1t’s Alivel

Continuous Feedback in Ul Programming

Sebastian Burckhardt Jun Kato

Manuel Fahndrich The University of Tokyo
Peli de Halleux

Sean McDirmid

Michal Moskal

Nikolai Tillmann

Microsoft Research

Live Programming : Archer Analogy

[Hancock, 2003]

e Archer:
aim, shoot, inspect, repeat
%5 O
S
* Hose: ‘& _
aim & watch ~5 “ ‘

Live Programming : Archer Analogy

[Hancock, 2003]

e Archer:
aim, shoot, inspect, repeat -
e edit, compile, test, repeat @
o~
* Hose: ‘& _
aim & watch ~5 “ ‘

e edit & watch

Quick Demo:
What is Live Programming?

What is TouchDevelop?

Question:
How to do live programming?

* Target:
Event-driven apps with graphical user interfaces (GUI’s)
e User input events (tap button, edit text, ..)
* |/O events (e.g. asynchronous web requests)

* We can think of code editing as an event
(replace old program with a new one)

e What should we do in this situation?

on code changes,
just replay execution from
beginning

How to do live
programming?

How to do live

on code changes, orogramming?

just replay execution from

beginning Replay
Based

* Inputs?
e Must record or repeat user inputs and 1/O
* Divergence?
* Recorded events may no longer make sense after code change
* Side effects?
* Replaying external side effects can have surprising consequences
* Performance?

* Apps with GUIs can run for a long time, replay not efficient

How to do live

on code changes, .
programming?

just replay execution from

beginning

Replay is difficult. Worse: it does not always make sense.
* Inputs?

e Must record or repeat user inputs and 1/O
* Divergence?

* Recorded events may no longer make sense after code change

* Side effects?
* Replaying external side effects can have surprising consequences

* Performance?
* Apps with GUIs can run for a long time, replay not efficient

Widen the Scope.

Question:
How to do live
programming?

Widen the Scope.

Question 1: Question 2:
How to program event- How to do live
driven apps with GUIs? programming?

Stateless
Model-
View

Widen the Scope.

Question 1: Question 2:
How to program event- How to do live
driven apps with GUIs? programming?

Question 1: How to program GUIs?

* Model-View-Controller:
Well established pattern for interactive applications

* Many variations exist

View trigger Nefolaluge]Il=1s
Ul Elements Event handlers

Model
Data definitions

Question 1: How to program GUIs?

* Model-View-Controller:
Well established pattern for interactive applications

* Many variations exist. We eliminate controller and
put event handlers into the view.

View
Ul Elements
Event Handlers

\Yi[eYel=]
Data definitions

Question 1: How to program GUIs?

* Model-View-Controller:
Well established pattern for interactive applications

* Many variations exist. We eliminate controller and
put event handlers into the view.

View .

Ul Elements * Key question:
Event Handlers How to .defl.ne
and maintain

Model correspondence
Data definitions between view
and model?

How to program GUIs?

Program =
Model +
View-Construction +
View-Update

* Model: Data definitions that define the model

e View-Construction: Code that defines how to construct
the view for a given model

* View-Update: Code that defines how to update the view
in reaction to model changes

How to program GUIs?

Program =

Mode
View-Construction =+
View-Update

Redundant

* Model: Data definitions that define the model

e View-Construction: Code that defines how to construct
the view for a given model

* View-Update: Code that defines how to update the view

in reaction to model changes -
rror prone

How to program GUIs?

Stateless View

Program =
Model +
View-Construction

* Model: Data definitions that define the model

e View-Construction: Code that defines how to construct

the view for a given model o
Update is simple: throw

away old view, build new
one.

Example.

entryl entry2

add

Program =
Model +
View-Construction

Very simple app:
list of strings.

User can add entries by hitting
the “add” button.

View-Construction Example

Example Mode!

entries = [“entryl”, “entry2”]
field = “entry3”

entryl"entryz

Execute
view
construction

code

Vert. stack
Hor. stack Hor.stack
Model ”
label | label a input
data entries: String Collection entryl | entry2 button field
' g +handler

data field : Strin
g View = Tree, decorated with

attributes and event handlers

How to write view construction code?

Many frameworks are hybrids between a general-purpose
language and a declarative language (e.g. C# + XML).

We would prefer: stay within single host language, but
make code look as declarative as possible.
Host language for our prototype: TouchDevelop

Host language in the paper: lambda-calculus

|[dea: extend host language

» Special construct: nested “boxed” statements

boxed {

.... hested code here....
}

* When executing, creates box tree implicitly

 view structure is implied by program structure, no
need for programmer to manipulate collections!

 Code looks similar to declarative code.

Code Example.

entryl entry2

add

Model

data entries: String Collection

data field : String

display View-Construction Code
boxed
box = use horizontal layout
for each s in entries do
boxed
labelstyle()
S — post
boxed
box = use horizontal layout
boxed
buttonstyle()
"add" - post to wall
on tapped(() => entries - add(field))
boxed
inputstyle()
box = edit(field, (x) => field := x)

function buttonstyle()
box - set border(colors - foreground, 0.1)
box - set margins(0.5, 0.5, 0.5, 0.5)
box - set padding(0.2, 0.2, 0.2, 0.2)
box - set background(colors - orange)
box - set width(10)

No need for separate language or
special collection classes.

* Adapt layout to various conditions — use a
standard conditional

* Repeated elements - use standard loops

* Keep your code organized — use functional
abstraction

* Provide widget collection — write a library

User interface element = just a function.

Question 1:
How to do live programming?

* This is now much easier to get a grasp on.

Question 1:
How to do live programming?

Answer:

on code changes, migrate model, build fresh view

on code changes, migrate model, build fresh view

Does Model Migration Work?

* Currently, we do something very simple

* Variables whose types have changed are
removed from model

* Experience: behaves reasonably in
practice w.r.t to typical changes and user
expectations

* More interesting solutions conceivable
for structured data
(cf. schema evolution, dynamic code
updating)

on code changes, migrate model, build fresh view

Valid Concern: Speed?

* Isn’t it too slow to reconstruct the view from scratch
every time?

* In our experience (Browser-based, Javascript):

* Re-executing the compiled display code is no problem for our
apps (never more than 1000 objects on screen)

* However, recreating the DOM tree from scratch is too slow
(browser takes too much time) and has other issues (e.g. lose
focus while typing in a textbox when it is replaced)

* Fix: We implemented optimization that modifies the DOM
tree incrementally when reexecuting the display code.

Yes, but what does all this mean,
exactly?

e Paper contains a careful formalization of these
concepts!

* Lambda calculus + Ul primitives (boxes)
* Operational semantics

* System model for event-handling with page stack,
Ul, and code change events

* Type and Effect System

Expressions:

e = v (value)
e1€2 (application)
f (function)
(e1,....€n) (tuple), (n > 0)
e.n (projection), (n > 1)
qg (read global)
g:=e (write global)
pushpe (push new page)
pop (pop page)
boxed e (create box)
post e (post content)
box.a := ¢ (set box attribute)

Expressions:

e () (value)
€162 (application)
Pure f (function)
(e1,...,€n) (tuple), (n > 0)
e.n (projection), (n > 1)
: g (read global)
Read/Write Model e (write global)
.. pushpe (push new page)
Navigation -~ [
boxed e (create box)
View Construction post e (post content)
box.a := ¢ (set box attribute)

System
Model

System State:

i

(C.D,5,P,Q)

System Components:

Owngn

e | Cd

1l | B

e | Slg— v]
e | P(p,)
e | Qg

Program Definitions:

d

globalg: 7=
fun f:Tise

page p(7) init ey render eo

Box Content:

B

Events:

q

B
B la = v]
B (B)

[exec v]
[push p v]
[pop]

(program code)
(display)
(store)

(page stack)
(event queue)

(global)
(function)

(page)

(empty)

(leaf content)
(box attribute)
(nested box)

(execute thunk)
(push new page)

(pop page)

System
Execution
Steps

Three rules that enqueue events:

STARTUP
[) (C,D, S, e e) =g (C, L, S e [push start ()])

lontap =v| € B
(C.B.S,P.Q) —g (C, L, 5. P, [execv] Q)

(Tap)

(BACK)
(C.D.S,P,Q) =g (C, L, 5, P, [pop] Q)

Three rules that handle events:

(C,8,Q,v () —¢ (C,5,Q", ()
(C,D,S,P,Q [execv]) =5 (C, L, 5", P,Q")

Clipjl = (fi:f’-") {C: S, Q'. (f?, i—’j} _F; ((—_T SI! QI:U]

(THUNK)

(PusH)

(C,D, S, P,Q [pushpv]) —¢ (C, 1,5, P (p,v),Q")

P=PFP(pv) oo P=P —=¢

(Pop) -
{C!D!S'- P!Q [p()p]) —g {:CJ_]SP 1Q}

One rule to refresh the display:

(RENDER) C(p) = (fi, fr) (C,S,€,(frv)) =7 (C, S, B,())

(C,L,S5 P(p,v),e) =g (C,B,S,P(p,v).€)
One rule to change the program code:

cC'rc’ C':S-S C':PpP
(C,D,S,P,e) —g (C', L,5", P ¢)

(UPDATE)

Two execution modes
with different allowed side effects

Event handler execution
e Can mutate model
* Can push/pop pages

Display code execution
 Can set box attributes
e Can create boxes

{C-.-S:'E) —p {C'.-S:'Ef}
(C?S!Q!E) —s {C,S,Q,E!)

(ES-PURE)

(ES-ASSIGN) (C,S,Q,E[g :=v]) =s (C,S[g — v],Q, E[()])

S TG 5,0, Blpush p]) 5 (G, S, lpush p o] @, EIOD

(550N G 5.Q, Elpop)) —= (€. 5. [pop] @, B0

(C,S,e) —p (C,S,€")
(C,S,B,e) = (C,S,B,€")

(ER-PURE)

R FOSD (G 5, B, Blpost o]) =+ (G, 5, B v, E[())

(FRATTR) ((C,S,B,E[box.a := v]) —r (C, S, B [a = v], E[()])

(C,S,e,e) =+ (C, S, B, v)

(ER-BOXED)

(C, S, B, Eboxed €]) —r (C, S, B (B'), E[v])

System State:

System ¢ s= (GDSPQ)
System Components:
M O d e C = | Cd (program code)
- i D == L1 |B (display)
V| Sud g — . g[? Y ;,] (store))
. — . D, v (page stack)
Zat 101 Q == €| Qgq (event queue)

Initial
(C-,,5,€) User taps button or
Active hits back button

(C,:,S, P(p,V),Q)

Need Render
(C,-,S,P(p,v),) User changes code
Handle events in
queue until queue —
Build view from

ey model

Push start page

Ready
(C,B,S,P(p,v),€)

Type & Effect System

* Judgments ', e

L = P | I ‘ S pure, render, state effect

e Allows us to tell what kind of function we are
looking at

* Lets us ensure that {event handlers, display
code} only have the allowed side-effects for
the given mode

Practical Experience

* Type/Effect system is sometimes too restrictive.
For example, does not allow this in display code:

var X = new object(); x.field :=value;

* More useful in practice: runtime checks that allow
allocating fresh objects in a display heap, and allow
mutation of the display heap

Goals Contributions

* Programming Model

* Support succinct programming of
apps with GUIs (graphical user
interfaces)

» Support live editing

* Precise reactive semantics
(user events, code changes)

Live-View Approach

Formal System Model

Static Type/Effect System

Language Integration

* Implementation

* Embed into TouchDevelop Feature is public
(language, runtime, IDE)

 Enforce correct use of feature
(separation of model and view)

Runs on all devices

