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Abstract

A typical assumption in network classifica-
tion methods is that the full network is avail-
able to both learn the model and apply the
model for prediction. Often this assump-
tion is appropriate (publicly visible friend-
ship links in social networks), however in
other domains, while the underlying rela-
tional structure exists, there may be a cost
associated with acquiring the edges. In this
preliminary work we explore the problem do-
main of active sampling—where our goal is to
maximize the number of positive (e.g., fraud-
ulent) nodes identified, while simultaneously
querying for network structure that is likely
to improve estimates. We outline the prob-
lem domain formally and discuss five subdo-
mains that are likely to be observed in real
world scenarios. For our key finding, we show
when the parameter estimates are learned
from the distribution of labeled samples they
are biased with respect to the parameters for
the distribution of unlabeled samples, which
negatively impacts the number of positive in-
stances recalled. Additionally, we demon-
strate that the estimation of the generative
distribution from the labeled samples is also
biased.

1 Introduction

With the emergence of social networks, large amounts
of literature has focused on classification models tai-
lored to the relational domain. These models make
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the underlying assumption that the full network is
available to the learner. In many domains this is rea-
sonable; for example, Facebook and Twitter users fre-
quently have public friend listings.

However, in some domains the assumption of network
availability is unreasonable. For example, consider a
domain where a learner aims to identify positively la-
beled individuals in a network, such as finding fraud-
ulent users in a phone network. Here, the majority of
users are unlikely to be involved in fraudulent activity,
meaning access to their phone records (and the under-
lying network) will be limited for privacy reasons. In
another setting, a web crawler looking for new pages
cannot know the entire network; rather, it must esti-
mate which of the known pages that have not yet been
crawled is most likely to have relevant information for
possible users or contain links to new relevant pages.
In both of these examples, we observe edges as we
observe node labels. Further, there is cost associated
with investigating nodes in these examples; investigat-
ing a potential fraudulent user can take a considerable
amount of time, while we have a finite amount of com-
putational resources available to crawl webpages.

In this domain of active sampling (Pfeiffer III et al.,
2012), we are given the goal of maximizing the num-
ber of positive (e.g., fraudulent) nodes identified, while
simultaneously querying for network structure. One
benefit when we acquire a node during active sampling
is that we observe connections between the node and
its unlabeled neighbors. For example, when the web
crawler examines an unlabeled page, it may give us
new hyperlinks. Similarly, when we investigate a user
for fraudulent behavior that investigation will reveal
the user’s phone records. This gives us relationships
to nodes in the network that are still unlabeled; we
term these nodes the border. The amount of infor-
mation available to the learner, and when it becomes
available, can change depending on the application.
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We identify five subdomains of interest, and discuss
possible applications of each. For some of these sub-
domains, intrinsic attributes of unlabeled nodes may
be unavailable, meaning relational information is key
to prediction.

While the acquisition of relationships may help us to
identify more positive instances, acquiring structure
(and/or features) in this incremental fashion results
in a partial observation of the data sampled from the
underlying complete dataset. Specifically, considering
that the positive acquisitions will (hopefully) appear
at a rate greater than random, we can fall into a situa-
tion where there is a bias between the observed graph
versus the underlying graph, as well as between the
observed graph and remaining samples we are trying
to predict. Should this occur, it makes the decisions
of the sampler unreliable, as samplers assume accurate
estimates when deciding which instance to acquire. We
discuss this problem at length, and demonstrate that
bias occurs when positives are sampled at a greater
rate than occur in the network.

This work is divided as follows: in section 2 we dis-
cuss related work, while in section 3 we outline the
five subdomains. In section 4 we formally define the
domain while discussing the problems with estimation,
while in section 5 we demonstrate the estimation bias
empirically. Lastly, we conclude in section 6.

2 Related Work

Our work borrows elements from Active Learning, but
with an orthogonal goal. In the typical active learning
scenario labels are expensive to acquire, meaning the
active learner needs to acquire nodes which learn the
true model as quickly as possible (Bilgic & Getoor,
2008; Kuwadekar & Neville, 2011). Further, in rela-
tional active learning the network is assumed observed.
In contrast, in active sampling we focus on acquiring
instances whose label is likely positive and avoid in-
stances which are likely negative, as well as acquire
network structure throughout the process.

As part of this work, we address parts of the problem
domains defined in (Namata et al., 2012) and (Gar-
nett et al., 2012). In (Namata et al., 2012), the au-
thors have a fixed set of instances they would like to
estimate, but cannot query them directly. The authors
search for neighboring nodes likely to provide informa-
tion on the desired set. In the problem of active search
defined by (Garnett et al., 2012), the authors define a
similar problem structure where a classifier looks for
positive instances to label, but with a fully observed
network. A key component of both of these works is
the estimation of the probability that a node is posi-
tive, given the other nodes in the network. However,

in both of these works it is possible the samples are bi-
ased towards a particular label, which could lead to a
distribution of labeled samples which differs from the
unlabeled samples. Where the authors largely sidestep
this possible bias, we focus on it, determining if this
problem exists in the data. Lastly, (Pfeiffer III et al.,
2012) was preliminary work which introduced active
sampling. We define the problem in a formal man-
ner and demonstrate their assumption of a stationary
border distribution was incorrect.

3 Problem Overview and Scenarios

When we perform active sampling, we have the ex-
plicit goal of acquiring a large number of positive in-
stances while minimizing acquisitions of negative in-
stances. That is, we have a sampler which iteratively
chooses instances to be labeled by an expert, or out-
side oracle. Additionally, as sample labels are acquired
we receive partial information about the remaining un-
labeled instances. That is, we receive information in
addition to the labels of acquired samples, informa-
tion about the unlabeled instances such as features,
or information about edges to labeled samples. We
use that additional information, along with the previ-
ously acquired labels, to model the distribution of the
remaining samples, and allow the sampler to utilize
that distribution when choosing from the remaining
instances. However, as our sampler will acquire pre-
dominately positive samples, the core question in this
work is whether the distribution of labeled, or sam-
pled, instances will bias our parameter estimates with
respect to the distribution of unlabeled instances.

This problem domain can be split into various indi-
vidual cases, or subdomains, depending on what in-
formation becomes available to the learner during the
process. Problem scenarios may differ depending on
the subdomain: we outline five reasonable cases and
give examples of an application that fits each case.

Case 1. In the “standard” within-network relational
learning scenario, the data available at to us the be-
ginning of the process contains all relationships and all
attributes for all nodes. Thus, all that we iteratively
acquire is the labels, which we use to estimate the like-
lihood of the remaining instances being positive. This
is the scenario presented in (Garnett et al., 2012).

A real-world application which falls into this subdo-
main is companies who maintain a social network for
their users (such as Facebook or Twitter), and are in-
terested in investigating and removing fraudulent or
offensive users. In this scenario, the company has all
friendship links and individuals’ attributes given to
them by their user base, but must take time to inves-
tigate individuals’ content by hand to determine if the
account is being used in a fraudulent or illegal manner.
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Case 2. In this scenario we begin with the network
obscured, with only a handful of instances to use when
we begin our search. As we iteratively choose which in-
stances to label, we also acquire the labeled instances’
relationships, which gives us partial relational infor-
mation about their neighbors. In this case, we acquire
the intrinsic attributes of both the acquired node and
its neighboring nodes.

One application in this subdomain is searching for
fraudulent trading behavior, where the investigation
of one individual reveals their phone calls and emails
to other individuals. In this case we are able to gather
feature information of the unlabeled neighbors from
documents found when investigating the labeled node.

Case 3. This case is similar to case 2; however, we
only acquire attributes for labeled instances. Thus,
we do not have any intrinsic features for the unlabeled
instances and must estimate their distribution using
only the relationships provided by their labeled neigh-
bors. This instance is possibly the most difficult, as
attributes of an instance are unavailable until the in-
vestigator takes the time to investigate the node. The
nature of this problem requires us to use relational
learning, as all intrinsic features are unavailable for
unlabeled nodes. These features are ones that may
not be known to friends, like financial records.

Case 4. This is a generalization of cases 2 and 3,
where part of our intrinsic attributes become available
when our neighbors are acquired, but other features
are only acquired when an instance is labeled.

For example, when considering the fraud scenario, in-
formation from documents (such as emails) may give
us attributes of an investigated node’s neighbors, but
other features such as financial records of those neigh-
bors remain hidden until those nodes are investigated.

Case 5. Lastly, we have a generalization of cases 2-
4, where the existence of all nodes is known initially.
Further, we may have a handful of attributes for all
nodes which is also known. This could exist in the
case of brokers, where we may have access to general
information about all registered brokers.

4 Formalized Domain

In this section we discuss notation to be used through-
out the paper, as well as develop the problem domain
more formally than in (Pfeiffer III et al., 2012).

Let capitalized letters indicate a variable and a bolded
capitalized letter indicate a vector of variables. Let
X ∈ X indicate an attribute vector from a space of
attribute vectors, while Y ∈ Y indicates a label from a
space of labels (we focus on the label space Y = {0, 1}).
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Figure 1. An example iteration of a network for active sam-
pling. Prior labeled instances would have been chosen ac-
cording to their probability of being positive.

Let V indicate a set of vertices, with Vi ∈ V indicat-
ing a specific vertex in the set of vertices. Each vertex
Vi has a corresponding label Yi and set of attributes
Xi. Define E = V × V as the set of possible rela-
tionships between vertices, where Eij ∈ {0, 1}, a ‘1’
indicating a relationship between vi, vj and ‘0’ indi-
cating no relationship between vi, vj . Define a graph
to be G = 〈V,E〉. For simplicity, G implies the entire
graph, whether or not all of the edges are observed
(more discussion later). Lastly, let N(vi) denote the
Markov blanket, or neighbors, of a vertex vi between
it and other vertices for which the relationship exists,
N (vi) = {vj |vj ∈ V and Eij = 1 ∈ E}.

The emphasis on ‘observed’ versus ‘unobserved’ edges
becomes important as we progress through this work;
namely, these terms refer to whether the random vari-
able Eij has been revealed to us. Thus, observing the
state of the relationship between vi, vj does not imply
Eij = 0 (this is the dominant observation). The set
E is the ground truth of whether a relationship exists
between every two instances in the network.

4.1 Active Sampling Domain

In active sampling, we have a number of various ob-
served and unobserved sets of items, which can change
from case to case. First, the label Yi ∈ Y associated
with the vertex Vi ∈ V is unobserved until the in-
stance is acquired. In the majority of cases (2-5), the
relationships Eij ∈ E between vertices Vi, Vj ∈ V are
also initially unobserved. The active sampling prob-
lem is one of acquiring labels and edges, thus vari-
ables Yi ∈ Y and Eij ∈ E can become observed. The
variables that can either be unobserved or observed,
depending on the case, is the vertex Vi ∈ V and the
attributes Xi ∈ X.

We refer to the observed labels in Y as labeled, with
the labeled set being Yl, meaning each Yi ∈ Yl, the
value yi = Yi is known. As stated before, our edges
are acquired as the active sampling process progresses,
meaning our set of observed edges increases based on
the variables Yl.

We define the set of observed edges (Eobs) to be the
neighbors of the vertices corresponding to the set Yl.
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Graphically, this is represented in Figure 1, where the
solid lines represent the observed edges. Formally:

Eobs
ij =

{
1 if Eij = 1 and

(
Yi ∈ Yl or Yj ∈ Yl

)
0 otherwise

(1)

This results in the observed graph Gobs =
〈
V,Eobs

〉
.

Conversely, we wish to define the set of unobserved
labels and edges. These can be described succinctly as
Yun = Y\Yl and Eun = E\Eobs.

The corresponding unobserved graph is Gun =
〈V,Eun〉. Additionally, we define the Markov blan-
ket of a node in the observed graph representation: as
Nobs (vi) =

{
vj |vj ∈ V and Eobsij = 1 ∈ E

}
.

Lastly, we introduce disjoint subsets of unlabeled in-
stances known as the border set and the separate set.
The border set Yb =

{
yi|yi ∈ Yun and Nobs(yi) 6= ∅

}
is the set of instances which are unlabeled, but have
at least one known edge due to a neighbor label hav-
ing been observed. Similarly, separate set Ys ={
yi|yi ∈ Yun and Nobs(yi) = ∅

}
is the unlabeled in-

stances with no revealed neighbors.

In cases 2-4, the separate sets are naturally empty.

4.1.1 Subdomain Specific Notation

Aside from Case 1, we discuss how the attribute pres-
ence and vertex presence can change for each of the
cases. For cases 2-4, note that the observed vertices
Vobs =

{
vi|Nobs(vi) 6= ∅

}
are either the neighbors of

labeled instances, or are labeled themselves.

Case 2. The attributes are acquired either when the
node is acquired or when the node’s neighbor is ac-
quired. This results in our observed features being
Xobs =

{
xi|Nobs(xi) 6= ∅

}
.

Case 3. The attributes are only acquired when the
node is acquired, with the observed features being
Xobs =

{
xi|yi ∈ YL

}
Case 4. Now, the attributes have two different
types: those which are acquired when their neigh-
bor is acquired Xobsn =

{
xi|Nobs(xi) 6= ∅

}
, and

those which are acquired only on acquisition Xobsl ={
xi|yi ∈ YL

}
. The observed edges are then simply the

union of these: Xobs = Xobsn ∪Xobsl .

Case 5 Unlike the previous cases, this case guarantees
knowledge of the node, which in turn may result in an
additional given set of attributes Xobsg , in addition to
the attributes defined in Case 4. Thus, Vobs = V and
Xobs = Xobsg ∪Xobsn ∪Xobsl .

Naturally, the unobserved attributes are those which
are not in the observed set Xun = X\Xobs, while the
unobserved vertices are also those not in the observed
set Vun = V\Vobs.

4.2 Relationship Between the Observed
Distribution and Generative Distribution

In active sampling, we have a number of condition-
als which we now formalize. The first is that we still
expect the entire network G to have been drawn ac-
cording to Pθ∗(Y|X, G). As part of the active sam-
pling process, we are acquiring positive instances in
the network while trying to avoid sampling instances
which do not match our desired labeling. In active
sampling the edges are also revealed iteratively, as only
edges which have at least one labeled endpoint are ob-
served. Thus, although the data was drawn from the
generating distribution, we must estimate according
to: Pθobs

(
Y|X,Eobs

)
.

Taking the partially observed sampling scenario with
the most information, where the attributes and ver-
tices are known but edges and labels are unobserved
(case 2), let P(Eun) be the power set of the combina-
tions of possible values of the unobserved edges, with
Eun
P ∈ P(Eun) being a particular combination of pos-

sible edge values. Similarly, let P(Yun) be the power
set of the combinations of possible values of the unob-
served labels, with Yun

P ∈ P(Yun) being a particular
combination of possible labels. Then, ideally, we can
estimate:

P (θ) =

∫
Yun

P
Eun

P

[
P
(
θ|Yun

P ,Eun
P ,Yl,X,Eobs

)

P
(
Yun

P ,Eun
P |Yl,X,Eobs

)
dYun

P Eun
P

]
Once a distribution for the parameters θ has been de-
fined, a learner can use either maximum likelihood es-
timation (MLE) or maximum pseudolikelihood estima-
tion (MPLE) to maximize and recover an estimate for
θ∗(Xiang & Neville, 2008).

There are two problems with this approach, both in-
volving the conditional distribution of the unobserved
edges. First, the number of unobserved edges is
O(|V|2), meaning that computation in even modestly-
sized networks is intractable. Secondly, there is no
intuitive way to model P

(
Eun
P |Gobs

)
– the field of

link prediction largely centers on heuristics based on
hop distances, with edges presumed missing at ran-
dom, or (in a dynamic sense) occurring at a subse-
quent point in time. Furthermore, in edge prediction
most edges are presumed present, with only a handful
of edges which are unobserved (Liben-Nowell & Klein-
berg, 2007). This is not the case in active sampling,
when the far majority of edges are unobserved.

The situation becomes more complicated when we re-
move the assumptions that the attributes and ver-
tices are observed. In such a situation we must also
marginalize over the possible number of nodes, as well
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Figure 2. Comparison of recalls for different parameters for Case 2 (a-b) and Case 3 (c-d)

as the assignments of attributes to those nodes. This
further limits the feasibility of computing the genera-
tive distribution directly, and makes using it for pro-
ducing estimates on the known vertices difficult.

As modeling the distribution of unobserved edges is
an intractable proposition, we must work with the ob-
served edges to model Pθobs

(
Y|X,Eobs

)
, where θobs

are the parameters which maximize this distribution.
We focus on estimating two distributions involving the
border and labeled instances: Pθl

(
YL|X,Eobs

)
, which

is the joint distribution of the labeled border instances,
and Pθb

(
YB |YL,X,E

obs
)
, which is the joint distri-

bution of the border instances given the labeled in-
stances. As the observed graph is not drawn from the
generating distribution, and is instead drawn from an
alternative distribution, we intend to examine whether
the parameters match between the different distribu-
tions. Namely, do the border parameters equal the
generative parameters θb = θ∗, and do the border pa-
rameters equal the labeled parameters θb = θl? The
second case is of particular interest to us as θl can be
estimated directly from the labeled dataset. If these
parameters are close, then we can use the labeled sam-
ple to estimate our border.

5 Experiments

5.1 Datasets

We test the parameter bias on two datasets: one syn-
thetic and one real-world. The real-world dataset is
a collection of instances from the Purdue Facebook
network, containing approximately 6000 nodes. We
chose the feature “Conservative or Not Conservative”
as our label, with the attributes being “Christian or
Not Christian” and “Male or Female”. For the syn-
thetic network we began with the the Rovira email
network (Guimera et al., 2003) and synthetically gen-
erated labels and 2 features on the structure, resulting
in a network with label correlation 0.18.

5.2 Models

The conditionals for each method are in the form
of Relational Naive Bayes (RNB) (Neville & Jensen,
2007). We compare parameters estimated from the la-
beled set (θl) against the true border parameters θb.

Additionally, we compare the true generative param-
eters θ∗ against the true border parameters θb, to de-
termine how close the distribution of border nodes is
to the generative distribution. Both θb and θ∗ use un-
labeled data for estimation (as well as labeled data),
which allows us to determine how well estimation of θl

from just the labeled set matches the desired parame-
ters θb, as well as the generative parameters θ∗.

For estimation, we maximize the pseudolikelihood by
treating the local conditional distributions of the nodes
as independent samples (Xiang & Neville, 2008), and
examine the performance of subdomains 2 and 3. Note
that as the other cases are generalizations of 2 and 3,
should bias exist in both of these cases it should exist
for all cases. For cases 2 and 3, we use the graphi-
cal models shown in Figures 2.a and 2.c as our local
conditionals. For case 2, a node’s intrinsic features
are available to the classifier, meaning we have the un-
labeled nodes condition on their intrinsic features and
their neighbors’ labels. For case 3 the intrinsic features
are unavailable to us, meaning we must condition the
unlabeled instances solely on their relational informa-
tion, which is their neighbors’ features and labels.

5.3 Methodology

Our main goal with evaluation is to determine whether
our estimates are biased when instances are sampled to
maximize the number of positive instances. To gauge
the parameter distance, we use the mean squared error
between the parameters learned from the labeled set
(θl) and the true border set parameters θb. One con-
cern is ensuring that the methods are given the same
set of labeled (and border) instances, meaning they
have the same target distribution. To this end, we
choose the most probable instance according to the θb

parameters. All methods are given this sample at each
step, meaning they have the same set for evaluation.

We then compare the distances of the parameters
θl against θb, evaluating the distance when nodes
are sampled using the most probable selection ver-
sus a random sampling. This allows us to determine
whether the observed parameter differences are due to
the preference for positively selected instances, or sim-
ply due to variance from the sample.
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Figure 3. Parameter biases for cases 2 and 3.

To randomize the experiments, each trial begins with
all methods being given 5 (paired) randomly selected
positive instances. We conduct 100 trials for each
dataset, and test cases 2 and 3 to determine whether
the estimation bias is problematic for different cases.

5.4 Results

To begin, we test the recall of different samplers pro-
vided with parameters estimated from each distribu-
tion (θl, θb and θ∗), to ensure we are accumulating
positive samples at a proportion greater than random
for cases 2 (Figure 2.b) and 3 (Figure 2.d). We note
that all methods outperform the random sampler; fur-
ther, we also see (a) when the sampler is provided with
the distribution based on the border parameters θb it
outperforms a sampler using the θ∗ distribution, and
(b) that the sampler using the labeled set parameters
θl is performing fairly well, although, as expected, not
as well as the sampler using the distribution based on
the border parameters θb. Additionally, for case 2 we
see that the relational classifier outperforms the IID,
meaning there is considerable information to be found
in the relationships. Naturally, case 3 cannot have an
IID classifier, as intrinsic features are unavailable.

Next, in Figure 3a,b, we compare case 2’s parame-
ter bias for both random selection and most probable
positive greedy selection. For the random selection,
the difference between the labeled set parameters and
true border parameters converges as we acquire more
nodes, due to the larger sample size resulting in smaller
variance. In contrast, when greedily sampling we do
not converge: the labeled set estimates are biased with
respect to the true parameters.

Turning to case 3 (Figure 3c,d), we see similar results
as in case 2, with considerable bias when we actively
acquire positive instances. As cases 4 and 5 are
generalizations of cases 2 and 3, this implies the bias
exists for all problem cases.

6 Conclusions and Future Work

In this preliminary work we have introduced the prob-
lem of active sampling, where nodes are investigated
and labeled without full access to the entire network.
We began with a thorough description of the prob-
lem formulations, defining five problems that lie in

this domain. We then demonstrated that this domain
exhibits bias due to the oversampling of positive in-
stances relative to negative.

This domain has multiple theoretical questions re-
maining to determine the cause of this bias and cor-
rect it. Such solutions pave the way for additional
questions, such as the introduction of a utility func-
tion which accounts for a node’s possible influence on
other border nodes, or graph models which can esti-
mate the conditional distributions of the unobserved
edges given the observed graph.
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