Data
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TX ← XEval(Q X , IX )

2 I ′R ← Materiali ze(TX , IR)

3 Q′R ← T reeT oT riplePatterns(Q)

4 TX R ← REval(Q′R, I ′R)

we store them in the RDM sub-instance as a set of triples,
representing a specific tuple of bindings:

(urn:1, urn:val_CA, ’’<body>Visiting ...’’)
(urn:1, urn:uri_A, #205)
…

where urn:1, urn:val_C A, and urn:uri_A are URIs disjoint
from those of the RDF instance. The URIs and literals stored
in object positions are the values bound to these variables.

The function TreeToTriplePatterns in Algorithm 8 returns
a query Q′R made of the triple patterns of Q to which we add
the following ones:

($binding, urn:val_CA, $CA)
($binding, urn:uri_A, $X)
…

These patterns feature variables from the query $CA and
$A, in object positions, forming a join with the original triple
patterns of Q. The variable $binding in subject position joins
the additional triple patterns together ensuring that bindings
from the same original tuple will be considered together.

4.7 Pruning optimizations for RDF-then-XML

We now describe an optimization that can be applied to the
strategies binding first Q R and then Q X . For those algo-
rithms that use dereferencing (that is, RDF→XML-XPath
and RDF⇒XML-XPath), one may limit the amount of work
sent to the XDM by pruning some of the tuples tR as follows:

1. For each tree pattern of Q X and tuple of bindings tR ∈
Q R(IR), if tR contains multiple variables bound (in Q X )
to nodes of the tree pattern, check the document URIs
obtained after dereferencing these variables’ values from
tR . If two such URIs are not identical, discard tR . The rea-
son is that all XML nodes matching that Q X tree pattern
must belong to the same document. Therefore, Q R result
tuples that attempt to bind them in different documents
cannot lead to valid matches.

2. Consider a variable $X , which appears in Q X as an
XURI variable, and bound by Q R to a URI which is
subsequently dereferenced into an XPath expression xp.
Assume that the path on which $X appears in Q X is
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incompatible with xp, that is: for any XML sub-instance
DX , we have xp(DX )∩π$X (Q X (DX )) = ∅. Algorithms
for statically detecting such query independence are pro-
vided, e.g., in [27].

Algorithm 9 (RDF⇒XML-XPath-Pr) illustrates how to
extend RDF⇒XML-XPath to account for these two pruning
criteria. Each tuple tR of bindings returned by Q R is checked
for validity, according to the two criteria provided above.
First, the XURIs belonging to tR are dereferenced into a new
tuple t ′R (line 5). Then, the document URIs corresponding to
XURI variables bound to the same tree pattern are checked
for equality, at line 10; then, path compatibility is checked
between the linear XPath of each variable, at line 13. Only for
valid tuples of bindings, that is, those that pass successfully
both pruning criteria, do we push the joins into XEval as in
the previous algorithms (lines 16–17).

Example (RDF⇒XML-XPath-Pr). Consider an XR query
consisting of: Q R as in Fig. 2, and the tree pattern Q2

X of
the same figure. Assume for the purpose of the example,
that Q R returns a tuple of bindings tR with $B = #405 and
$C = #303. Moreover, assume that dereferencing returns:

– doc(#400)/html[1]/body[1]/div[1] for #405;
– doc(#300)/html[1]/div[5]/div[3] for #303.

Since the two nodes belong to distinct documents, tR is
not used to solicit XEval.

As an illustration of the second pruning rule, assume that
Q R returns a tuple with $B = #305 and $C = #405. In Q2

X ,
the variable $C is on the path html//div/div. This path
indicates that the parent of the node to which $C is bound is
labeleddiv, whereas the XPath resulting from dereferencing
#405 indicates that the parent should be labeled body. Thus,
we have detected an incompatibility between the two, and tR

is discarded.
In a similar way, RDF→XML-URI and RDF→XML-

Data could be extended with the same flavor of pruning,
leading to the respective variants RDF→XML-XPath-Pr
and RDF→XML-Data-Pr (omitted for brevity).

When both XURI-in and dereferencing are supported,
one may apply the same pruning technique as presented in
Algorithm 9 and push XURIs directly into the XML sub-
queries rather than the dereferenced nodes (lines 16 and 17).
This variant comes in two flavors, RDF→XML-URI-Pr and
its tuple-at-a-time counterpart RDF⇒XML-URI-Pr.

Putting it all together. Figure 5 systematizes the XRQ
evaluation algorithms discussed so far.

Algorithm 9: RDF⇒XML-XPath-Pr
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h, Q X , Q R)

Output: TX R = Q(I ), a set of tuples of bindings
1 TX R ← ∅
2 TR ← REval(Q R, IR)

3 foreach tuple tR ∈ TR do
4 valid:=true
5 t ′R ← Deref(tR)

6 foreach tree pattern txi of Q X do
7 Let $V 1

i , $V 2
i , . . . , $V ki

i be the XURI variables of t xi

which are bound in tR to the XURIs v1
i , v2

i , . . . , v
ki
i ,

respectively
8 Assume dereferencing returns the document URI d1

i and
the linear positional XPath xp1

i for v1
i , and similarly

(d2
i , xp2

i ) for v2
i , . . ., (dki

i , xpki
i ) for v

ki
i in tR

9 // Compare document URIs:

10 if d1
i = d2

i = . . . = dki
i then

11 // Check compatibility between the linear XPaths and
paths of the respective variables in Q X :

12 foreach $V j
i , 1 ≤ j ≤ ki do

13 if xp j
i is incompatible with the path on which $V j

i
appears in txi then

14 valid:=false;

15 if valid then
16 q ← Push Joins(t ′R, Q X )

17 TX R ← TX R ∪ πh(XEval(q, IX ))

5 The XR platform

We implemented the XR platform in Java 1.6 (16.000 lines);
Fig. 6 depicts its architecture. The XR platform builds on
pre-existing data management systems: one for XML (XDM)
and one for RDF (RDM). Such systems are integrated within
through wrappers that allow delegating them the evaluation
of XML, respectively, RDF sub-queries of XR queries. Since
XRQ corresponds to well-established conjunctive subsets of
XQuery and SPARQL, most existing XDM and RDM may
be plugged in our platform.

5.1 Existing wrappers

As RDF query engines, we have experimented with RDF-
3X [28], established as a very efficient RDF query processor;
we used the version 0.3.7. We also implemented a wrapper for
Jena 2.6.4, a widely used open-source suite. Our experiments
with Jena have shown that it does not scale beyond a few
million triples, and thus, our experiments focus on RDF-3X.

Concerning the XML query engine, our experiments use
the BaseX platform (http://basex.org), version 7.3. BaseX is
a quite recent XML store which we found to be competitive
w.r.t. QizX and MonetDB, in recent tests that we ran com-
paring them on the XMark [29] and XPathMark [30] bench-
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Fig. 5 Taxonomy of the proposed XRQ query evaluation algorithms

Fig. 6 Architecture of the XR platform

marks. We used BaseX “off-the-shelf” and interacted with it
through its XPath- and XQuery-compliant query interface.
Unless otherwise specified, thus, BaseX is our XDM. It does
not satisfy XURI-in nor XURI-out.

Given the importance of XURIs in the XR model, we also
wanted to test the case when we have access to the XDM’s
internals, and in particular to its internal node IDs, exposed
as XURIs. For that purpose, we used the XML query engine
of the ViP2P project [31] (see also http://vip2p.saclay.inria.
fr), which we had developed in the group. ViP2P supports
the XML tree pattern dialect introduced in Sect. 3.

The ViP2P XML engine is based on SAX and evaluates
tree patterns by traversing the complete document, comput-
ing and returning node XURIs dynamically as required by
the query. Thus, ViP2P satisfies XURI-out.

ViP2P also satisfies XURI-in, but not very efficiently: to
find the XML element having a given XURI, it traverses
the complete corresponding document from the beginning
and stops upon encountering the respective element. To get
more efficient support from ViP2P, we exploited its built-in
materialized view-based rewriting framework [32] and con-

sidered the optimistic case in which when processing a query
Q = (h, Q X , Q R), each tree pattern in Q X is available as a
materialized view. This is obviously not always guaranteed;
therefore, our experiments with ViP2P are aimed as a “lower
bound” of sorts, for the case when (i) we do have access to
the XDM internals and (i i) we are able to tune the store to a
specific workload.14

5.2 XR’s own query engine

To combine partial query results, the XR platform provides
its own execution engine, comprising selections, projections,
hash joins, etc. It also includes a generic fetch operator which,
depending on the context, performs the function of REval
and XEval introduced in Sect. 4. The platform is currently
single site, but to exploit the parallelization opportunities pro-
vided by nowadays’ multicores, in our implementation, all
the fetch operators of an execution plan are launched simulta-
neously when the plan execution begins (as opposed to letting
the implicit iterator-based scheduling [33] of our operators
trigger them). Our tests have shown that such parallel, eager
fetch execution significantly speeds up the query evaluation.
This is because the fetch operators ship potentially complex
sub-queries to the underlying XDM and RDM, and thus, their
evaluation is a significant part of the overall processing time.

5.3 URI management

For URI management (XURI-in, XURI-out, and Deref), we
resorted to the following techniques.

When using BaseX, we store within the XML instance, the
XURIs of only those XML nodes which are referred to by the
RDF sub-instance. Specifically, let d be an XML document
and n ∈ d a node, and dURI:lnID be the XURI of n, where
dURI is the URI of d and lnID is the local identifier of n
within d. If dURI:lnID appears within the RDF data instance,

14 One could further speed up ViP2P by (i) indexing its views on the
XURI attributes that are passed as bindings from the RDF query and/or
(i i) pushing value joins among Q X tree patterns within the material-
ized views, etc. We did not pursue these alternatives, as they are rather
orthogonal to the main purpose of this paper.
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then within d, we add a special attribute to n, of the form
id=”lnID”, which the run time re-assembles with dURI
into n’s full XURI. The module inserting such IDs is the
embedder in Fig. 6.

The advantages of this approach are: (i) both XURI-in and
XURI-out can be supported through trivial XQuery rewrit-
ings, and (i i) some underlying systems can be tuned to index
these attributes and therefore improve the performance of
(XR-specific) joins between the XML and RDF data. One
may also consider leveraging directly the internal ID repre-
sentation schemes specific to most XDMs, as we did in a
previous version of this work [34].

For BaseX and ViP2P, to implement the Deref func-
tion, we store in a dedicated index (materialized in the
XR platform but outside the XML data management plat-
form), for each node URI, the parent–child XPath query
(with positional predicates) leading from the document
root to the respective node. For instance, this index asso-
ciates with doc1 : node15 the corresponding node XPath,
e.g., /a/b[1]/c[2]/d[1]. Clearly, once stored, these
XURI/XPath pairs can be indexed in one or two ways
(e.g., in persistent hash tables provided by the BerkeleyDB
library [35]) so as to perform the dereferencing in constant
time. In our platform, we indexed the XPaths with the XURIs
as look-up keys. This approach for implementing Deref is
non-intrusive and can be applied on the top of any existing
system.

The XR plan generator takes as input an XR query and
a given query evaluation strategy among those described in
Sect. 4, and produces an execution plan implementing the
respective strategy for that query. As explained in Sect. 4.2,
one needs to decide how to group the XML sub-queries sent to
XEval, i.e., whether to delegate value joins among XML tree
patterns to the underlying database or not. To determine this,
the XR platform includes a calibration module which sends to
the XML database a set of fixed queries whose performance
it then compares with the case when value joins among XML
tree patterns are run in the XR platform, and these tree pat-
terns are run independently on the XML database.

Finally, the XR platform includes an XR data generation
module we devised, which we further detail when presenting
our experimental evaluation, in the next section.

6 Experimental evaluation

This section presents the findings of our experimental study.
Section 6.1 describes the experimental settings we used to test
our algorithms. Section 6.2 provides an extensive comparison
of all our XR query evaluation algorithms on a small XR data
instance, illustrating their performance and allowing us to
discard the most inefficient ones. Section 6.3 focuses on the
more efficient ones and studies their scalability with respect

to the size of the data instance. In Sect. 6.4, we compare
these algorithms based on two quite different XDMs, then
we conclude.

6.1 Experimental settings

Datasets We have used a set of synthetic XR datasets, gen-
erated in two stages as follows.

First, we use the XMark [29] XML document generator
to produce a set of XML documents.

Second, we generate a set of RDF triples, some of whose
subject and object values are URIs of nodes from the previ-
ously generated documents. Specifically, 1/2 of the subjects
are URIs of XML nodes, while the others are synthetic URIs,
picked from a fixed pool using a uniform distribution; 1/3 of
the objects are XML node URIs, and 1/3 are picked from the
fixed pool of subject URIs, while the last 1/3 are taken from
a distinct (disjoint) URI set. The values of properties in the
RDF data are picked from a set of 1, 185 distinct properties
present in the DBPedia database [5], using a Zipf distribution.

This data generation approach aims at resembling actual
settings where some RDF triples annotate the XML nodes
with properties from a given vocabulary, some triples connect
the nodes to each other, and finally, some other triples are not
related to the document nodes (but may still join with those
that are).

We moreover controlled:

– The size factor of the XMark XML generator, denoted
i . We experimented with size factors of 1, 10, and 100,
which, respectively, lead to XML datasets of 100 MB,
1 GB, and 10 GB.

– The splitting of the XML content across documents. This
parameter matters, because each XML tree pattern can
only match within a single document; moreover, XML
query processors often perform better on smaller docu-
ments. Thus, we generated the XML data: all in a single
file; split in n files where n is the XMark input size factor
(thus, each file is of about 1MB); finally, split in XML
files of approximately 1000 nodes each. Unless specified
otherwise, in this paper, we report on this last option,
which enabled us to best compare our algorithms. Results
with other XML segmentation sizes are provided on our
online experimental site [36].

– The ratio between the number of XML nodes and the
number of RDF triples in the instance, denoted j . We
chose size ratios of 1/3, 1 and 3. This parameter was
introduced in order to control the amount of connections
between the XML and RDF parts of the dataset.

We denote by Di
j the dataset obtained by setting the

XMark input size to i and the RDF-to-XML ratio to j .
For instance, D10

1/3 is a dataset generated with size factor
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Table 1 XR datasets used in the experiments

Dataset sizes #RDF edges
(millions)

#XML edges
(millions)

D1
1/3 0.5 1.6

D1
1 1.5 1.6

D1
3 5 1.6

D10
1/3 5 16

D10
1 15 16

D10
3 50 16

D100
1/3 50 167

10 (approximately 1GB and 16M XML nodes), and 1 RDF
triple for 3 XML nodes, i.e., approximately 5M triples in this
case. The size of the datasets w.r.t. the input size factor is
reported in Table 1.

Workloads We hand-crafted four workloads of eight queries
each. Queries are ordered by increasing complexity, from
one tree pattern joined with one triple pattern, to three tree
patterns joined with two triple patterns. On average, a tree
pattern has 4.7 nodes. Each query features joins: between the
triple patterns, between the tree patterns, and between triple
and tree patterns, on node URIs. Query Q7 features a Carte-
sian product in Q X , whereas the query as a whole is Cartesian
product-free. Finally, Q8 features a Cartesian product among
Q R triples, although the query is overall connected through
shared variables among Q X and Q R .

All workloads share the tree and triple patterns of the first
workload W1. To gauge the impact of the selectivity of each
sub-query, we have added selections in the other workloads
as follows. In the workload W2, selections have been added to
the RDF triple patterns only. In the workload W3, selections
have been placed on XML tree patterns only, while workload
W4 features the selections of both W2 and W3, on the XML
and RDF patterns.

Encoding URIs for BaseX and consequences for querying
As explained in Sect. 5, BaseX satisfies neither XURI-in
nor XURI-out, and to be able to test all our algorithms on
BaseX, we added xml:id attributes to only those XML
nodes whose XURIs appear in the RDF sub-instance. With
this encoding of XURIs in the data, BaseX can be considered
as satisfying both XURI-in and XURI-out.

It turns out that this simple encoding improves the per-
formance of Q X evaluation, even for simple strategies such
as XML||RDF. The reason is that whenever XURI-out is
assumed, the XQuery syntax of Q X involves the xml:id
attribute. This attribute is present only in those nodes which
appear as subjects or objects within the RDF sub-instance.

Thus, Q X filters out of the XML instance the XML nodes
whose URIs do not appear in the RDF instance.

6.2 Comparison of all strategies

Our first set of experiments compares all the strategies
described in Sect. 4, on the dataset D1

1 and on all workloads.
In this experiment, we sent to the RDM the connected com-
ponents of Q R one by one, whereas to the XDM we sent
only isolated tree patterns and performed all the remaining
joins using our own operators, at the level of the XR engine
and outside the XDM. Our calibration tests indicated that
these choices allowed us to maximize the performance of
the RDM, respectively, XDM. Figure 7 presents the running
time (limited to our timeout of five minutes) for workloads
W1 to W4 in this setting.

A first remark is that the workload W1, with less selec-
tions in Q X and Q R , is the hardest, that is, for each strategy
and query Qi , the strategy’s running time is longest on the
Qi from W1. Similarly, W4, featuring selections both in the
XML and RDF sub-queries, is the easiest. The workloads W2

and W3, having selections only in the RDF, respectively, the
XML part, are in-between; the “harder” queries (Q5 to Q8)
are poorly handled in both workloads, while the “simpler”
queries (Q1 to Q4) are evaluated more efficiently in their
W2 versions than in their W3 counterparts. This is because
a selection has a very significant impact on the amount of
data manipulated by Q R , turning, for instance, a triple of the
form ($x, $y, $z) which matches the whole RDF sub-instance,
into one of the form ($x, :p1, $z) matching only a few
triples. In contrast, a selection added to Q X may turn, e.g.,
/site//person into /site//person[age=”20”],
still a sizeable reduction in the result size, but not as dramatic
as in the case of RDF.

Our second remark concerns the tuple-at-a-time strate-
gies from the RDF-to-XML family, those whose names
include RDF⇒XML (and which are shown in oblique dashed
bars in the Figure). Overall, these strategies perform very
poorly, for all but a few selective queries in W2 and W4.
Among the worst are RDF⇒XML-URI (Algorithm 5) and
RDF⇒XML-XPath (Algorithm 6), running out of time for
all but seven (respectively, two) queries. The tuple-at-a-time
RDF⇒XML algorithms are slow because of their numerous
calls to the XML engine. Moreover, RDF⇒XML-URI is bet-
ter than RDF⇒XML-XPath. This is because RDF⇒XML-
URI assumes XURI-in and thus performs the join between
the RDF bindings and the XML database, on the xml:id
attribute. RDF⇒XML-XPath requires evaluating numer-
ous linear XPath expressions, which slows down execu-
tions significantly. Finally, tuple-at-a-time strategies with
pruning, having names of the form RDF⇒XML*Pr, bring
only marginal performance improvements. Based on these
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Fig. 7 XR query evaluation strategies compared to workloads W1 −W4 and dataset D1
1

123



Growing triples on trees 607

experiments and many similar others, we decided to dis-
card the tuple-at-a-time RDF-to-XML strategies from further
tests.

A third remark is that among the remaining strategies,
pruning does help. For instance, RDF→XML-XPath-Pr per-
forms in many cases better than RDF→XML-XPath; the
latter is overall not competitive; thus, we will omit it from
further tests. Similarly, RDF→XML-URI-Pr is often better
than RDF→XML-URI.

Based on this analysis, in the following, we only con-
sider the strategies showing acceptable performance in
Fig. 7, namely: XML||RDF, XML→RDF, RDF→XML-
URI, RDF→XML-URI-Pr and RDF→XML-XPath-Pr.

6.3 Scalability

In this second batch of experiments, we focus on the scal-
ability of the competitive strategies when the size of the XR
data instance grows. For clarity, we needed an aggregate mea-
sure to characterize the cumulated size of the XML and RDF
sub-instances. We chose the total number of edges in the data
instance, that is: the number of XML nodes (we can view each
of them as being at the lower end of an edge in the respective
tree) plus the number of RDF triples (each triple can be seen
as an edge between its subject and object). We used datasets
of various sizes, ranging from D1

1/3 to D100
1/3 (the exact cardi-

nality characteristics of these datasets are listed in Table 1).
For instance, for D100

1/3 , 217 M edges correspond to a total
of 17 GB of data (11 GB of XML and 6 GB of RDF). We
ran the queries of workload W4, since its selections both in
the XML and RDF sub-queries made it closest to real-world
scenarios.

Figure 8 shows the variation of the evaluation times when
the dataset (measured in edges) increase. Notice the loga-
rithmic scale on both axes. As in the previous experiments,
we used a time-out of 5 minutes and did not plot the runs
interrupted at the time-out.

For the less complex queries Q1− Q4, all strategies scale
up to the largest data size and roughly linearly. The algo-
rithms from the RDF→XML family, namely RDF→XML-
URI, RDF→XML-URI-Pr and RDF→XML-XPath-Pr per-
form best for the most selective queries (Q1 to Q4). The
advantage of the pruning based strategies against the plain
RDF→XML-URI fades out at large data scales, since the
time spent comparing XURIs (or XPaths) offsets the benefit
of pruning the binding tuples sent to the XDM. Strategies
XML||RDF and XML→RDF exhibit similar behavior and
also scale roughly linearly. While the conceptual difference
between independent and dependent execution is important,
in practice, the difference may be smoothed out by the fact
that for both XML||RDF and XML→RDF, when encoding
XURIs as XML attributes, the XQuery corresponding to Q X

operates quite some filtering on the XML sub-instance, even

in the absence of passed XURIs (as we have explained in
Sect. 6.1).

For the more complex queries Q5−Q8, Fig. 8 shows that
RDF→XML-XPath-Pr takes longer than the time limit in
most cases. This is because in this strategy, dereferencing
entails many individual XPath expressions packed into the
single XQuery sent to the XDM, which fails to process them.
The other strategies fare better; remember that the curves
end before the first point that would cross the time limit.
Interestingly, XML||RDF behaves well up to the largest data
size on Q8, the query with a Cartesian product within Q R ,
thanks to the optimization consisting of sending to the RDM-
connected queries only. As an example, on the smallest data
instance, Q8 is evaluated by joining the result of one triple
pattern (approximately 150 triples) with the XML tree pattern
results (approx. 14.000 tuples), and then with the result of the
second triple pattern (200.000 triples), leading to a result of
1 triple. This demonstrates the interest of carefully choosing
the queries to be delegated to the XDM, respectively, RDM,
as discussed in Sect. 4.1.

Each strategy involving data materialization presents a
similar trend with its non-materializing counterpart, but
with slightly worse performance. For instance, RDF→XML-
Data is generally one order of magnitude slower than
RDF→XML-URI, while RDF→XML-Data-Pr tightly fol-
lows the performance of RDF→XML-URI-Pr. This is due to
the materialization cost, which involves disk I/O. The main
advantage of those strategies, however, lies in their robust-
ness. As selectivity decreases, strategies that pass informa-
tion at the query level do not scale, while materialization pays
off. Note that, curves do not climb monotonously due to the
fact that each dataset was generated independently. There-
fore, larger datasets do not necessarily include smaller ones.
This is particularly obvious in Q7 with strategy XML→RDF-
Data where response time suddenly declines for the largest
dataset. In this case, not only no materialization takes place,
but RDF-3X statically detects that the final query returns an
empty result.

6.4 Experiments using VIP2P

The last experiments we present compare two quite differ-
ent XDMs: on one hand BaseX off-the-shelf, and on the other
hand our own ViP2P engine, both of which were detailed
in Sect. 5.1. We recall that unlike BaseX, ViP2P natively
supports XURI-out, simplifying the implementation of the
XML||RDF and XML→RDF strategies. Moreover, ViP2P is
able to exploit materialized views, expressed as joins over
tree patterns, to efficiently rewrite queries [32].

To see if the benefits of such view-based techniques trans-
fer to XR query evaluation, prior to running an XR query
Q, we materialized each tree pattern in Q X as a separate
view. This admittedly puts ViP2P at an advantage compared
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Fig. 9 Evaluation times for workloads W1 to W4 on dataset D1
1 using

ViP2P and, respectively, BaseX

to engines which do not support XML materialized views;
indeed, the latter are not as frequently provided as is the case
for XML indexes. Therefore, our motivation, for including
VIP2P with this configuration in our tests, was to illustrate
the performance than can be achieved using an appropriately
set up XDM; view-based rewriting techniques, e.g. [15,32],
are likely to be gradually included in popular XML databases
as they mature.

Figure 9 depicts the running times of strategies XML||RDF
and XML→RDF on the workload W4, when the XDM is
ViP2P and BaseX, respectively (the BaseX times are from
Fig. 7, re-plotted here as a reference). Overall, ViP2P per-
forms better than BaseX for both strategies, in particular
more than an order of magnitude faster for Q6 and Q7. For
the other queries, the times differ by less than one order of
magnitude, and overall, the trends are similar - “hard” queries
for a strategy and system tend also to be comparatively hard

for the other system using the same strategy. This gives some
support to the idea that our XRQ evaluation strategies are not
tied to the particulars of one engine and can accommodate
different underlying systems.

In Fig. 9, we stopped execution at 5 minutes. All runs
ended much faster, except for XML→RDF on ViP2P, on the
queries Q2, Q4, Q7, and Q8. We investigated this and found
a surprising explanation. In these cases, XML→RDF sends
to RDF-3X the XURIs retrieved by ViP2P. Because ViP2P
assigns XURIs to all nodes (whether or not these XURIs
appear in the RDF data), some of the XURIs ViP2P sends to
RDF-3X are not present in the RDF database. For reasons
not yet clarified, RDF-3X is extremely slow on queries where
a variable must belong to a given set of URIs, if some of these
URIs are not in its RDF database. The difference w.r.t. the
same query but using only URIs from the RDF database is
a factor of more than a hundred. We have isolated a small
example exhibiting this problem and contacted the system
authors; when the problem is clarified or solved, we will
update the corresponding graphs on our online experiment
site [36]. Except for these cases, RDF-3X was overall fast
and accurate in our tests; thus, we kept it as the RDM of
choice for our experiments.

Interestingly, when XML→RDF times-out on ViP2P,
XML→RDF on BaseX runs typically fast! This is because,
as explained in Sect. 6.1, the XURIs sent by BaseX to the
RDM are only those of nodes referred to by the RDF sub-
instance. Therefore, the unexpected behavior of RDF-3X is
not triggered.15

6.5 Experiments conclusion

Our experiments allow us to establish the following obser-
vations. First, naïve tuple-at-a-time strategies for passing
XURIs from the RDM to the XDM are prohibitively slow,
even when applying pruning optimizations; similar strategies
which pass a single query to the XDM perform much better.
Second, XML||RDF and XML→RDF are clearly the best
on small data instances (Fig. 7) and are robust (especially
XML||RDF) up to very large data instances (Fig. 8). Thus,
if the XDM supports XURI-out, one can safely choose the
XML||RDF or XML→RDF strategies. This supports the idea
that deploying XR based on an XDM, whose internal node
IDs can be exposed as XURIs, leads to simple yet efficient
and robust XRQ evaluation strategies.

For queries and data instances of moderate size, how-
ever, the pruning based strategies RDF→XML-URI and
RDF→XML-XPath-Pr can be faster by one order of magni-
tude than XML||RDF and XML→RDF; RDF→XML-URI

15 This interaction between XURI encoding and RDF-3X performance
can be reasonably seen as an “implementation accident”; we only
explain it for completeness.
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requires XML-in, whereas RDF→XML-XPath-Pr does not.
The advantages of RDF→XML-XPath-Pr are erased if
many XURIs are passed from the RDM to the XDM, e.g.,
in Q5 − Q8 in Fig. 8, since the evaluation of numer-
ous linear XPath expressions (to check whether the nodes
from the XML and RDF sub-instances coincide) incurs high
costs. Strategies involving materialization, although gener-
ally slower than their information-passing counterparts, tend
to scale well beyond them.

Finally, we have shown that improvements to the per-
formance of the underlying XDM, in particular by means
of storage tuning using VIP2P as the XDM, translate into
respective gains for the overall XR query performance. This,
as well as our XR platform design which communicates with
existing systems through wrappers, and our design of algo-
rithms depending on the hypotheses and capabilities of the
underlying XDM, give us confidence that the XR model can
be efficiently deployed in a variety of settings.

7 Related work

Two major lines of work are closely related to this paper.
The first shares our motivation of annotating structured data,
while the second is related to achieving interoperability
between the XML and RDF data models.

7.1 Standards and tools for annotated documents

Since the emergence of RDF, a set of tools were proposed to
exploit the RDF model and enable users to attach semantic
annotations to Web pages. The representation of annotations
on XML documents has inspired many projects focusing on
a data model perspective [37,38], or an end-user perspective,
with tools to annotate web pages manually [39,40] or in a
semi-automatic fashion [41,42]. A comprehensive overview
of annotation systems can be found in [43]. However, these
works focus solely on the problem of storing and querying
RDF annotations, and they do not consider the possibility
to query simultaneously the structured documents and the
annotations on top of them.

Many applications require smart warehousing of struc-
tured (or simple text) documents, notably on intranets, where
one tries to make the most out of the various documents
created by employees on projects which may be similar to
each other. In the French R&D project WebContent [44], we
have worked on building tools for warehousing semantically
annotated pages gathered from the Web. In WebContent, Web
crawlers gathered pages on specific topics, e.g., specialized
press reviews of aircraft for the Airbus project partner; such
pages were then cleaned of unwanted banners etc., a nat-
ural language analysis was run and specific entities (such as
e.g., “Airbus A320”) were localized in the text. Accordingly,

the documents were annotated with this named entity, allow-
ing to connect them to specific concepts in the ontology,
such as “passenger airplane,” “EU-manufactured aircraft”
etc. The XR model extends and generalizes the WebContent
data model by allowing XML nodes to be referenced in RDF
in all places where a URI can appear as opposed to only sub-
jects, as was the case in WebContent. The unified language
of XR is also novel and specific to this work. It provides a
flexible framework for capturing such semantic annotations
at a fine granularity and processing complex queries on top
of them.

The problem of publishing RDF annotations within XML
documents has been tackled by recent technology stan-
dards applying in the XHTML context: microformat [45],
eRDF [46], and W3C’s RDFa [47] standard. The goal of
these works is to provide specific syntax enabling the pub-
lisher (author) of a Web page to embed some semantic anno-
tations in the page itself. However, such models can only be
used by those having the right to modify the page, which is
quite restrictive. Moreover, the model does not lend itself to
the situation when one user wishes to keep her annotations of
a given document private (or share only specific annotations
with specific users).

7.2 Interoperability between XML and RDF

RDF is a model rather than a language. As such, it has several
serializations, the most popular of which is actually based
on XML. However, any particular way of encoding triples
into trees must somehow arbitrarily pick or create root ele-
ments without a clear RDF meaning, while a central RDF
feature, namely, joins on URIs appearing in several triples,
is encoded by sharing XML attribute values. Processing an
RDF query on such XML-encoded data leads to XML queries
with numerous value joins, whose evaluation is still challeng-
ing for current XML query processors [22], an observation
confirmed also in our previous work [48]. Thus, one can con-
sider the XML serialization of RDF as helpful for data sharing
but not for human consumption, nor for query processing.

In the same vein, there have been several proposed lan-
guages which allow, as described in W3C’s GRDDL recom-
mendation [49], the transformation of XML data to RDF and
vice versa [7,50]. In the literature, these are known as lift-
ing and lowering, respectively. Some of this works consider
employing the query language of one model to query the
other (e.g., using XQuery to query RDF) [51,52] or building
hybrid languages that embed constructs of a query language
for one model (e.g., XPath) into a query language for the
other model (e.g., SPARQL) [53].

To this family also belongs XSPARQL [7], which allows
uniform querying of XML and RDF interleaving the XQuery
and SPARQL syntaxes. XSPARQL queries may be trans-
lated either completely into XQuery, or partially to XQuery
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with custom function calls to a SPARQL engine. From
this perspective, the XSPARQL execution engine compares
directly with our current XR engine, since they both delegate
processing to existing underlying engines. The evaluation of
XSPARQL, based on XMark queries, is quite comparable
with ours, although they do not consider our URI-based con-
nections between the two sub-instances. Interestingly, they
obtain much better performance when translating XSPARQL
to finely tuned XQueries, whereas most queries do not work
for 100 MB of data (the size of our smallest dataset!) if they
are partially translated into SPARQL. By taking some of the
joins outside the XDM and RDM and intelligently delegating
sub-queries, in XR we were able to scale two orders of mag-
nitudes beyond the XSPARQL engine. Finally, an interesting
work [54] presents a data model framework rich enough to
capture side by side XML and RDF; however, they do not
share the particularity of XR consisting of considering XML
nodes as resources and injecting them into the world of RDF
statements.

The transformation of XML into RDF so that both can
be queried with SPARQL is studied in [53,55,56]. This con-
version brings both models to the level of the more complex
(RDF), which provides sufficient generality, but loses the
performance benefits attained by current XQuery processors
on many types of queries (and in particular on XPath 1.0
on which many of them perform quite well). Moreover, this
XML-to-RDF conversion does not envision treating XML
nodes as resources either.

We have previously outlined the core XR ideas in a short
paper [34] as well as in a longer article presented in an infor-
mal setting (no proceedings) [57]. These works have intro-
duced the data model and query language; the evaluation
algorithms at the core of the current submission are new.
Among the related works referenced above, XR also stands
out by having been implemented in a full platform and scaling
two orders of magnitude beyond comparable systems [53].

8 Conclusion and perspectives

Structured text, e.g., Web contents, electronic books, or enter-
prise documents, is frequently encoded in XML and is often
valuable in this structured, linear form, which comprises not
only facts (or data), but also a linear discourse building ideas
from paragraphs and metaphors from words; the original text
also serves as reference and lends its authority, e.g., as a
proof or a citable source. Contemporary means of exploiting
and enriching electronic-structured text require the ability to
interconnect it with existing data- and knowledge bases, and
to do so in a manner as automatic as possible. A database of
documents enriched this way allows not only to better exploit
the text, but also to better illustrate and connect the resources
and concepts of the database through the documents.

While many works have focused on devising automatic
and semi-automatic text annotation tools, drawing on Nat-
ural Language Processing capabilities, we have considered
the problem of modeling and efficiently querying such cor-
pora of interconnected documents, facts, and concepts. Our
first goal was to re-use whenever possible; thus, we devised
the XR data model that naturally extends the W3C’s existing
XML and RDF model, connecting them on the core idea that
any XML node may have a URI, which in turn may appear
in the RDF database in any place where a URI is allowed
to be. (This may be easily extended to allow annotations at
even finer granularity, e.g., a word appearing in a text node.)
We have accordingly proposed a core XR query language,
combining the conjunctive cores of XML and RDF standard
query languages, i.e., triples and tree patterns possibly con-
nected through various flavors of joins. We have then inves-
tigated efficient light ways of processing XRQ queries, rely-
ing on existing XML, respectively, RDF storage, and query
engines. It turns out that the central connection made in the
XR model on XML node URIs requires some care, given that
XML node identity is implicit in the XML model and not
necessarily explicit. We identified the core hypothesis which
the XDM may or may not satisfy, and accordingly devised
and implemented thirteen XR query evaluation algorithms
(Fig. 5), some of which exploit some simple optimizations.

We have built an XR platform, which interfaces with vari-
ous XML, respectively, RDF systems by means of wrappers,
and experimented with a variety of systems including Jena,
RDF-3X, MonetDB/XQuery, QizX, BaseX, and our in-house
ViP2P XML query processor. We present the results obtained
with the most stable and efficient platforms, which we found
to be RDF-3X, BaseX, and ViP2P (the latter hand-tuned
for performance). Our experiments demonstrate that there
are wide performance differences between various strategies
and that the most efficient (XML||RDF and XML→RDF)
scale up well on databases of a total (XML+RDF) size of
up to 17 GB (210 millions edges); however, in specific cases
(moderate-size databases and simple queries) other strate-
gies, and in particular RDF→XML-XPath-Pr may be much
faster.

Based on these observations, our next task is to devise
a global XR optimizer capable of automatically selecting
the most appropriate strategy for a given XR instance and
XR query. As ingredients to this optimizer, we plan to plug
the query cardinality estimation components we have previ-
ously built and used in our prior works for conjunctive RDF
queries [58] and conjunctive tree pattern queries [59].

In a recent work [60], we integrated the XR platform into a
rich Web browser interface, to enable scenarios such as those
presented in the Introduction. We are currently working on an
extension of the XR query language to enable it to return XR
instances (as opposed to tuples of bindings as presented in
this paper), continuing our first attempt in this direction [57].
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With this language, closed under composition, we envision
various new research directions, such as view composition,
view-based query answering, as well as problems related to
data exchange rules. An XR data instance, combined with a
set of rules, would provide an elegant framework for XML-
RDF data exchange and permit querying intensional XML
data, which is a little-studied problem.

We believe that in today’s annotated, commented, shared,
and fact-checked Web, annotated documents will be increas-
ingly adopted. The purpose of this work was to set up a
database foundation for expressively and efficiently exploit-
ing such interconnected databases of structured documents,
facts, and knowledge.
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