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Abstract

Thompson Sampling is one of the oldest heuristics for multi-armed
bandit problems. It is a randomized algorithm based on Bayesian ideas,
and has recently generated significant interest after several studies demon-
strated it to have better empirical performance compared to the state-
of-the-art methods. However, many questions regarding its theoretical
performance remained open. In this paper, we design and analyze a gen-
eralization of Thompson Sampling algorithm for the stochastic contextual
multi-armed bandit problem with linear payoff functions, when the con-
texts are provided by an adaptive adversary. This is among the most
important and widely studied versions of the contextual bandits prob-
lem. We provide the first theoretical guarantees for the contextual ver-
sion of Thompson Sampling. We prove a high probability regret bound of
Õ(d3/2

√

T ) (or Õ(d
√

T log(N))), which is the best regret bound achieved
by any computationally efficient algorithm available for this problem in
the current literature, and is within a factor of

√

d (or
√

log(N)) of the
information-theoretic lower bound for this problem.
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1 Introduction

Multi-armed bandit (MAB) problems model the exploration/exploitation trade-
off inherent in many sequential decision problems. There are many versions of
multi-armed bandit problems; a particularly useful version is the contextual
multi-armed bandit problem. In this problem, in each of T rounds, a learner is
presented with the choice of taking one out of N actions, referred to as N arms.
Before making the choice of which arm to play, the learner sees d-dimensional
feature vectors bi, referred to as “context”, associated with each arm i. The
learner uses these feature vectors along with the feature vectors and rewards of
the arms played by her in the past to make the choice of the arm to play in
the current round. Over time, the learner’s aim is to gather enough information
about how the feature vectors and rewards relate to each other, so that she
can predict, with some certainty, which arm is likely to give the best reward by
looking at the feature vectors. The learner competes with a class of predictors,
in which each predictor takes in the feature vectors and predicts which arm will
give the best reward. If the learner can guarantee to do nearly as well as the
predictions of the best predictor in hindsight (i.e., have low regret), then the
learner is said to successfully compete with that class.

In the contextual bandits setting with linear payoff functions, the learner
competes with the class of all “linear” predictors on the feature vectors. That is,
a predictor is defined by a d-dimensional parameter µ ∈ R

d, and the predictor
ranks the arms according to bTi µ. We consider stochastic contextual bandit
problem under linear realizability assumption, that is, we assume that there is an
unknown underlying parameter µ ∈ R

d such that the expected reward for each
arm i, given context bi, is bTi µ. Under this realizability assumption, the linear
predictor corresponding to µ is in fact the best predictor and the learner’s aim
is to learn this underlying parameter. This realizability assumption is standard
in the existing literature on contextual multi-armed bandits, e.g. (Auer, 2002;
Filippi et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011).

Thompson Sampling (TS) is one of the earliest heuristics for multi-armed
bandit problems. The first version of this Bayesian heuristic is around 80 years
old, dating to Thompson (1933). Since then, it has been rediscovered numerous
times independently in the context of reinforcement learning, e.g., in Wyatt
(1997); Ortega & Braun (2010); Strens (2000). It is a member of the family
of randomized probability matching algorithms. The basic idea is to assume a
simple prior distribution on the underlying parameters of the reward distribution
of every arm, and at every time step, play an arm according to its posterior
probability of being the best arm. The general structure of TS for the contextual
bandits problem involves the following elements:

1. a set Θ of parameters µ̃;

2. a prior distribution P (µ̃) on these parameters;

3. past observations D consisting of (context b, reward r) for the past time
steps;
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4. a likelihood function P (r|b, µ̃), which gives the probability of reward given
a context b and a parameter µ̃;

5. a posterior distribution P (µ̃|D) ∝ P (D|µ̃)P (µ̃), where P (D|µ̃) is the like-
lihood function.

In each round, TS plays an arm according to its posterior probability of
having the best parameter. A simple way to achieve this is to produce a sample
of parameter for each arm, using the posterior distributions, and play the arm
that produces the best sample. In this paper, we design and analyze a natural
generalization of Thompson Sampling (TS) for contextual bandits; this general-
ization fits the above general structure, and uses Gaussian prior and Gaussian
likelihood function. We emphasize that although TS is a Bayesian approach, the
description of the algorithm and our analysis apply to the prior-free stochastic
MAB model, and our regret bounds will hold irrespective of whether or not
the actual reward distribution matches the Gaussian likelihood function used to
derive this Bayesian heuristic. Thus, our bounds for TS algorithm are directly
comparable to the UCB family of algorithms which form a frequentist approach
to the same problem. One could interpret the priors used by TS as a way of
capturing the current knowledge about the arms.

Recently, TS has attracted considerable attention. Several studies (e.g.,
Granmo (2010); Scott (2010); Graepel et al. (2010); Chapelle & Li (2011); May & Leslie
(2011); Kaufmann et al. (2012)) have empirically demonstrated the efficacy of
TS: Scott (2010) provides a detailed discussion of probability matching tech-
niques in many general settings along with favorable empirical comparisons with
other techniques. Chapelle & Li (2011) demonstrate that for the basic stochas-
tic MAB problem, empirically TS achieves regret comparable to the lower bound
of Lai & Robbins (1985); and in applications like display advertising and news
article recommendation modeled by the contextual bandits problem, it is com-
petitive to or better than the other methods such as UCB. In their experiments,
TS is also more robust to delayed or batched feedback than the other meth-
ods. TS has been used in an industrial-scale application for CTR prediction of
search ads on search engines (Graepel et al., 2010). Kaufmann et al. (2012) do
a thorough comparison of TS with the best known versions of UCB and show
that TS has the lowest regret in the long run.

However, the theoretical understanding of TS is limited. Granmo (2010)
and May et al. (2012) provided weak guarantees, namely, a bound of o(T )
on the expected regret in time T . For the the basic (i.e. without contexts)
version of the stochastic MAB problem, some significant progress was made
by Agrawal & Goyal (2012), Kaufmann et al. (2012) and, more recently, by
Agrawal & Goyal (2013b), who provided optimal regret bounds on the expected
regret. But, many questions regarding theoretical analysis of TS remained open,
including high probability regret bounds, and regret bounds for the more general
contextual bandits setting. In particular, the contextual MAB problem does not
seem easily amenable to the techniques used so far for analyzing TS for the basic
MAB problem. In Section 3.1, we describe some of these challenges. Some of
these questions and difficulties were also formally raised as a COLT 2012 open
problem (Chapelle & Li, 2012).
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In this paper, we use novel martingale-based analysis techniques to demon-
strate that TS (i.e., our Gaussian prior based generalization of TS for contextual
bandits) achieves high probability, near-optimal regret bounds for stochastic
contextual bandits with linear payoff functions. To our knowledge, ours are the
first non-trivial regret bounds for TS for the contextual bandits problem. Ad-
ditionally, our results are the first high probability regret bounds for TS, even
in the case of basic MAB problem. This essentially solves the COLT 2012 open
problem by(Chapelle & Li, 2012) for contextual bandits with linear payoffs.

We provide a regret bound of Õ(d3/2
√
T ), or Õ(d

√

T log(N)) (whichever is
smaller), upper bound on the regret for Thompson Sampling algorithm. More-
over, the Thomspon Sampling algorithm we propose is efficient (runs in time
polynomial in d) to implement as long as it is efficient to optimize a linear func-
tion over the set of arms (see Section 2.2 paragraph “Computational efficiency”
for further discussion). Although the information theoretic lower bound for this
problem is Ω(d

√
T ), an upper bound of Õ(d3/2

√
T ) is in fact the best achieved

by any computationally efficient algorithm in the literature when number of
arms N is large (see the related work section 2.4 for a detailed discussion).
To determine whether there is a gap between computational and information
theoretic lower bound for this problem is an intriguing open question.

Our version of Thompson Sampling algorithm for the contextual MAB prob-
lem, described formally in Section 2.2, uses Gaussian prior and Gaussian like-
lihood functions. Our techniques can be extended to the use of other prior
distributions, satisfying certain conditions, as discussed in Section 4.

2 Problem setting and algorithm description

2.1 Problem setting

There are N arms. At time t = 1, 2, . . ., a context vector bi(t) ∈ R
d, is revealed

for every arm i. These context vectors are chosen by an adversary in an
adaptive manner after observing the arms played and their rewards up to time
t− 1, i.e. history Ht−1,

Ht−1 = {a(τ), ra(τ)(τ), bi(τ), i = 1, . . . , N, τ = 1, . . . , t− 1},
where a(τ) denotes the arm played at time τ . Given bi(t), the reward for arm i
at time t is generated from an (unknown) distribution with mean bi(t)

Tµ, where
µ ∈ R

d is a fixed but unknown parameter.

E
[

ri(t) {bi(t)}Ni=1,Ht−1

]

= E [ri(t) bi(t)] = bi(t)
Tµ.

An algorithm for the contextual bandit problem needs to choose, at every time t,
an arm a(t) to play, using history Ht−1 and current contexts bi(t), i = 1, . . . , N .
Let a∗(t) denote the optimal arm at time t, i.e. a∗(t) = argmaxi bi(t)

Tµ. And
let ∆i(t) be the difference between the mean rewards of the optimal arm and of
arm i at time t, i.e.,

∆i(t) = ba∗(t)(t)
Tµ− bi(t)

Tµ.

Then, the regret at time t is defined as
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regret(t) = ∆a(t)(t).

The objective is to minimize the total regret R(T ) =
∑T

t=1 regret(t) in time T .
The time horizon T is finite but possibly unknown.

We assume that ηi,t = ri(t)− bi(t)
Tµ is conditionally R-sub-Gaussian for a

constant R ≥ 0, i.e.,

∀λ ∈ R,E[eληi,t |{bi(t)}Ni=1,Ht−1] ≤ exp
(

λ2R2

2

)

.

This assumption is satisfied whenever ri(t) ∈ [bi(t)
Tµ − R, bi(t)

Tµ + R] (see
Remark 1 in Appendix A.1 of Filippi et al. (2010)). We will also assume that
||bi(t)|| ≤ 1, ||µ|| ≤ 1, and ∆i(t) ≤ 1 for all i, t (the norms, unless otherwise
indicated, are ℓ2-norms). These assumptions are required to make the regret
bounds scale-free, and are standard in the literature on this problem. If ||µ|| ≤
c, ||bi(t)|| ≤ c,∆i(t) ≤ c instead, then our regret bounds would increase by a
factor of c.

Remark 1. An alternative definition of regret that appears in the literature is

regret(t) = ra∗(t)(t)− ra(t)(t).

We can obtain the same regret bounds for this alternative definition of regret.
The details are provided in the supplementary material in Appendix A.5.

2.2 Thompson Sampling algorithm

We use Gaussian likelihood function and Gaussian prior to design our version
of Thompson Sampling algorithm. More precisely, suppose that the likelihood
of reward ri(t) at time t, given context bi(t) and parameter µ, were given by

the pdf of Gaussian distribution N (bi(t)
Tµ, v2). Here, v = R

√

9d ln(Tδ ).Let

B(t) = Id +
∑t−1

τ=1 ba(τ)(τ)ba(τ)(τ)
T

µ̂(t) = B(t)−1
(

∑t−1
τ=1 ba(τ)(τ)ra(τ)(τ)

)

.

Then, if the prior for µ at time t is given by N (µ̂(t), v2B(t)−1), it is easy to
compute the posterior distribution at time t+ 1,

Pr(µ̃|ri(t)) ∝ Pr(ri(t)|µ̃) Pr(µ̃)
as N (µ̂(t+1), v2B(t+ 1)

−1
) (details of this computation are in Appendix A.1).

In our Thompson Sampling algorithm, at every time step t, we will simply
generate a sample µ̃(t) from the distribution N (µ̂(t), v2B(t)

−1
), and play the

arm i that maximizes bi(t)
T µ̃(t).

We emphasize that the Gaussian priors and the Gaussian likelihood model
for rewards are only used above to design the Thompson Sampling algorithm
for contextual bandits. Our analysis of the algorithm allows these models to
be completely unrelated to the actual reward distribution. The assumptions on
the actual reward distribution are only those mentioned in Section 2.1, i.e., the
R-sub-Gaussian assumption.
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Algorithm 1 Thompson Sampling for Contextual bandits

for all t = 1, 2, . . . , do
Sample µ̃(t) from distribution N (µ̂(t), v2B(t)−1).
Play arm a(t) := argmaxi bi(t)

T µ̃(t), and observe reward ra(t)(t).
end for

Knowledge of time horizon T : The parameter v = R
√

9d ln(Tδ ) can be

replaced by vt = R
√

9d ln( tδ ) at time t, if the time horizon T is not known.

In fact, this is the version of Thompson Sampling that we will analyze. The
analysis we provide can be applied as it is (with only notational changes) to the
version using the fixed value of v for all time steps, to get the same regret upper
bound.

Computational efficiency: Every step t of Thompson Sampling (both algo-
rithms) consists of generating a d-dimensional sample µ̃(t) from a multi-variate
Gaussian distribution, and solving the problem argmaxi bi(t)

T µ̃(t). Therefore,
even if the number of arms N is large (or infinite), the above algorithms are
efficient as long as the problem argmaxi bi(t)

T µ̃(t) is efficiently solvable. This is
the case, for example, when the set of arms at time t is given by a d-dimensional
convex set Kt (every vector in Kt is a context vector, and thus corresponds to
an arm). The problem to be solved at time step t is then maxb∈Kt

bT µ̃(t), where
Kt.

2.3 Our Results

Theorem 1. With probability 1 − δ, the total regret for Thompson Sampling
algorithm in time T is bounded as

R(T ) = O

(

d3/2
√
T

(

ln(T ) +

√

ln(T ) ln(
1

δ
)

))

, (1)

or,

R(T ) = O

(

d
√

T log(N)

(

ln(T ) +

√

ln(T ) ln(
1

δ
)

))

, (2)

whichever is smaller, for any 0 < δ < 1, where δ is a parameter used by the
algorithm.

Remark 2. The regret bound in Equation (1) does not depend on N , and are
applicable to the case of infinite arms, with only notational changes required in
the analysis.
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2.4 Related Work

The contextual bandit problem with linear payoffs is a widely studied prob-
lem in statistics and machine learning often under different names as men-
tioned by Chu et al. (2011): bandit problems with co-variates (Woodroofe,
1979; Sarkar, 1991), associative reinforcement learning (Kaelbling, 1994), as-
sociative bandit problems (Auer, 2002; Strehl et al., 2006), bandit problems
with expert advice (Auer et al., 2002), and linear bandits (Dani et al., 2008;
Abbasi-Yadkori et al., 2011; Bubeck et al., 2012). The name contextual bandits
was coined in Langford & Zhang (2007).

A lower bound of Ω(d
√
T ) for this problem was given by Dani et al. (2008),

when the number of arms is allowed to be infinite. In particular, they prove their
lower bound using an example where the set of arms correspond to all vectors
in the intersection of a d-dimensional sphere and a cube. They also provide an
upper bound of Õ(d

√
T ), although their setting is slightly restrictive in the sense

that the context vector for every arm is fixed in advanced and is not allowed to
change with time. Abbasi-Yadkori et al. (2011) analyze a UCB-style algorithm
and provide a regret upper bound of O(d log (T )

√
T +

√

dT log (T/δ)).

For finite N , Chu et al. (2011) show a lower bound of Ω(
√
Td) for d2 ≤ T .

Auer (2002) and Chu et al. (2011) analyze SupLinUCB, a complicated algorithm
using UCB as a subroutine, for this problem. Chu et al. (2011) achieve a regret

bound of O(
√

Td ln3(NT ln(T )/δ)) with probability at least 1− δ (Auer (2002)

proves similar results). This regret bound is not applicable to the case of infinite
arms, and assumes that context vectors are generated by an oblivious adversary.
Also, this regret bound would give O(d2

√
T ) regret if N is exponential in d. The

state-of-the-art bounds for linear bandits problem in case of finiteN are given by
Bubeck et al. (2012). They provide an algorithm based on exponential weights,
with regret of order

√
dT logN for any finite set of N actions. This also gives

O(d
√
T ) regret when N is exponential in d.

However, none of the above algorithms is efficient when N is large, in par-
ticular, when the arms are given by all points in a continuous set of dimen-
sion d. The algorithm of Bubeck et al. (2012) requires to maintain a distri-
bution of O(N) support, and those of Chu et al. (2011), Dani et al. (2008),
Abbasi-Yadkori et al. (2011) will need to solve an NP-hard problem at every
step, even when the set of arms is given by a polytope of d-dimensions. In
contrast, the Thompson Sampling algorithm we propose will run in time poly-
nomial in d, as long as the one can efficiently optimize a linear function over
the set of arms (maximize bT µ̃(t) for b ∈ K, where K is the set of arms). This
can be done efficiently, for example, when the set of arms forms a convex set,
and even for some combinatorial set of arms. We pay for this efficiency in terms
of regret - our regret bounds are Õ(d3/2

√
T ) when N is large or infinite, which

is a factor of
√
d away from the information theoretic lower bound. The only

other efficient algorithm for this problem that we are aware of was provided
by Dani et al. (2008) (Algorithm 3.2), which also achieves a regret bound of
O(d3/2

√
T ). Thus, Thompson Sampling achieves the best regret upper bound
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achieved by an efficient algorithm in the literature. It is open problem to find
a computationally efficient algorithm when N is large or infinite, that achieves
the information theoretic lower bound of O(d

√
T ) on regret.

Our results demonstrate that the natural and efficient heuristic of Thompson
Sampling can achieve theoretical bounds that are close to the best bounds. The
main contribution of this paper is to provide new tools for analysis of Thompson
Sampling algorithm for contextual bandits, which despite being popular and
empirically attractive, has eluded theoretical analysis. We believe the techniques
used in this paper will provide useful insights into the workings of this Bayesian
algorithm, and may be useful for further improvements and extensions.

3 Regret Analysis: Proof of Theorem 1

3.1 Challenges and proof outline

The contextual version of the multi-armed bandit problem presents new chal-
lenges for the analysis of TS algorithm, and the techniques used so far for
analyzing the basic multi-armed bandit problem by Agrawal & Goyal (2012);
Kaufmann et al. (2012) do not seem directly applicable. Let us describe some
of these difficulties and our novel ideas to resolve them.

In the basic MAB problem there are N arms, with mean reward µi ∈ R

for arm i, and the regret for playing a suboptimal arm i is µa∗ − µi, where
a∗ is the arm with the highest mean. Let us compare this to a 1-dimensional
contextual MAB problem, where arm i is associated with a parameter µi ∈ R,
but in addition, at every time t, it is associated with a context bi(t) ∈ R, so that
mean reward is bi(t)µi. The best arm a∗(t) at time t is the arm with the highest
mean at time t, and the regret for playing arm i is ba∗(t)(t)µa∗(t) − bi(t)µi.

In general, the basis of regret analysis for stochastic MAB is to prove that
the variances of empirical estimates for all arms decrease fast enough, so that
the regret incurred until the variances become small enough, is small. In the
basic MAB, the variance of the empirical mean is inversely proportional to the
number of plays ki(t) of arm i at time t. Thus, every time the suboptimal arm i
is played, we know that even though a regret of µi∗ −µi ≤ 1 is incurred, there is
also an improvement of exactly 1 in the number of plays of that arm, and hence,
corresponding decrease in the variance. The techniques for analyzing basic MAB
rely on this observation to precisely quantify the exploration-exploitation trade-
off. On the other hand, the variance of the empirical mean for the contextual
case is given by inverse of Bi(t) =

∑t
τ=1:a(τ)=i bi(τ)

2. When a suboptimal arm

i is played, if bi(t) is small, the regret ba∗(t)(t)µa∗(t) − bi(t)µi could be much
higher than the improvement bi(t)

2 in Bi(t).
In our proof, we overcome this difficulty by dividing the arms into two groups

at any time: saturated and unsaturated arms, based on whether the standard
deviation of the estimates for an arm is smaller or larger compared to the stan-
dard deviation for the optimal arm. The optimal arm is included in the group
of unsaturated arms. We show that for the unsaturated arms, the regret on
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playing the arm can be bounded by a factor of the standard deviation, which
improves every time the arm is played. This allows us to bound the total re-
gret due to unsaturated arms. For the saturated arms, standard deviation is
small, or in other words, the estimates of the means constructed so far are quite
accurate in the direction of the current contexts of these arms, so that the algo-
rithm is able to distinguish between them and the optimal arm. We utilize this
observation to show that the probability of playing such arms is small, and at ev-
ery time step an unsaturated arm will be played with some constant probability.

Below is a more technical outline of the proof of Theorem 1. At any time
step t, we divide the arms into two groups:

• saturated arms defined as those with ∆i(t) > gt si(t),

• unsaturated arms defined as those with ∆i(t) ≤ gt si(t),

where si(t) =
√

bi(t)TB(t)−1bi(t) and gt, ℓt (gt > ℓt) are deterministic func-
tions of t, d, δ, defined later. Note that si(t) is the standard deviation of the
estimate bi(t)

T µ̂(t) and vtsi(t) is the standard deviation of the random variable
bi(t)

T µ̃(t).
We use concentration bounds for µ̃(t) and µ̂(t) to bound the regret at any

time t by gt(st,a∗(t) + sa(t)(t)). Now, if an unsaturated arm is played at time t,
then using the definition of unsaturated arms, the regret is at most gtsa(t)(t).

This is useful because of the inequality
∑T

t=1 sa(t)(t) = O(
√
Td lnT ) (derived

along the lines of Auer (2002)), which allows us to bound the total regret due
to unsaturated arms.

To bound the regret irrespective of whether a saturated or unsaturated arm
is played at time t, we lower bound the probability of playing an unsaturated
arm at any time t. More precisely, we define Ft−1 as the union of history Ht−1

and the contexts bi(t), i = 1, . . . , N at time t, and prove that for “most” (in a
high probability sense) Ft−1,

Pr (a(t) is a unsaturated arm Ft−1) ≥ p− 1
t2 ,

where p = 1
4e

√
π
. Note that for p is constant for ǫt = 1/ ln(t). This observation

allows us to establish that the expected regret at any time step t is upper
bounded in terms of regret due to playing an unsaturated arm at that time,
i.e. in terms of sa(t)(t). More precisely, we prove that for “most” Ft−1

E [regret(t) Ft−1] ≤ 3gt
p E

[

sa(t)(t) Ft−1

]

+ 2gt
pt2 .

We use these observations to establish that (Xt; t ≥ 0), where

Xt ≃ regret(t)− 3gt
p sa(t)(t)− 2gt

pt2 ,

is a super-martingale difference process adapted to filtration Ft. Then, using
the Azuma-Hoeffding inequality for super-martingales, along with the inequality
∑

t sa(t)(t) = O(
√
Td lnT ), we will obtain the desired high probability regret

bound.
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3.2 Formal proof

As mentioned earlier, we will analyze the version of Algorithm 1 that uses

vt = R
√

9d ln( tδ ) instead of v = R
√

9d ln(Tδ ) at time t.

We start with introducing some notations. For quick reference, the notations
introduced below also appear in a table of notations at the beginning of the
supplementary material.

Definition 1. For all i, define θi(t) = bi(t)
T µ̃(t), and si(t) =

√

bi(t)TB(t)−1bi(t).
By definition of µ̃(t) in Algorithm 2, marginal distribution of each θi(t) is Gaus-
sian with mean bi(t)

T µ̂(t) and standard deviation vtsi(t).

Definition 2. Recall that ∆i(t) = ba∗(t)(t)
Tµ− bi(t)

Tµ, the difference between
the mean reward of optimal arm and arm i at time t.

Definition 3. Define ℓt = R
√

d ln
(

t3

δ

)

+1, vt = R
√

9d ln( tδ ), gt = min{
√

4d ln(t),
√

4 log(tN) }vt+
ℓt, and p = 1

4e
√
π
.

Definition 4. Define Eµ(t) and Eθ(t) as the events that bi(t)
T µ̂(t) and θi(t)

are concentrated around their respective means. More precisely, define Eµ(t) as
the event that

∀i : |bi(t)T µ̂(t)− bi(t)
Tµ| ≤ ℓt si(t).

Define Eθ(t) as the event that

∀i : |θi(t)− bi(t)
T µ̂(t)| ≤ min{

√

4d ln(t),
√

4 log(tN) }vt si(t).

Definition 5. An arm i is called saturated at time t if ∆i(t) > gtsi(t), and
unsaturated otherwise. Let C(t) denote the set of saturated arms at time t.
Note that the optimal arm is always unsaturated at time t, i.e., a∗(t) /∈ C(t).
An arm may keep shifting from saturated to unsaturated and vice-versa over
time.

Definition 6. Define filtration Ft−1 as the union of history until time t − 1,
and the contexts at time t, i.e., Ft−1 = {Ht−1, bi(t), i = 1, . . . , N}.

By definition, F1 ⊆ F2 · · · ⊆ FT−1. Observe that the following quantities
are determined by the history Ht−1 and the contexts bi(t) at time t, and hence
are included in Ft−1,

• µ̂(t), B(t),

• si(t), for all i,

• the identity of the optimal arm a∗(t) and the set of saturated arms C(t),

• whether Eµ(t) is true or not,

• the distribution N (µ̂(t), v2tB(t)−1) of µ̃(t), and hence the joint distribution
of θi(t) = bi(t)

T µ̃(t), i = 1, . . . , N .

Lemma 1. For all t, 0 < δ < 1, Pr(Eµ(t)) ≥ 1 − δ
t2 . And, for all possible

filtrations Ft−1, Pr(E
θ(t)|Ft−1) ≥ 1− 1

t2 .
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Proof. The complete proof of this lemma appears in Appendix A.3. The proba-
bility bound for Eµ(t) will be proven using a concentration inequality given by
Abbasi-Yadkori et al. (2011), stated as Lemma 8 in Appendix A.2. The R-sub-
Gaussian assumption on rewards will be utilized here. The probability bound
for Eθ(t) will be proven using a concentration inequality for Gaussian random
variables from Abramowitz & Stegun (1964) stated as Lemma 6 in Appendix
A.2 .

The next lemma lower bounds the probability that θa∗(t)(t) = ba∗(t)(t)
T µ̃(t)

for the optimal arm at time t will exceed its mean reward ba∗(t)(t)
Tµ.

Lemma 2. For any filtration Ft−1 such that Eµ(t) is true,

Pr
(

θa∗(t)(t) > ba∗(t)(t)
Tµ Ft−1

)

≥ p.

Proof. The proof uses anti-concentration of Gaussian random variable θa∗(t)(t) =
ba∗(t)(t)

T µ̃(t), which has mean ba∗(t)(t)
T µ̂(t) and standard deviation vtst,a∗(t),

provided by Lemma 6 in Appendix A.2, and the concentration of ba∗(t)(t)
T µ̂(t)

around ba∗(t)(t)
Tµ provided by the event Eµ(t). The details of the proof are in

Appendix A.4.

The following lemma bounds the probability of playing saturated arms in
terms of the probability of playing unsaturated arms.

Lemma 3. For any filtration Ft−1 such that Eµ(t) is true,

Pr (a(t) /∈ C(t) Ft−1) ≥ p− 1

t2
.

Proof. The algorithm chooses the arm with the highest value of θi(t) = bi(t)
T µ̃(t)

to be played at time t. Therefore, if θa∗(t)(t) is greater than θj(t) for all satu-
rated arms, i.e., θa∗(t)(t) > θj(t), ∀j ∈ C(t), then one of the unsaturated arms
(which include the optimal arm and other suboptimal unsaturated arms) must
be played. Therefore,

Pr (a(t) /∈ C(t) Ft−1)

≥ Pr
(

θa∗(t)(t) > θj(t), ∀j ∈ C(t) Ft−1

)

. (3)

By definition, for all saturated arms, i.e. for all j ∈ C(t), ∆j(t) > gtst,j . Also,
if both the events Eµ(t) and Eθ(t) are true then, by the definitions of these
events, for all j ∈ C(t), θj(t) ≤ bj(t)

Tµ+ gtst,j . Therefore, given an Ft−1 such
that Eµ(t) is true, either Eθ(t) is false, or else for all j ∈ C(t),

θj(t) ≤ bj(t)
Tµ+ gtst,j ≤ ba∗(t)(t)

Tµ.

Hence, for any Ft−1 such that Eµ(t) is true,

Pr
(

θa∗(t)(t) > θj(t), ∀j ∈ C(t) Ft−1

)

≥ Pr
(

θa∗(t)(t) > ba∗(t)(t)
Tµ Ft−1

)

−Pr
(

Eθ(t) Ft−1

)

≥ p− 1

t2
.

11



The last inequality uses Lemma 2 and Lemma 1.

Lemma 4. For any filtration Ft−1 such that Eµ(t) is true,

E
[

∆a(t)(t) Ft−1

]

≤ 3gt
p

E
[

sa(t)(t) Ft−1

]

+
2gt
pt2

.

Proof. Let ā(t) denote the unsaturated arm with smallest si(t), i.e.

ā(t) = arg min
i/∈C(t)

si(t)

Note that since C(t) and si(t) for all i are fixed on fixing Ft−1, so is ā(t).
Now, using Lemma 3, for any Ft−1 such that Eµ(θ) is true,

E
[

sa(t)(t) Ft−1

]

≥ E
[

sa(t)(t) Ft−1, a(t) /∈ C(t)
]

·Pr (a(t) /∈ C(t) FT−1)

≥ st,ā(t)

(

p− 1

t2

)

.

Now, if events Eµ(t) and Eθ(t) are true, then for all i, by definition, θi(t) ≤
bi(t)

Tµ+gtsi(t). Using this observation along with the fact that θa(t)(t) ≥ θi(t)
for all i,

∆a(t)(t) = ∆ā(t)(t) + (bā(t)(t)
Tµ− ba(t)(t)

Tµ)

≤ ∆ā(t)(t) + (θā(t)(t)− θa(t)(t))

+gtst,ā(t) + gtsa(t)(t)

≤ ∆ā(t)(t) + gtst,ā(t) + gtsa(t)(t)

≤ gtst,ā(t) + gtst,ā(t) + gtsa(t)(t)

Therefore, for any Ft−1 such that Eµ(θ) is true either ∆a(t)(t) ≤ 2gtst,ā(t)+

gtsa(t)(t) or E
θ(t) is false. Therefore,

E
[

∆a(t)(t) Ft−1

]

≤ E
[

2 gtst,ā(t) + gtsa(t)(t) Ft−1

]

+Pr
(

Eθ(t)
)

≤ 2 gt
(

p− 1
t2

) E
[

st,a(t) Ft−1

]

+gtE
[

st,a(t) Ft−1

]

+
1

t2

≤ 3

p
gt E

[

st,a(t) Ft−1

]

+
2gt
pt2

.

In the first inequality we used that for all i, ∆i(t) ≤ 1. The second inequality
used the inequality derived in the beginning of this proof, and Lemma 1 to apply

Pr
(

Eθ(t)
)

≤ 1
t2 . The third inequality used the observation that 0 ≤ st,a(t) ≤

||ba(t)(t)|| ≤ 1.

12



Definition 7. Recall that regret(t) was defined as, regret(t) = ∆a(t)(t) = ba∗(t)(t)
Tµ−

ba(t)(t)
Tµ. Define regret′(t) = regret(t) · I(Eµ(t)).

Next, we establish a super-martingale process that will form the basis of our
proof of the high-probability regret bound.

Definition 8. Let

Xt = regret′(t)− 3gt
p sa(t)(t)−

2gt
pt2

Yt =
∑t

w=1 Xw.

Lemma 5. (Yt; t = 0, . . . , T ) is a super-martingale process with respect to fil-
tration Ft.

Proof. See Definition 9 in Appendix A.2 for the definition of super-martingales.
We need to prove that for all t ∈ [1, T ], and any Ft−1, E[Yt − Yt−1|Ft−1] ≤ 0,
i.e.

E [regret′(t) Ft−1] ≤
3gt
p

E
[

sa(t)(t) Ft−1

]

+
2gt
pt2

.

Note that whether Eµ(t) is true or not is completely determined by Ft−1.
If Ft−1 is such that Eµ(t) is not true, then regret′(t) = regret(t) · I(Eµ(t)) = 0,
and the above inequality holds trivially. And, for Ft−1 such that Eµ(t) holds,
the inequality follows from Lemma 4.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1 Note that Xt is bounded, |Xt| ≤ 1+ 3
pgt+

2
pt2 gt ≤ 6

pgt.

Thus, we can apply Azuma-Hoeffding inequality (see Lemma 7 in Appendix
A.2), to obtain that with probability 1− δ

2 ,

∑T
t=1 regret

′(t) ≤ ∑T
t=1

3gt
p sa(t)(t) +

∑T
t=1

2gt
pt2 +

√

2
(

∑

t
36g2

t

p2

)

ln( 2δ )

(4)

Note that p is a constant. Also, by definition, gt ≤ gT . Therefore, from
above equation, with probability 1− δ

2 ,

∑T
t=1 regret

′(t) ≤ 3gT
p

∑T
t=1 sa(t)(t) +

2gT
p

∑T
t=1

1
t2 + 6gT

p

√

2T ln( 2δ )

Now, we can use
∑T

t=1 sa(t)(t) ≤ 5
√
dT lnT , which can be derived along the

lines of Lemma 3 of Chu et al. (2011) using Lemma 11 of Auer (2002) (see Ap-

pendix A.5 for details). Also, by definition gT = O(
√

d ln(Tδ )·(min{
√
d,
√

log(N)}))

13



(see the Table of notations in the beginning of the supplementary material).
Substituting in above, we get

∑T
t=1 regret

′(t) = O
(

d
√

ln(Tδ ) · (min{
√
d,
√

log(N)})) ·
√
dT lnT

)

= O
(

d
√
T · (min{

√
d,
√

log(N)})) ·
(

ln(T ) +
√

ln(T ) ln( 1δ )
))

.

Also, because Eµ(t) holds for all t with probability at least 1− δ
2 (see Lemma

1), regret′(t) = regret(t) for all t with probability at least 1 − δ
2 . Hence, with

probability 1− δ,

R(T ) =
∑T

t=1 regret(t) =
∑T

t=1 regret
′(t)

= O
(

d
√
T · (min{

√
d,
√

log(N)})) ·
(

ln(T ) +
√

ln(T ) ln( 1δ )
))

.

The proof for the alternate definition of regret mentioned in Remark 1 is
provided in Appendix A.5.

4 Conclusions

We provided a theoretical analysis of Thompson Sampling for the stochastic
contextual bandits problem with linear payoffs. Our results resolve some open
questions regarding the theoretical guarantees for Thompson Sampling, and
establish that even for the contextual version of the stochastic MAB problem,
TS achieves regret bounds close to the state-of-the-art methods. We used a
novel martingale-based analysis technique which is arguably simpler than the
techniques in the past work on TS (Agrawal & Goyal, 2012; Kaufmann et al.,
2012), and is amenable to extensions.

In the algorithm in this paper, Gaussian priors were used, so that µ̃(t) was
generated from a Gaussian distribution. However, the analysis techniques in
this paper are extendable to an algorithm that uses a prior distribution other
than the Gaussian distribution. The only distribution specific properties we
have used in the analysis are the concentration and anti-concentration inequal-
ities for Gaussian distributed random variables (Lemma 6), which were used to
prove Lemma 1 and Lemma 2 respectively. If any other distribution provides
similar tail inequalities, to allow us proving these lemmas, these can be used as
a black box in the analysis, and the regret bounds can be reproduced for that
distribution.

Several questions remain open. A tighter analysis that can remove the depen-
dence on ǫ is desirable. We believe that our techniques would adapt to provide
such bounds for the expected regret. Other avenues to explore are contextual
bandits with generalized linear models considered in Filippi et al. (2010), the
setting with delayed and batched feedback, and the agnostic case of contextual
bandits with linear payoffs. The agnostic case refers to the setting which does
not make the realizability assumption that there exists a vector µi for each i
for which E[ri(t)|bi(t)] = bi(t)

Tµi. To our knowledge, no existing algorithm has
been shown to have non-trivial regret bounds for the agnostic case.

14
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Auer, Peter, Cesa-Bianchi, Nicolò, Freund, Yoav, and Schapire, Robert E. The
Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput., 32(1):48–77,
2002.
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Nomenclature

a(t) The arm played at time t

a∗(t) The optimal arm at time t

B(t) = Id +
∑t−1

τ=1 ba(τ)(τ)ba(τ)(τ)
T

bi(t) context vector for arm i at time t

C(t) The set of saturated arms at time t.

d The dimension of context vectors

∆i(t) = ba∗(t)(t)
Tµ− bi(t)

Tµ

Eµ(t) Event ∀i : |bi(t)T µ̂(t)− bi(t)
Tµ| ≤ ℓtsi(t)

Eθ(t) Event ∀i : |θi(t)− bi(t)
T µ̂(t)| ≤ min{

√

4d ln(t),
√

4 log(tN) }vtsi(t)

Ft−1 = {Ht−1, bi(t), i = 1, . . . , N}

gt = min{
√

4d ln(t),
√

4 log(tN) }vt + ℓt

Ht−1 = {a(τ), ra(τ)(τ), bi(τ), i = 1, . . . , N, τ = 1, . . . , t− 1}

ℓt = R
√

d ln
(

t3

δ

)

+ 1

µ The unknown d-dimensional parameter

µ̂(t) = B(t)−1
(

∑t−1
τ=1 ba(τ)(τ)ra(τ)(τ)

)

(Empirical estimate of mean at time

t)

µ̃(t) d-dimensional sample generated by from distribution N (µ̂(t), v2tB(t)−1).

N number of arms

pt = 1
4e

√
π

ri(t) Reward for arm i at time t

regret(t) Regret at time t

si(t) =
√

bi(t)TB(t)−1bi(t)

saturated arm any arm i with ∆i(t) > gtsi(t).

θi(t) = bi(t)
T µ̃(t)

vt = R
√

9d ln( tδ )
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A

A.1 Posterior distribution computation

Pr(µ̃|ri(t))
∝ Pr(ri(t)|µ̃) Pr(µ̃)

∝ exp{− 1

2v2
((ri(t)− µ̃T bi(t))

2

+(µ̃− µ̂(t))TB(t)(µ̃− µ̂(t))}

∝ exp{− 1

2v2
(ri(t)

2 + µ̃T bi(t)bi(t)
T µ̃

+µ̃TB(t)µ̃− 2µ̃T bi(t)ri(t)− 2µ̃TB(t)µ̂(t))}

∝ exp{− 1

2v2
(µ̃TB(t+ 1)µ̃− 2µ̃TB(t+ 1)µ̂(t+ 1))}

∝ exp{− 1

2v2
(µ̃− µ̂(t+ 1))TB(t+ 1)(µ̃− µ̂(t+ 1))}

∝ N (µ̂(t+ 1), v2B(t+ 1)
−1

).

Therefore, the posterior distribution of µ at time t+1 isN (µ̂(t+1), v2B(t+ 1)
−1

).

A.2 Some concentration inequalities

Formula 7.1.13 from Abramowitz & Stegun (1964) can be used to derive the
following concentration and anti-concentration inequalities for Gaussian dis-
tributed random variables.

Lemma 6. (Abramowitz & Stegun, 1964) For a Gaussian distributed random
variable Z with mean m and variance σ2, for any z ≥ 1,

1

2
√
πz

e−z2/2 ≤ Pr(|Z −m| > zσ) ≤ 1√
πz

e−z2/2.

Definition 9 (Super-martingale). A sequence of random variables (Yt; t ≥ 0)
is called a super-martingale corresponding to filtration Ft, if for all t, Yt is
Ft-measurable, and for t ≥ 1,

E [Yt − Yt−1 Ft−1] ≤ 0.

Lemma 7 (Azuma-Hoeffding inequality). If a super-martingale (Yt; t ≥ 0),
corresponding to filtration Ft, satisfies |Yt−Yt−1| ≤ ct for some constant ct, for
all t = 1, . . . , T , then for any a ≥ 0,

Pr(YT − Y0 ≥ a) ≤ e
− a2

2
∑T

t=1 c2
t .

The following lemma is implied by Theorem 1 in Abbasi-Yadkori et al. (2011):
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Lemma 8. (Abbasi-Yadkori et al., 2011) Let (F ′
t; t ≥ 0) be a filtration, (mt; t ≥

1) be an R
d-valued stochastic process such that mt is (F ′

t−1)-measurable, (ηt; t ≥
1) be a real-valued martingale difference process such that ηt is (F ′

t)-measurable.
For t ≥ 0, define ξt =

∑t
τ=1 mτητ and Mt = Id +

∑t
τ=1 mτm

T
τ , where Id is the

d-dimensional identity matrix. Assume ηt is conditionally R-sub-Gaussian.
Then, for any δ′ > 0, t ≥ 0, with probability at least 1− δ′,

||ξt||M−1
t

≤ R

√

d ln

(

t+ 1

δ′

)

,

where ||ξt||M−1
t

=
√

ξTt M
−1
t ξt.

A.3 Proof of Lemma 1

Bounding the probability of event Eµ(t): We use Lemma 8 with mt =
ba(t)(t), ηt = ra(t)(t)− ba(t)(t)

Tµ, F ′
t = (a(τ + 1),mτ+1, ητ : τ ≤ t). (Note that

effectively, F ′
t has all the information, including the arms played, until time

t+ 1, except for the reward of the arm played at time t+ 1). By the definition
of F ′

t, mt is F ′
t−1-measurable, and ηt is F ′

t-measurable. Also, ηt is conditionally
R-sub-Gaussian due to the assumption mentioned in the problem settings (refer
to Section 2.1), and is a martingale difference process:

E
[

ηt|F ′
t−1

]

= E[ra(t)(t)|ba(t)(t), a(t)]− ba(t)(t)
Tµ = 0.

Also, this makes

Mt = Id +

t
∑

τ=1

mτm
T
τ = Id +

t
∑

τ=1

ba(τ)(τ)ba(τ)(τ)
T ,

ξt =

t
∑

τ=1

mτητ =

t
∑

τ=1

ba(τ)(τ)(ra(τ) − ba(τ)(τ)
Tµ).

Note that B(t) = Mt−1, and µ̂(t) − µ = M−1
t−1(ξt−1 − µ). Let for any vector

y ∈ R and matrix A ∈ R
d×d, ||y||A denote

√

yTAy. Then, for all i,

|bi(t)T µ̂(t)− bi(t)
Tµ| = |bi(t)TM−1

t−1(ξt−1 − µ)| ≤ ||bi(t)||M−1
t−1

||ξt−1 − µ||M−1
t−1

=

||bi(t)||B(t)−1 ||ξt−1 − µ||M−1
t−1

.

The inequality holds because M−1
t−1 is a positive definite matrix. Using Lemma

8, for any δ′ > 0, t ≥ 1, with probability at least 1− δ′,

||ξt−1||M−1
t−1

≤ R

√

d ln

(

t

δ′

)

.
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Therefore, ||ξt−1 − µ||M−1
t−1

≤ R
√

d ln
(

t
δ′

)

+ ||µ||M−1
t−1

≤ R
√

d ln
(

t
δ′

)

+ 1. Sub-

stituting δ′ = δ
t2 , we get that with probability 1− δ

t2 , for all i,

|bi(t)T µ̂(t)− bi(t)
Tµ|

≤ ||bi(t)||B(t)−1 ·
(

R

√

d ln

(

t

δ′

)

+ 1

)

≤ ||bi(t)||B(t)−1 ·
(

R

√

d ln

(

t3

δ

)

+ 1

)

= ℓt si(t).

This proves the bound on the probability of Eµ(t).

Bounding the probability of event Eθ(t): Given any filtration Ft−1, bi(t), B(t)
are fixed. Then,

|θi(t)− bi(t)
T µ̂(t)| = |bi(t)T (µ̃(t)− µ̂(t))|

= |bi(t)TB(t)−1/2B(t)1/2(µ̃(t)− µ̂(t))|

≤ vt

√

bi(t)TB(t)−1bi(t) ·
∥

∥

∥

∥

(

1

vt
B(t)1/2(µ̃(t)− µ̂(t))

)∥

∥

∥

∥

2

= vtsi(t)||ζ||2
≤ vtsi(t)

√
4d ln t

with probability 1 − 1
t2 . Here, ζk, k = 1, . . . , d denotes standard univariate

normal random variable (mean 0 and variance 1).
Alternatively, we can bound |θi(t) − bi(t)

T µ̂(t)| for every i by considering
that θi(t) Gaussian random variable with mean bi(t)

T µ̂(t) and variance v2t si(t)
2.

Therefore, using Lemma 6, for every i

|θi(t)− bi(t)
T µ̂(t)| =

√

4 ln(Nt)si(t)

with probability 1− 1
Nt2 . Taking union bound over i = 1, . . . , N , we obtain that

|θi(t)− bi(t)
T µ̂(t)| ≤

√

4 ln(Nt)si(t) holds for all arms with probability 1− 1
t2 .

Combined, the two bounds give that Eθ(t) holds with probability 1− 1
t2 .

A.4 Proof of Lemma 2

Given event Eµ(t), |ba∗(t)(t)
T µ̂(t)− ba∗(t)(t)

Tµ| ≤ ℓtsa∗(t)(t). And, since Gaus-
sian random variable θa∗(t)(t) has mean ba∗(t)(t)

T µ̂(t) and standard deviation
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vtsa∗(t)(t), using anti-concentration inequality in Lemma 6,

Pr
(

θa∗(t)(t) ≥ ba∗(t)(t)
Tµ Ft−1

)

= Pr
(

θa∗(t)(t)−ba∗(t)(t)
T µ̂(t)

vtst,a∗(t)

≥ ba∗(t)(t)
Tµ−ba∗(t)(t)

T µ̂(t)

vtst,a∗(t)
Ft−1

)

≥ 1
4
√
π
e−Z2

t .

where

|Zt| =

∣

∣

∣

∣

∣

ba∗(t)(t)
Tµ− ba∗(t)(t)

T µ̂(t)

vtsa∗(t)(t)

∣

∣

∣

∣

∣

≤ ℓtsa∗(t)(t)

vtsa∗(t)(t)

=

(

R
√

d ln
(

t3

δ

)

+ 1

)

R
√

9d ln( tδ )

≤ 1.

So

Pr
(

θa∗(t)(t) ≥ ba∗(t)(t)
Tµ Ft−1

)

≥ 1
4e

√
π
.

A.5 Missing details from Section 3.2

To derive the inequality
∑T

t=1 sa(t)(t) ≤ 5
√
dT lnT , we use the following result,

implied by the referred lemma in Auer (2002).

Lemma 9. (Auer, 2002, Lemma 11). Let A′ = A+xxT , where x ∈ R
d, A,A′ ∈

R
d×d, and all the eigenvalues λj , j = 1, . . . , d of A are greater than or equal to

1. Then, the eigenvalues λ′
j , j = 1, . . . , d of A′ can be arranged so that λj ≤ λ′

j

for all j, and

xTA−1x ≤ 10

d
∑

j=1

λ′
j − λj

λj
.

Let λj,t denote the eigenvalues of B(t). Note that B(t + 1) = B(t) +
ba(t)(t)ba(t)(t)

T , and λj,t ≥ 1, ∀j. Therefore, above implies

sa(t)(t)
2 ≤ 10

d
∑

j=1

λj,t+1 − λj,t

λj,t
.

This allows us to derive the given inequality after some algebraic computations
following along the lines of Lemma 3 of Chu et al. (2011).
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To obtain bounds for the other definition of regret in Remark 1, we observe
that because E[ri(t)|Ft−1] = bi(t)

Tµ for all i, the expected value of regret′(t)
given Ft−1 for this definition of regret(t) is same as before. More precisely, for
Ft−1 such that Eµ(t) holds,

E [regret′(t) Ft−1]

= E [regret(t) Ft−1]

= E
[

ra∗(t)(t)− ra(t)(t) Ft−1

]

= E
[

ba∗(t)(t)
Tµ− ba(t)(t)

Tµ Ft−1

]

.

And, E [regret′(t) Ft−1] = 0 for other Ft−1. Therefore, Lemma 5 holds as
it is, and Yt defined in Definition 8 is a super-martingale with respect to this
new definition of regret(t) as well. Now, if |ri(t) − bi(t)

Tµ| ≤ R, for all i, then

|regret′(t)| ≤ 2R and |Yt−Yt−1| ≤ 6
p
g2
t

ℓt
+2R, and we can apply Azuma-Hoeffding

inequality exactly as in the proof of Theorem 1 to obtain regret bounds of the
same order as Theorem 1 for the new definition. The results extend to the
more general R-sub-Gaussian condition on ri(t), using a simple extension of
Azuma-Hoeffding inequality; we omit the proof of that extension.
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