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Abstract

We study scenarios where multiple sellers of a homogeneous good compete on prices, where
each seller can only sell to some subset of the buyers. Crucially, sellers cannot price-discriminate
between buyers. We model the structure of the competition by a graph (or hyper-graph), with
nodes representing the sellers and edges representing populations of buyers. We study equilibria
in the game between the sellers, prove that they always exist, and present various structural,
quantitative, and computational results about them. We also analyze the equilibria completely
for a few cases. Many questions are left open.

1 Introduction

Competition is known to reduce prices and decrease sellers’ profits. The simplest model to this
effect contrasts a seller with a captive market to two competing sellers, where the competition is on
price alone, a model known as Bertrand competition. While the seller with a captive market would
sell at the “monopoly price” and make a profit, the only equilibrium that the competing sellers
may reach is one where they charge the marginal cost, extracting no profit if they have identical
constant marginal costs. There is of course much work in the economic literature that deals with
various variants of this model as well as with alternative assumptions about the competition (e.g.
Cournot competition.)

In this paper we study scenarios in which parts of the market are shared between sellers and
other parts are captive. We model the structure of sharing in the market as a hyper-graph where
the vertices are sellers, and each hyper-edge represents a market segment, henceforth just market,
that is shared by these sellers. The sellers each announce a single price (i.e., price discrimination
is impossible1) and every buyer buys from the lowest price seller that has access to his market
(with some tie breaking rule). The idea is that sellers must balance between competition in each of
the markets they compete in and their captive market, and this trade-off will in turn affect those
competing with them. In this paper we wish to study how the structure of this graph affects prices
and profits of the different sellers.

One may think of many scenarios that are captured – to a first approximation – by such a
model. Consider several Internet vendors for some good, where users do not always compare prices
among all vendors but rather different subsets of users do their price-comparisons only between a
subset of vendors. One may also think about geographic limitations to competition where buyers
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1Where price discrimination is possible, the seller simply optimizes in each market separately.
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(a) (b)

Figure 1: An illustration of equilibrium pricing for (a) two sellers with a shared market and one
captive market, and (b) a line of n sellers with unit-sized shared markets and a single captive
market. In each depiction, the network is represented at the top. Captive market sizes are shown
within nodes (where a blank node indicates no captive market), and shared market sizes are shown
adjacent to their respective edges. The support of each seller’s pricing strategy, as a subset of [0, 1],
is shown below. Thick lines indicate the range of prices that fall within each seller’s support, and
dark circles represent atoms at price 1. In (b), fi denotes the ith Fibonnacci number, indexed so
that f0 = f1 = 1.

can only buy from a “close” vendor. Another scenario may involve technology constraints where
buyers must choose between essentially equivalent products, but are limited to buying from the
subset of those that are “compatible” with their existing systems or that have a certain “feature”
that they need. In all these cases, and many others, price discrimination would be quite difficult
to do.

Taking a higher-level point of view, this work falls into a more general agenda that attempts “de-
composing” a global economic situation into a network of local economic interactions and extracting
some global economic insights from the structure of the interaction graph, studied in various mod-
els, e.g., in [2, 9, 1, 8, 10, 5] and many others. This agenda is distinct from agendas that consider
network formation or network-structured goods, agendas that have also received much attention,
including in models related to Bertrand competition [3, 4, 7] as well as in [6] that is this paper’s
starting point.

Let us start with the simplest scenario that combines a captive market and a competitive one.
Consider the case of two sellers that share a market, but where one of the two sellers also has a
captive market of the same size as the shared one. In our simple scenario both sellers have zero
marginal cost (i.e., for producing the good) and the buyers in each market will all buy from the
seller that asked for the lowest price, as long as that price is at most 1. The two sellers are thus
playing a game, where the strategy of each seller is its requested price which lies in the interval
[0, 1]. What will the equilibrium look like? It is easy to verify that no pure equilibrium exists.
However, a mixed equilibrium does exist and was only recently described in [6] (for more general
demand and supply curves). In this unique equilibrium both sellers randomize their asked price in
the range [0.5, 1] in the following way2: the price of the seller that has the captive market satisfies

2One may be somewhat skeptical of the relevance of a mixed Nash equiliribrium with continuous support, however

we would like to mention that we have run simulations and found that this mixed continuous support equilibrium
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Pr[Price < x] = 1 − 1
2x for 0.5 ≤ x < 1 and Pr[Price = 1] = 0.5, and that of the seller without

a captive market satisfies Pr[Price < x] = 2 − 1
x
for all 0.5 ≤ x ≤ 1. We say that the seller with

the captive market has an atom at price 1, meaning that the seller selects price 1 with positive
probability. See Figure 1(a). It may be somewhat surprising that the seller with no captive market
gets positive utility (of 1/2) despite having no captive market. This may be contrasted with what
would happen if he also succeeds in gaining access to the other seller’s captive market, in which
case they would be put in a classic Bertrand competition and all prices would go down to 0.

Let us continue with another example: a line of n sellers, where each two consecutive ones
share a market, and the first one also has a captive market, with all markets being of the same
size. It turns out that the unique equilibrium has each seller i randomizing his price (according
to a specific distribution that we derive) in the interval [fn−i+2/fn, fn−i/fn] where fj is the j’th
Fibonacci number starting with f0 = f1 = 1 (except for the first seller whose bid is capped at 1,
with an atom there). See Figure 1(b). The equilibrium utilities of the players in this network are
given by ui = fn−i+1/fn = Θ(φ−i), where φ is the golden ratio.

The paper attempts analyzing what happens in more general situations with multiple sellers
and markets where different sellers are connected to different subsets of markets. To focus on the
structure of the graph, we keep everything else as simple as possible, in particular sticking to zero
marginal costs as well as to a a demand curve where all buyers are willing to buy the good for at
most 1.3 Furthermore, as the main distinction we wish to capture is that of monopoly as opposed
to competition, we focus on the case where each market is either captive to one seller or shared
between exactly two sellers. This leads us to modeling the network of sellers and markets by a
graph whose vertices are the sellers and where each edge corresponds to market that is shared
between the two sellers. Each seller (vertex) i may have a weight αi indicating the size of its
captive market and each edge (i, j) will have a weight βij indicating the size of the pair’s shared
market.4 We will analyze Nash equilibria of the game between the sellers. To begin with, it is
not even clear that a Nash equilibrium exists: the game has a continuum of strategies (the price
is a real number) and discontinuous utilities (slightly under-pricing your opponent is very different
than slightly overpricing him). Nevertheless we invoke the results of [11] and show:

Theorem 1.1. In every network of sellers and markets there exists a mixed Nash equilibrium.
Moreover, every equilibrium holds for every tie breaking rules.5

We then start analyzing the properties of these equilibria. Extending the well known result
about Bertrand competition, we show that if no seller has a captive market then the only equilibrium
is the pure one where each seller sells at 0 (his marginal cost) and gets 0 utility. We observe the
following converse:

Theorem 1.2. In every connected network of at least two sellers where at least one seller has a
captive market, there does not exist any pure Nash equilibrium. In every mixed-Nash equilibrium of
this network no seller has any atoms, except perhaps at 1. Moreover, all sellers have their infimum
price bounded away from zero, and get strictly positive utility.6

was closely approximated by the empirical distribution of a simple fictitious play in a discretized version of the game.
3 This implies that there are no efficiency issues in this model, and our focus is on prices and revenues.
4In the more general model of an hyper-graph βS will indicate the size of the market that is shared by the set S

of sellers.
5 This theorem also holds in the general hyper-graph model.
6 The fact that lack of captive markets implies zero prices extends to the general hyper-graph model but this

theorem does not, nor do the ones below.
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We do not have a general algorithm for computing an equilibrium of a given network, however
we do show that the problem can be completely reduced to finding the supports of the sellers’
strategies and the set of sellers that have an atom at 1.

Theorem 1.3. Given the supports of sellers’ strategies, with finitely many boundary points, and
the set of sellers that have an atom at 1, it is possible to explicitly, in polynomial time, compute
an equilibrium of the network if such exists. Generically this equilibrium is unique for this support
and set of sellers with atoms at 1.

Generally speaking there may be different equilibria for a network with different supports of
sellers’ strategies, with seller’s utilities varying between them. We next embark on an analysis of a
set of networks for which we can effectively analyze and prove uniqueness of the equilibrium.

Theorem 1.4. Every network of sellers and markets that has a tree structure and a single cap-
tive market has an essentially unique equilibrium which is described explicitly and polynomially
computable from the network structure.

Our analysis is explicit about what “essentially unique” means, completely characterizing the
degrees of freedom. In particular, the utilities of each seller are the same over all equilibria. This
theorem has two significant limitations: being a tree and having a single captive market. We provide
examples showing that both restrictions are necessary and relaxing either one of them results in
multiple equilibria with multiple possible utilities for a seller. We are able to fully analyze and
prove uniqueness of equilibria for an additional case: a “Star” where each seller may have a captive
market and every peripheral seller shares a market with the center and all shared markets have the
same size.

For general graphs, while equilibria are not necessarily unique, nor are we in general able to
characterize them, we do prove various structural results as well as quantitative estimates on prices
and utilities in every possible equilibria. We are able to bound the amount of utility that ”flows”
from sellers with captive markets to sellers that are “decoupled” from them in each of two senses:
(1) distance (2) cut:

Theorem 1.5. (Informal) In every non-trivial network and in any equilibrium:

1. The utility of every seller is bounded from below by an expression that decreases exponentially
in his distance from any captive market.

2. The utility of every seller is bounded from above by a linear expression in the size of the shared
markets in an edge-cut that separates him from all captive markets.

3. For every seller, as the sizes of all shared markets in an edge-cut that separates him from all
captive markets increase to infinity, his utility decreases to 0.

Note that our “line of sellers” example above shows that the decrease in utility in part 1 of the
theorem may indeed be exponential. Part 3 of the theorem may be surprising, with the intuitive
explanation being that the largeness of the markets in the cut causes the sellers in these markets
to “focus” on them, not letting indirect competition “spread” over the cut.

Structure of the paper

We start by describing our model in section 2, and before diving into the body of our analysis,
present a few simple examples in section 3. Our general analysis of the existence, robustness,
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and properties of equilibria are given in section 4 that also proves theorems 1.1 and 1.2. Section
5 reduces the problem to analysis only at the boundary points, proving theorem 1.3. Section 6
analyzes trees with a single captive market and proves theorem 1.4 and section 7 analyzes the
star network. Finally, section 8 analyzes utilities in general networks, proving a formal version of
theorem 1.5. Many open problems remain, and we sketch some of them in our concluding section
9.

2 Model

In a general network economy (network for short) there are n ≥ 2 sellers and a collection of disjoint
buyer populations which we call markets. All sellers sell the same type of good, and each seller
is associated with a supply curve which specifies how many units the seller can sell at any given
price. Each market has access to some of the sellers, possibly not to all of them. Each market is
associated with a demand curve, specifying how many units the population would buy at a given
price.

We will focus on the following subclass of networks. First, we assume that all buyers in a market
are willing to pay up to 1 per unit but no more. Also, we assume that each seller has a marginal
cost of 0 for producing the good and is able to supply any quantity. Each buyer will purchase a
full unit of the good from whichever accessible seller has the lowest price. Finally, we assume that
each market has access to at most two sellers.

As each market has access to at most two sellers, it is natural to represent a network by a graph
as follows. Each seller is represented by a node in the graph. If a market has access to only a single
seller, we say that this market is captive. We write αi for the size of the captive market of seller i,
where αi = 0 if seller i has no captive market. Note that we assume without loss of generality that
each seller has at most one captive market, since having two or more is equivalent to having one
with the combined size. We write ~α = (α1, α2, . . . , αn). If a market has access to two sellers i and
j, we represent that market by an edge from node i to node j, and use βi,j to denote the size of
that market. We use N(i) to denote the set of sellers that share a market with seller i, and write
βi =

∑

j∈N(i) βi,j . See Figure 2 for an illustration.
A network defines the following pricing game between the sellers. Each seller needs to offer a

price per unit of the good. Each edge (market) buys from the incident node (seller) that offers
the lowest price. A captive market always buys from its associated node. Formally one needs
to specify a tie breaking rule for the case of a tie, but we will later show that ties never occur in
equilibrium (see Section 4), so from that point on will usually omit tie-breaking considerations from
our discussion and notation. Note that each seller offers the same price to all available (i.e. incident)
markets (edges). Sellers offer prices simultaneously, and can use randomization to determine prices.
We assume that all sellers are risk neutral.

Consider the case that each seller j offers price xj, the utility of seller i with price xi in this
case is

ui(x1, x2, . . . , xn) = xi



αi +
∑

j∈N(i)

βi,j · χxi<xj





Here χxi<xj
is an indicator taking value 1 if xi < xj , and 0 otherwise; formally, this models i loosing

in case of a tie. As mentioned above, changing the tie breaking rule will result in exactly the same
equilibria.
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A mixed strategy of seller i can be represented by a CDF Fi with support Si. The support
of Fi is (w.l.o.g) contained in [0, 1] (as buyers are not willing to pay more than 1 per item). We
use F−

i (x) = supy<x Fi(y) to denote the probability that i puts strictly below x. If Ai(x) =

Fi(x)−F−
i (x) > 0 we say that Fi has an atom at x and Ai(x) is its size. We denote the probability

that i places on at least x by F i(x) = 1 − F−
i (x). A point x is a boundary (transition) point for

seller i if every open interval containing x intersects Si but is not contained in Si. Note that if Si

is a collection of intervals, then the set of boundary points is precisely the set of endpoints of these
intervals. We use supi and infi to denote the supremum and infimum of Si.

We can now define ui(x, F−i), the utility of (risk-neutral) seller i when declaring price x ∈ [0, 1],
when the other sellers price according to F−i:

ui(x, F−i) = x



αi +
∑

j∈N(i)

βi,j (1− Fj(x))



 (1)

As mentioned, in Section 4 we show that ties do not matter and that no two neighboring sellers
can both have an atom at 1. From that point on, when considering an equilibrium, it would be
notationally convenient to slightly deviate from the formula above that corresponds to i loosing the
tie with j as we formally defined. Instead, for a seller i that has a neighbor j with an atom at 1
we will replace the above by the formula that corresponds to i winning the tie at 1 against j and
define:

ui(1, F−i) =



αi +
∑

j∈N(i)

βi,j

(

1− F−
j (1)

)



 .

This is notationally convenient as it maintains ui(1, F−i) = limxi→1 ui(xi, F−i) so in many argu-
ments this avoids the extra notation of taking limits as xi approaches 1. In particular, this notation
is useful as it allows us to think of every price in the support Si as being optimal for i. This is
trivially true for every point in which the utility of i is continuous. As atoms only happen at 1, the
price of 1 is the only possible point of discontinuity. With this definition of ui(1, F−i) the utility
of seller i with supremum price of 1 is also optimal at 1. We use ui to denote the equilibrium
utility of seller i. Additionally, when F−i is clear from context we will abuse notation and write
ui(x) = ui(x, F−i).

A network consists of a graph and market sizes. We say that a network is non-trivial if it is
connected, has at least two sellers, and has at least one captive market. For most of the paper we
will focus on non-trivial networks.7

3 Simple Examples

We begin by building some intuition for our pricing game by describing a few simple examples.
This intuition will be helpful when describing general properties of equilibria in Section 4 and the
structure of equilibria in Section 5.

The simplest network is a single seller that is a monopolist over a single market. In this case he
will price the item at 1 and extract all surplus. Another simple network is the case of two sellers

7Indeed, for disconnected graphs our results will hold for each component separately, and the degenerate case of

no captive markets is solved in Theorem 4.5 and thus is irrelevant to any later parts of the paper.
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(a) (b)

Figure 2: An illustration of equilibria for (a) a line of two sellers with α1 > α2 and (b) a line of three
sellers with a single captive market α1. In each depiction, the network is represented at the top.
Captive market sizes are shown within nodes (where a blank node indicates no captive market),
and shared market sizes are shown adjacent to their respective edges. The support of each seller’s
pricing strategy, as a subset of [0, 1], is shown below. Thick lines indicate the range of prices that
fall within each seller’s support, and dark circles represent atoms at price 1.

with no captive markets who share a single market; this is precisely a Bertrand competition (with
marginal cost of 0). In this example the unique equilibrium is for both sellers to price the item at
0 (regardless of the size of the shared market), and all surplus goes to the buyers.

We now consider two more interesting examples with non-trivial networks.

Example 3.1 (General case of 2 Sellers). Consider two sellers that share a market, where ad-
ditionally each seller has his own captive market. The captive markets have sizes α1 ≥ α2 > 0
and the shared market has size β1,2 > 0. Theorem 4.6 will imply that, in the unique equilibrium,
the support of each seller’s strategy is some interval [t2, 1] where 0 < t2 < 1, and moreover seller
2 has no atom at 1. See Figure 2(a). It holds that F 1(t2) = F 2(t2) = 1 and F 2(1) = 0. If
seller 1 sets price 1, he will sell only to his captive market and lose the shared market to seller
2 with probability 1. On the other hand, if he sets price t2, he will win the shared market with
probability 1. Since prices 1 and t2 are both in the support of F1, it must therefore hold that
α1 = u1(1) = u1(t2) = t2(α1 + β1,2), and thus t2 =

α1
α1+β1,2

. Applying similar reasoning to seller 2,

we have α2 + β1,2F 1(1) = u2(1) = u2(t2) = t2(α2 + β1,2), thus the size of the atom of seller 1 at 1

is F 1(1) =
t2(α2+β1,2)−α2

β1,2
. Note that seller 1 has no atom if and only if the sellers are symmetric

(α1 = α2).
We can now explicitly find the CDFs, using the fact that sellers must be indifferent within their

supports. For every x ∈ [t2, 1] it holds that α1 = u1(1) = u1(x) = x(α1 + β1,2F 2(x)), and thus
F 2(x) = α1

β1,2
·
(

1
x
− 1

)

. It also holds that t2(α2 + β1,2) = u2(t2) = u2(x) = x(α2 + β1,2F 1(x)),

and thus F 1(x) =
1

β1,2

(

t2(α2+β1,2)
x

− α2

)

. Note that the seller with the larger captive market gains

nothing from the shared market (his utility is α1), while the other seller gains more than α2 when
the sellers are asymmetric.

Example 3.2 (3 Sellers in a line with 1 captive market). In this example, seller 1 has a captive
market of size α1 > 0 and shares a market of size β1,2 > 0 with seller 2. Seller 2 shares a market of
size β2,3 > 0 with seller 3. Neither seller 2 nor 3 has a captive market. As we prove in Section 6.4,
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the unique equilibrium has the following form. Seller 1 has an atom of size A = F 1(1) at 1. For
some 1 = t1 > t2 > t3 > 0, the support of seller 1 is [t2, t1], the support of seller 2 is [t3, t1], and
the support of seller 3 is [t3, t2]. See Figure 2(b) for a “sketch” of this equilibrium structure.

Given the form of the equilibrium, it is possible to solve for the values of t2, t3 and F 1(1) and

F 2(t2) in a method similar to Example 3.1. This turns out to give F 2(t2) =
β1,2

β1,2+β2,3
, t2 = F 1(1) =

α1

α1+β1,2F 2(t2)
, and t3 =

t2β1,2

β1,2+β2,3
. We now have the values of Fi(tj) for all i and j, and, similarly to

Example 3.1 we can deduce the full form of the CDFs (F1, F2, F3) that will be the piece-wise linear
in x−1 functions that agree with these values. The general methodology of finding the equilibrium
from the “sketch” is described in section 5 with the details for general line networks in Section 6.4.

4 Equilibrium Analysis

In this section we study the existence and properties of equilibria in pricing networks. We first
establish that ties occur with probability 0 in any equilibrium. We then show that the non-occurence
of ties implies that an equilibrium always exists. Finally, we describe some general properties of
every equilibrium.

4.1 Tie Breaking

We first show that any valid tie breaking rule results in the same set of equilibrium. Moreover, in
any equilibrium, the utility of each seller is independent of the tie-breaking rule.

A valid tie breaking rule specifies for every two sellers i and j that share a market, and every
price vector ~p = (p1, p2, . . . , pn) with pi = pj , the fraction of the market that buys from i and j
respectively: fi,j(~p) ≥ 0 and fj,i(~p) ≥ 0 that i and j respectively (where fi,j(~p) + fj,i(~p) ≤ 1). To
determine the impact of tie-breaking, let us revisit the definition of seller utilities in case of a tie.
Consider the case that each seller j offers price pj. The utility of seller i is then

ui(p1, p2, . . . , pn) = pi



αi +
∑

j∈N(i)

βi,j · χi,j(~p)





where χi,j(~p) is the fraction of the market shared by i and j for which i sells. That fraction is 1 if
pi < pj, and is fi,j(~p) if pi = pj.

We would like to compute the utility ui(x, F−i) when seller i uses price p1 and the others sample
according to F−i. Define Ei,j(pi, F−i) = E~p−i∼F−i

[fi,j(~p)|pj = pi] As sellers are risk neutral, the
utility obtained by seller i when selecting price x, assuming others set prices according to F−i, is

ui(x, F−i) = x



αi +
∑

j∈N(i)

βi,j (1− Fj(x) +Aj(x) ·Ei,j(x, F−i))



 .

We can now show that tie breaking has no impact on the equilibria of the game.

Theorem 4.1. Fix any network. If a profile of strategies is an equilibrium with some valid tie
breaking rule, then that profile is an equilibrium for any other valid tie breaking rule. Moreover, in
each such equilibrium, the utility of each seller is independent of the tie breaking rule.

8



Proof. As ties at price 0 do not influence seller utilities, it is enough to show that ties at positive
prices have measure zero in any equilibrium. To prove this it is enough to prove the following
lemma.

Lemma 4.2. Fix any valid tie breaking rule. In any network and any equilibrium, no two sellers
who share a market both have an atom at the same positive price.

Proof. The lemma follows from the fact that for one seller i, a slight decrease in the price will allow
i to win over the atom for sure (instead of just a fraction of the time due to tie breaking) and
increase his utility. We next formalize this claim.

Assume that i and j share a market and both have an atom at x > 0. We assume without loss of
generality that Ei,j(x, F−i) < 1 (otherwise replace i and j. Note that Ei,j(x, F−i)+Ej,i(x, F−i) ≤ 1).

Note that x is an optimal price for seller i. Assume that a seller j that shares a market with
i and has an atom of size Aj(x) > 0. We show that there is a price y < x with ui(y) > ui(x),
contradicting the assumption that x is optimal for i. Indeed, for y < x

ui(y) = y



αi +
∑

j∈N(i)

βi,j (1− Fj(y) +Aj(y) · Ei,j(y, F−i))



 ≥ y



αi +
∑

j∈N(i)

βi,j (1− Fj(y))





thus

lim
y→x,y<x

ui(y) ≥ lim
y→x,y<x

y



αi +
∑

j∈N(i)

βi,j (1− Fj(y))



 = x



αi +
∑

j∈N(i)

βi,j

(

1− F−
j (x)

)



 =

x



αi +
∑

j∈N(i)

βi,j (1− Fj(x) +Aj(x))



 > x



αi +
∑

j∈N(i)

βi,j (1− Fj(x) +Aj(x) · Ei,j(x, F−i))



 = ui(x)

where the strict inequality follows from the existence of a seller j that is a neighbor of i for which
it holds that j has an atom at x (Aj(x) > 0) and Ei,j(x, F−i) < 1.

This concludes the proof of the theorem.

We note that Lemma 4.2 implies that the utility of every seller at every point smaller than 1
is continuous in his price. Thus any price in Si, including the boundary of Si, is optimal for the
seller.

4.2 Existence of equilibrium

We show that a mixed equilibrium is guaranteed to exist for any network. This is a non-trivial
claim, since the strategy space is infinite and utilities are discontinuous.

Theorem 4.3. In any network there exists a mixed equilibrium.
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Proof. The existence of a mixed equilibria in our game follows from the general results of [11].
They consider general games where the strategy sets are compact metric spaces and the utility
functions are only defined to be continuous on a dense subset of the space of strategy profiles.
Their main motivation is scenarios where the utilities are continuous everywhere except at sparse
“tie points” in which some discontinuity occurs. This is exactly the case we have in our setting
where the strategy set of a seller is the interval [0, 1] and the utility of every seller is continuous
(linear in his own price) everywhere except at points where his price equals that of another seller,
in which case a discontinuous jump in utility occurs. To place our setting into their formalism we
simply consider the subspace of strategy profiles that have no ties, which is a dense subset, and
over this subset the utilities in our game are continuous.

The main result of [11] is that as long as we allow our equilibrium to endogenously choose
“tie-breaking” utilities for the strategy profiles that lie outside the dense subset then a mixed Nash
equilibrium exists. Specifically, the endogenously chosen profile of utilities lies in the convex hull
of the closure of the graph of utilities in the dense subset over which the utility function was
exogenously defined and continuous. In our setting, at a point with a tie between sellers and i and
j the endogenously chosen utilities for i and j will be some convex combination of the utility when
i wins the market in case of tie and when j does so. That corresponds to each of the two sellers
winning some fraction of the market in a tie, with the sum of the fractions being exactly 1.

At this point we can invoke the fact that, for our games, the tie breaking rule does not matter as
discussed in Section 4.1: for the endogenously-chosen tie breaking rule, a mixed Nash equilibrium
exists by the results of [11]. This tie breaking rule certainly falls into the family of tie-breaking
rules considered in Section 4.1. Therefore, for any other tie-breaking rule in this family, the same
profile of mixed strategies is still a mixed-Nash equilibrium.

Theorem 4.3 shows that an equilibrium exists, but is it unique? In the example presented in
Section 7.2 we show that there may exist multiple equilibria. Moreover, these equilibria are truly
distinct from the perspective of the sellers, in the sense that they are not utility-equivalent (i.e.
some sellers’ utilities differ between the equilibria).

Is it possible that a pure equilibrium exists? We observe that when at least one seller has a
captive market, a pure equilibrium never exists. Recall that a non-trivial network is connected, has
at least two sellers, and has at least one captive market.

Observation 4.4. If a network is non-trivial then there does not exist a pure equilibrium (that is,
in any equilibrium at least one seller uses a mixed strategy).

Proof. Assume that a pure equilibrium exists. Note that not all sellers can choose price 0, as a
seller with a captive market would generate positive utility by selecting a positive price. We further
claim that no seller can choose price 0. Indeed, if some seller chooses price 0, then there exists a
seller that chooses price 0 and that has a neighbor j that chooses positive price pj > 0. In this
case, this seller with price 0 receives utility 0, but would receive positive utility (from the market
shared with j) if he chose price pj/2. This contradicts the equilibrium assumption, and hence no
seller chooses price 0.

Let i be a seller with minimal price pi > 0. By Lemma 4.2 none of his neighbors price at pi. As
i has finitely many neighbors and they all price using a pure strategy, there is an ǫ > 0 such that
if i increases his price by ǫ he sells to exactly the same set of buyers for a higher price, increasing
his utility. This contradicts the equilibrium assumption.
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Observation 4.4 does not consider networks in which no seller has a captive market. For networks
with no captive markets we show that the unique equilibrium is a pure equilibrium in which every
seller selects price 0.

Theorem 4.5. Consider any connected network with at least two sellers. If no seller has a captive
market then the unique equilibrium is for all sellers to price the good at 0 (Fi(0) = 1 for all i). In
this equilibrium every seller has zero utility.

Proof. Consider any equilibrium (either pure or randomized) and assume that not all sellers always
price the good at 0. This means that for some seller i it holds that Fi(0) < 1 and that supi > 0. This
implies that any seller j that is neighbor of i has positive utility, and thus positive infimum price.
By Observation 4.7 every seller has a positive infimum price and positive utility in equilibrium.
Consider a seller j with maximal supremum price, breaking ties in favor of a seller that has an
atom at that price. This means that if j does not have an atom at supj, none of his neighbors has
an atom. Moreover, if j has an atom at supj it is still true that none of his neighbors has an atom
at this price due to Lemma 4.2. In any case supj is in the support of j and when pricing at supj
seller j make no sell in any of his non-captive markets. That seller has no captive market and thus
he never sells and has zero utility, a contradiction.

Motivated by Theorem 4.5, we consider only non-trivial networks in later sections.

4.3 Properties of Equilibria of Non-Trivial Networks

We next present some properties that every equilibrium in a non-trivial network must satisfy.

Theorem 4.6. Fix any non-trivial network and equilibrium. The following holds:

1. There exists some positive δ > 0 (independent of the equilibrium) such that the support of
prices of every seller is contained in [δ, 1]. Moreover, every seller i has positive utility, and
his utility is at least αi.

2. If seller i has an atom, that atom must be at 1, and it must be the case that i has a captive
market. None of the neighbors of i has any atoms.

3. If seller i has no captive market and none of his neighboring sellers has an atom at 1, then
seller i’s supremum price is strictly less than 1.

4. For any seller i the support Si excluding the point 1 is contained in the union of the supports
of the neighbors of i.

5. If the supremum of the support of seller i is at least the supremum of the support of all his
neighboring sellers then the supremum of his support is 1.

6. There is at least one seller i with utility ui = αi. That seller has a captive market (αi > 0)
and 1 ∈ Si. Any seller with no captive market has no atoms.

The proof of the theorem follows from the following sequence of claims and observations. Our
first observation holds for any network.
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Observation 4.7. Fix any network and any equilibrium. If there is at least one seller i with
support that has a positive infimum (inf i > 0), then there exists some positive δ > 0 such that
in any equilibrium the support of prices of every seller is contained in [δ, 1]. Moreover, in any
equilibrium every seller i has positive utility, and the utility is at least αi.

Proof. We show that any seller that has a neighbor with positive infimum price, also have positive
infimum price. Indeed, assume that i has infi > 0 and consider a seller j that shares a market
of size βi,j > 0 with i. for small enough ǫ > 0, by pricing at infi −ǫ > 0 seller j can unsure
utility of at least (inf i−ǫ)(αj + βi,j) > 0, thus any price y in the support of j must be at least
(infi −ǫ)(αj+βi,j)

αj+βj
> 0.

The above claim implies the existence of δ > 0 such that in any equilibrium the support of
prices of every seller is contained in [δ, 1]. This implies that every seller i has positive utility in
equilibrium, as the utility must be at least as high as the utility achieved by pricing at δ/2, which
is least (αi + βi)δ/2 > 0.

Finally, observe that in any equilibrium the utility of i is at least αi, as by pricing the good at
1 seller i gets utility of at least αi (for any strategies of the others).

Given the lemma we prove the following corollary which implies Theorem 4.6 (1).

Corollary 4.8. Fix any non-trivial network (connected with at least one captive market). There
exists some positive δ > 0 such that in any equilibrium the support of prices of every seller is
contained in [δ, 1]. Moreover, in any equilibrium every seller i has positive utility, and the utility is
at least αi.

Proof. Consider some seller i with a captive market of size αi > 0. If i prices at x, his utility is at
most x(αi + βi) (recall that βi is the total size of all non-captive markets of i), thus any price in
the support of i must be at least αi

αi+βi
> 0. The claim now follows from Observation 4.7.

Note that this in particular says that the profile in which all sellers post a price of 0 is not an
equilibrium when there is a captive market.

Observation 4.9. Fix any non-trivial network and any equilibrium. If price z < 1 is in the support
of seller i then there exists a neighbor j of i such that for any x > z it holds that Fj(x) > Fj(z).

Proof. By Corollary 4.8 seller i has positive utility and thus wins with positive probability with
the price of z. There must exist a neighbor j of seller i such that for any x > z it holds that
Fj(x) > Fj(z), as otherwise a small enough increase in the price by i will result with higher utility
for him (he still wins the same buyers with the same positive probability, but for a higher price).

The next observation implies Theorem 4.6 (2).

Observation 4.10. Fix any non-trivial network and any equilibrium. If seller i has an atom, that
atom must be at 1, and it must be the case that i has a captive market. None of the neighbors of i
has any atoms.

Proof. Assume in contradiction that in some equilibrium there is a seller i with an atom at some
z < 1, which means that z is in the support. By Corollary 4.8 seller i’s support has positive infimum
(inf i > 0), and thus has no atom at 0, so we can assume that z > 0. By Observation 4.9 there
exists a neighbor j of i such that for any x > z it holds that Fj(x) > Fj(z). This means that j has

12



optimal prices arbitrarily close to z (above z). By Corollary 4.8 j wins with positive probability
with any price in his support. Now, seller j can increase his utility by pricing at y < z that is large
enough, as he now also wins over the atom of i but losses arbitrarily small in price (the formal
argument is similar to the one presented in Lemma 4.2 and is omitted).

Finally, if a seller has an atom at 1 this means that his utility is αi (as none of his neighbors
has an atom at 1 by Lemma 4.2). If he has no captive market this means that his utility is zero,
in contradiction to Corollary 4.8.

None of the neighbors of i has any atoms as any such atom must be at 1, but that is impossible
by Lemma 4.2.

The next observation implies Theorem 4.6 (3).

Observation 4.11. Fix any non-trivial network. Consider any seller i that has no captive market
and assume that in some equilibrium none of his neighboring sellers has an atom at 1. Then seller
i’s supremum price in that equilibrium is strictly less than 1.

Proof. Seller i has no captive market. Assume that supi = 1. As none of his neighbors has an atom
at 1, his utility is continuous at 1 and is eqaul to αi which is 0 as he has no captive market. But,
if i has a captive market then he has positive utility by Corollary 4.8. A Contradiction.

The next observation implies Theorem 4.6 (4).

Observation 4.12. Fix any non-trivial network and any equilibrium. For any seller i the support
Si excluding the point 1 is contained in the union of the supports of the neighbors of i.

Proof. By Observation 4.10 no seller has any atom, except possibly at 1.
Assume that the claim is not true, then for some seller i and some prices 1 > y > x in the

support of i it holds that Fj(x) = Fj(y) for every neighbor j of i. It is easy to see that in this case
the utility of i by price y is strictly larger then his utility by price x, contradiction the assumption
that x is optimal for i (any point in the support that is not 1 is optimal).

The next corollary shows that any local minimum of the infima must be shared by at least two
sellers.

Corollary 4.13. Fix any non-trivial network and any equilibrium. If the infimum of the support
of seller i is at most the infimum of the support of all his neighboring sellers then there is some
neighboring seller with the same support infimum.

The next observation shows that any local maximum of the suprema is a global maximum. It
implies Theorem 4.6 (5).

Observation 4.14. Fix any non-trivial network and any equilibrium. If the supremum of the
support of seller i is at least the supremum of the support of all his neighboring sellers then the
supremum of his support is 1.

Proof. If for seller i it holds that 1 > supi ≥ supj for every j that is a neighbor of i then i has
utility zero, as no seller has an atom at a positive price that is less than 1 (Observation 4.10).
This contradict Corollary 4.8 which shows that i must have positive utility in any equilibrium. We
conclude that supi = 1.
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The next observation implies Theorem 4.6 (6).

Corollary 4.15. Fix any non-trivial network and any equilibrium. There is at least one seller i
with utility ui = αi, that seller has a captive market (αi > 0).

Proof. Consider seller i with the maximum supremum price, breaking ties in favor of a seller with
an atom. By Observation4.14 it holds that supi = 1. None of i’s neighbors has an atom at 1 by
Lemma 4.2. When seller i prices arbitrarily close to 1 he only wins his captive market, thus his
utility is αi. It must be the case that αi > 0, as every seller has positive utility, by Corollary 4.8.

5 Supports and Equilibrium

In general, the definition of a mixed Nash equilibrium requires checking a continuum of equations
and inequalities. In this section we show that the space of potential equilibria – and the conditions
to check – can be simplified immensely. An equilibrium sketch (defined formally below) describes
each seller’s support and the set of players that have an atom at 1. We will show that once the
sketch of an equilibrium is known, the full specification of an equilibrium with that support can
be determined. Moreover, one can efficiently decide whether a given sketch corresponds to an
equilibrium: it suffices to check the equilibrium conditions at the boundary points of the players’
supports. We also provide conditions under which a sketch uniquely determines an equilibrium.

Assume that we are given the support Si of each CDF Fi for every seller i. Let Bi be the set
of boundary points for the support Si, and let T = ∪n

i Bi be the union of all these sets, we call it
the set of boundary points of {Fi}i. Let Ti be the set of points in Si ∩ T . That is, Ti is the set of
boundary points that are in the support of seller i.

We say that support Si has finite boundary if |Bi| is finite. Suppose all sellers have supports
with finite boundary. Then T is finite; write k = |T |. We can then write T = {t1, t2, . . . , tk}, where
1 ≥ t1 > t2 > . . . > tk ≥ 0. Note that if the CDFs form an equilibrium then t1 = 1 and tk > 0
(by Theorem 4.6, items 1 and 6). It will sometimes be convenient to think of the list of points
T̃ that also includes the point tk+1 = 0, so we denote T̃ = {t1, t2, . . . , tk, tk+1}. Additionally, for
j ∈ {1, 2, . . . , k} we denote by Rj the set of sellers with support that contains the interval (tj+1, tj).
Note that Rk is empty when tk > 0, as happens in any equilibrium. Finally, R0 specifies the set of
sellers that have an atom at 1.

Definition 5.1. A sketch (of an equilibrium) specifies for every seller i the support Si of Fi, where
all supports have finite boundary. Additionally, the sketch specifies a set R0 of sellers that should
have atoms at 1. An equilibrium satisfies the sketch if its supports and atoms match those of the
sketch.

A sketch solution is a sketch augmented with partial information about a Nash equilibrium,
concerning behavior at boundary points. Recall that for seller i and point x ∈ [0, 1], we denote
F i(x) = 1−F−

i (x). Since no seller has an atom at x < 1 in equilibrium, we have F i(x) = 1−Fi(x)
for x < 1. Also, F i(1) = 1− F−

i (1) is the size of the atom of i at 1.

Definition 5.2. A sketch solution (of an equilibrium) specifies a sketch and, additionally, it defines
values F r(t) for every seller r and point t in the set T of boundary points of the sketch. These
values must satisfy the following linear program (LP1) in the variables {ui}i∈[n], {F r(t)}r∈[n],t∈T
(observe that the values of t ∈ T are not variables).
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ui = t



αi +
∑

r∈N(i)

βi,r · F r(t)



 ∀i ∈ [n], t ∈ Ti (2)

ui ≥ t



αi +
∑

r∈N(i)

βi,r · F r(t)



 ∀i ∈ [n], t ∈ T \ Ti (3)

F i(tk) = 1 ∀i ∈ [n] (4)

F i(1) = 0 ∀i /∈ R0 (5)

F i(1) > 0 ∀i ∈ R0 (6)

F i(tj) = F i(tj+1) ∀j ∈ [k − 1] ∀ i /∈ Rj (7)

F i(tj) > F i(tj+1) ∀j ∈ [k − 1] ∀ i ∈ Rj (8)

An equilibrium satisfies the sketch solution if it satisfies the sketch and, moreover, for every i and
t ∈ T the value of F i(t) equals the corresponding value in the sketch solution.

We next explain the constraints of the linear program. Constraints (2) state that each seller has
the same utility from every boundary point in his support. Constraints (3) state that each seller
has weakly lower utility for boundary points that are not in his support. Constraints (4) state
that, for each i, the CDF for i has value 0 at the lowest boundary point. Constraints (5) states
that sellers not in R0 have no atom, while constraints (6) state that sellers in R0 have an atom.
Note that for i ∈ R0 the size of the atom of i at 1 is exactly F i(1). Finally, constraints (7) state
that sellers do not price outside their support, while constraints (8) state that they do price inside
their support. Observe that as all these constraints must be satisfied in equilibrium. If the linear
program cannot be satisfied then an equilibrium satisfying the sketch does not exist.

Since the linear program can be solved in polynomial time, it follows that we can efficiently find
a sketch solution for a given sketch.

Observation 5.3. There exists a polynomial time algorithm that, when given as input a nontrivial
network and a sketch, it outputs a sketch solution that satisfies the sketch, if such a solution exists.

We next point out that, generically, there will only be a unique sketch solution that satisfies a
given sketch.

Definition 5.4. Fix a network and a sketch. We say that a network has full rank with respect to
the sketch if, for every j ∈ [k], the |Rj | × |Rj| sized matrix with entries βi,r for (i, r) ∈ Rj ×Rj has
full rank.8

Note that this condition ensures that if we look at the |Rj | constraints (2) as linear equations
in the |Rj | variables F r(tj) for every r ∈ Rj , the system will have a unique solution. This in turn
will imply that there is at most one sketch solution that satisfies the sketch (depending on whether
the unique solution to constraints (2) satisfy the remaining constraints).

We will say that a statement holds for generic values of certain parameters if the Lebesgue
measure of the parameter values for which the statement holds is 1. As any minor of a generic
matrix has full rank the following observation is immediate.

8Note that this notion does not depend on ~α.
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Observation 5.5. Fix a nontrivial network. Then, for every sketch, there exists at most one sketch
solution that satisfies the sketch, generically over the shared market sizes {βi,j}.

We next show that a sketch solution suffices for recovering the full information about a cor-
responding equilibrium (which will be generically unique). Specifically, each CDF Fi(x) can be
described by a list of linear functions in 1/x.

Lemma 5.6. Fix a nontrivial network and assume that we are given a sketch solution. There is
a polynomial time algorithm that outputs an equilibrium (F1, F2, . . . , Fn) that satisfies the sketch
solution, where each Fi is a piece-wise linear functions of the inverse of its input. Moreover, if the
network has full rank with respect to the sketch, then this is the unique equilibrium that satisfies the
sketch solution.

Proof. A solution to the linear program specifies F i(t) for any seller i and t ∈ T . We use the
solution to define F j(x) = 1−F−

j (x) for any seller i and x ∈ [0, 1], that coincides with the solution

on T̃ . Together with Fi(1) = 1 for every i, this will completely define a CDF for each seller. Once
we specify the CDFs we check that they indeed form an equilibrium.

For any seller i and any j ∈ [k] we define F i(·) to be a linear function in 1/x on the interval
[tj+1, tj ], that is, F i(·) is of the form F i(·) = Li,j(x) = ai,j + bi,j/x. We fix the linear function to
the unique linear function that coincides with the solution at the boundaries, that is Li,j(tj+1) =
F i(tj+1) and Li,j(tj) = F i(tj).

Given a solution to the linear program above, for seller i and t ∈ T̃ define

ui(t) = t



αi +
∑

r∈N(i)

βi,r · F r(t)



 (9)

The next lemma would be useful.

Lemma 5.7. For the CDFs as defined above, for any seller i, and any j ∈ [k], the utility Ui(·)
is a linear function on the interval (tj+1, tj), moreover, it is the unique linear function that pass
through the points (tj+1, ui(tj+1)) and (tj, ui(tj))

Proof. Consider any point x in the interval (tj+1, tj).

ui(x) = x



αi +
∑

r∈N(i)

βi,r · F r(x)



 = (10)

x



αi +
∑

r∈N(i)

βi,r(ar,j + br,j/x)



 =

x · αi +
∑

r∈N(i)

βi,r(x · ar,j + br,j) =
∑

r∈N(i)

βi,rbr,j + x



αi +
∑

r∈N(i)

βi,rar,j





This is clearly a linear function, and clearly it go through the two specified points by the way F i(·)
is defined at these boundary points for every seller i.
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This lemma shows that for the defined CDFs it is indeed the case that each i ∈ Rj is indifferent
between all the prices in the interval (tj+1, tj), and that for any interval (tl+1, tl) such that i /∈ Rl,
i cannot gain by deviating and pricing on that interval. This prove that the specified CDFs indeed
forms an equilibrium.

Finally, we observe that if the network has full rank with respect to the sketch then that
equilibrium is the unique one that respects the solution to the LP. Indeed, consider any x in the
interval (tj+1, tj). The solution to LP1 specifies utility ui for every seller i. For any i ∈ Rj , consider
the equation ui = ui(x) for ui as specified in Equation (10). This is a set of |Rj | linear equations in
the |Rj | variables F r(x) for every r ∈ Rj . As the network has full rank with respect to the sketch
this set specifies a matrix of full rank, thus there is at must one solution to the set.

The following theorem (which is a re-statement of theorem 3 from the introduction) follows by
combining Lemma 5.6 with observations 5.3 and 5.5.

Theorem 5.8. There is a polynomial time algorithm that gets a sketch as input and has the
following properties. If there exists an equilibrium satisfying the sketch then it will compute such an
equilibrium (a list of CDFs F1(x), F2(x), . . . , Fn(x) each linear in x−1), and if such an equilibrium
does not exist then it will provide a proof of that claim. Moreover, generically in the shared market
sizes, the provided equilibrium is unique.

6 Trees with a Single Captive Market

We now turn our attention to a particular type of network: a tree with exactly one captive market.
Such a network may have multiple equilibria, but we will show that all equilibria have a particular
form and that every equilibrium is utility-equivalent for each seller. Moreover, when the tree is a
line with the captive market at one endpoint, there is a unique equilibrium.

Fix an arbitrary tree as our network, and suppose seller r is the unique seller with αr > 0. We
will think of the tree as being rooted at r. In this rooted tree, we write P (i) for the parent of seller
i (with P (r) = ∅), and C(i) for the set of children of seller i. We say i is a leaf if C(i) = ∅. We
will also write CC(i) = {j : P (P (j)) = i}, the set of grandchildren of i.

Before characterizing the equilibria of our network, it will be helpful to describe a particular
type of sketch. In this sketch, the support of each seller is an interval, say Sv = [Lv,Hv]. Moreover,
for each seller there is a “midpoint” value Mv ∈ [Lv,Hv] such that LP (v) = Mv and Hj = Mv for
each j ∈ C(v). That is, the “top” portion of a seller’s range is shared with his parent, and the
“bottom” portion is shared with each of his children. The root has Mr = Hr = 1 and each leaf v
has Mv = Lv. Note that if sellers v and w are siblings then they must have Mv = Mw. See Figure
3. We say that such a profile of intervals {[Lv ,Hv]}v is staggered.

Informally speaking, we will show that there is an equilibrium whose sketch corresponds to a
profile of staggered intervals, where only the root has an atom at 1. In general this equilibrium will
not be unique. However, we will show that there is a unique profile of staggered intervals {[Li,Hi]}i
such that, for every equilibrium, [Li,Mi) ⊆ Si ⊆ [Li,Hi] for each seller i. Our main theorem for
this section, which is a more detailed statement of Theorem 1.4 from the introduction, is as follows.

Theorem 6.1. Fix a rooted tree with single captive market, as described above. Then there exists
a profile of staggered intervals {[Li,Hi]}i such that, for any equilibrium of the network and every
seller i,
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(a) (b)

Figure 3: The sketch corresponding to a staggered interval profile for (a) a line of length n with
a single captive market at one endpoint, and (b) a binary tree with a single captive market at its
root. Note that a profile of intervals for a tree is staggered if and only if it is staggered along each
root-to-leaf path. In (b), the values of Lv,Mv, and Hv are illustrated for an interior node v, leaf
w, and root r.

1. [Li,Mi) ⊆ Si ⊆ [Li,Hi],

2. [Li,Mi) ⊆ ∪j∈C(i)Sj, and

3. F r(1) > 0 and F i(1) = 0 for all i 6= r.

This profile of intervals (and an equilibrium) can be computed from the network structure in poly-
nomial time, and every equilibrium is utility-equivalent for each seller.

We prove Theorem 6.1 in two parts. In Section 6.1 we prove that, for any given equilibrium,
there is a corresponding profile of staggered intervals satisfying the conditions of Theorem 6.1.
In Section 6.2 we complete the proof of Theorem 6.1 by showing that the profile of staggered
intervals corresponding to a given equilibrium can be fully described and computed as a function
of the network weights only. This will imply that there is a single interval profile that satisfies the
conditions of Theorem 6.1 for all equilibria. In Section 6.3 we explore some comparative statics
implied by our equilibrium characterization. In Section 6.4 we focus on the special case of a line
network, where we show that there is a unique equilibrium. We will defer some proof details to
Appendix A.

6.1 The Form of an Equilibrium

Fix a tree network as above. In this section we prove of the following lemma.

Lemma 6.2. For any equilibrium F = {Fi}i, there is a profile of staggered intervals {[LF

i ,H
F

i ]}i
such that, for every seller i, [LF

i ,M
F

i ) ⊆ Si ⊆ [LF

i ,H
F

i ] and [LF

i ,M
F

i ) ⊆ ∪j∈C(i)Sj. Moreover,

F r(1) > 0 and F i(1) = 0 for all i 6= r.

Lemma 6.2 asserts the existence of an interval profile for each equilibrium, whereas Theorem
6.1 makes the stronger claim that a single profile applies to all equilibria. Fix equilibrium F. We
observe that the sellers’ suprema must be decreasing with depth.
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Claim 6.3. We have F r(1) > 0 and F 1(i) = 0 for all i 6= r. Also, supi ≤ supP (i) for each seller
i 6= r, with equality only if P (i) = r.

We can now define a profile of staggered intervals {[LF

i ,H
F

i ]}i corresponding to equilibrium
F. We begin with the lower bounds of the intervals. For each v with CC(v) 6= ∅, define LF

v =
maxk∈CC(v) supk. For v with CC(v) = ∅ but C(v) 6= ∅, let LF

v = infv. Finally, for each leaf v,

LF
v = LP (v). For the upper bounds, set HF

r = 1 = HF
v for each v ∈ C(r), and HF

v = LP (P (v))

for each v 6∈ {r} ∪ C(r). Let MF
r = 1 and MF

v = LP (v) for each v 6= r. Claim 6.3 implies that

LF
v ≤ MF

v ≤ HF
v for each v, with LF

v = MF
v only if v is a leaf and MF

v = HF
v only if v = r. Thus

{[LF

i ,H
F

i ]}i is, in fact, a profile of staggered intervals.
The main technical step in the proof of Lemma 6.2 is to show that Sv ⊆ [LF

v ,H
F
v ] for each v.

Roughly speaking, we show that if some seller v bids below LF
v , then we can find a certain pair of

prices p1 and p2 such that v, a child of v, and a grandchild of v all maximize utility at both p1
and p2. We then show that such a circumstance leads to a contradiction, due to the relationship
between these prices and the supports of the neighbors of the three nodes.

Proposition 6.4. For each seller v, Sv ⊆ [LF
v ,H

F
v ]. Moreover, for each j ∈ C(v) that is not a

leaf, there exists k ∈ C(j) with supk = LF
v .

The other requirements of Lemma 6.2 then follow from various applications of Theorem 4.6 (4).

Proposition 6.5. For each seller v, Sv ∩ [LF
v ,M

F
v ] = [LF

v ,M
F
v ] ∩ (∪j∈C(v)Sj).

Proposition 6.6. [LF
v ,M

F
v ) ⊆ Sv for each seller v.

Combining the results in this section completes the proof of Lemma 6.2.

6.2 Uniqueness of Intervals

In Section 6.1 we defined a profile of staggered intervals {[LF
v ,H

F
v ]}v for equilibrium F. In Appendix

A.1 we show that these intervals are uniquely determined by (and can be efficiently computed from)
the network, completing the proof of Theorem 6.1.

Lemma 6.7. There exists a profile of staggered intervals {[Lv,Hv]}v such that for every v and
every equilibrium F it holds that [LF

v ,H
F
v ] = [Lv,Hv].

A corollary of our analysis is that there exists an equilibrium in which Sv = [Lv,Hv] for each v,
and in particular this equilibrium can be computed efficiently. Another corollary is that that every
equilibrium is utility-equivalent for each seller.

Corollary 6.8. All equilibria are utility-equivalent for all sellers.

Proof. Let {Mv}v be the profile of interval midpoints corresponding to our tree network, from
Theorem 6.1. Then, for each seller v 6= r, we have uv = uv(Mv) = MvβvP (v) in every equilibrium.
Also, ur = ur(1) = αr in every equilibrium. The seller utilities are therefore equilibrium-invariant,
as required.
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6.3 Utilities and Captive Market Size

One implication of our equilibrium analysis is that, in every equilibrium, each seller’s utility in-
creases as αr increases.

Proposition 6.9. For fixed shared market sizes β, the value of uv is strictly increasing as αr

increases, for every seller v.

Our analysis in Section 8.2 allows us to relate the size of a shared market βvP (v) to the utilities
of the descendents of v. Write w ≺ v to mean w is a strict descendent of v.

Proposition 6.10. Fix shared market sizes β and captive market size αr. Choose node v 6= r. If
we take βvP (v) → 0, then uw → 0 for all w ≺ v. Alternatively, as βvP (v) → ∞, we again have
uw → 0 for all w ≺ v.

6.4 Special Case: A Line with a Single Captive Market

Consider now the special case that our network is a line with a single captive market belonging to
one of the endpoints, r. Label the sellers i1, . . . , in, with i1 = r and ik = P (ik+1) for all k < n. A
corollary of Theorem 6.1 is that there is a unique equilibrium. See Figure 3(a) for an illustration
of the sketch of this equilibrium.

Claim 6.11. For the line network with a single captive market belonging to a seller at one endpoint,
there is a unique equilibrium. Moreover, this equilibrium has a sketch of the following form: |T | = n,
only seller i1 has an atom at 1, and Sik = [tk+1, tk−1] for each k (where we define t0 = 1 and
tn+1 = tn for notational convenience).

Example 6.12. As an illustration of our equilibrium for the line, consider the case in which αr = 1
and βik,ik+1

= 1 for all k < n. By Claim 6.11, the unique equilibrium has a sketch with boundary
points T = {t1, . . . , tn}, Sik = [tk+1, tk−1] for all 1 ≤ k ≤ n, and an atom at 1 for seller i1.

Considering the utility of seller in−1 at declarations tn and tn−1, we have

tn−1 = uin−1(tn−1) = uin−1(tn) = 2tn.

Moreover, considering the utility of each seller k < n− 1 at points tk and tk+1, we have

tk = uik(tk) = uik(tk+1) = tk+1(1 + F ik+1
(tk+1)) = tk+1 + tk+2

where we used Claim A.5 in the last equality to infer that tk+1F ik+1
(tk+1) = tk+2. A simple

recursion then implies that tk = Nn−k+1 · tn for each k, where Ni denotes the ith Fibonacci number,
indexed so that (N0, N1, N2, . . . ) = (1, 1, 2, . . . ). Since we know t1 = 1, we can solve for tn to

conclude that tk =
Nn−k+1

Nn
for each k.

Since uik = Mik = tk for each k, we conclude uik = Nn−k+1/Nn for each seller ik. In particular,
the utilities of sellers decay exponentially with the distance to the captive market, with the rate of
decay converging to the golden ratio as n grows large.
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(a) (b)

Figure 4: Examples showing that Theorem 6.1 does not extend to (a) cycles (section 6.5) and (b)
trees with multiple captive markets (section 7.2). In each case, the network is symmetric but the
equilibrium is asymmetric, and hence a second (reflected and non-equivalent) equilibrium exists.

6.5 Non-uniqueness for Cycles with a Single Captive Market

We now show that Theorem 6.1 does not extend to networks with cycles. Our example is a network
of 5 sellers in a cycle, where only one seller has a captive market. The network will be symmetric
with respect to reflection about seller 3. We will exhibit a non-symmetric equilibrium for this
network. Symmetry will then imply the existence of two different equilibria, in which some sellers
achieve different utilities. The example is graphically depicted in figure 4(a). The details are
postponed to the appendix and give u1 = 0.645242 and u5 = 0.622108.

7 Trees with Multiple Captive Markets

We now consider extending our analysis of trees to allow for multiple captive markets. As we will
show, the results of Theorem 6.1 do not extend beyond a single captive market; we present an
example with multiple equilibria that are not utility-equivalent. However, we are able to fully char-
acterize the (generically unique) equilibrium for the star network with equal-sized shared markets
but generic captive markets.

7.1 Star Networks

In this section we study star networks with all edges having the same market size, and generic
sizes of the captive markets. There is a central seller that shares a market of size 1 with each of n
additional peripheral sellers. The central seller is labelled 0 and the n sellers are labelled 1, 2, . . . , n.
Seller i ∈ {0, 1, . . . , n} has a captive market of size αi > 0. We assume without loss of generality
that α1 ≥ α2 ≥ . . . ≥ αn. All claims in this section will be made for a generic ~α.

We will show that for a star network there exists a unique equilibrium, generically with respect
to ~α. In Appendix B.1 we discuss the sellers’ equilibrium utilities.

Theorem 7.1. A star network has a unique equilibrium, generically over ~α.

We outline the proof; for the complete proof see Appendix B. We first show that for any
equilibrium, a sketch that satisfies the equilibrium must have the following form. The support of
the center seller is a non-trivial interval with supremum 1. The support of each peripheral seller is
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(a) (b)

Figure 5: Typical equilibria for the star network with unit shared markets and arbitrary captive
markets.

an interval (possibly degenerate, containing only point 1). The interiors of the peripheral sellers’
intervals do not overlap. Moreover, the intervals of the peripheral sellers are “ordered” by ~α: if
αi > αj , then Si lies (weakly) above Sj. More precisely, for some 1 = b0 ≥ b1 ≥ . . . ≥ bn such that
bn < 1, it holds that S0 = [bn, 1] and each peripheral seller i has support Si = [bi, bi−1]. Next, we
show that for a star network with generic ~α, there is a unique sketch (set of sellers with atoms at
1, and setting of {bi}i∈[n]) that can be satisfied in equilibrium. For any sketch with these supports,
the network has full rank with respect to the given sketch. Equilibrium uniqueness then follows
from Lemma 5.6.

7.2 Non-uniqueness of Equilibrium: Lines with Captive Markets

We now show that tree networks can exhibit multiple, non-utility-equivalent equilibria when there
is more than one captive market. Our example network will consist of 6 sellers in a line. This
network will be symmetric, but we will exhibit a non-symmetric equilibrium. Symmetry will then
imply the existence of two different equilibria, and we will show that some sellers achieve different
utilities in these equilibria. The example is graphically depicted in figure 4(b), the details are
postponed to the appendix and show u5 = 1.44112 and u2 = 1.4403

8 Quantitative Estimates of Utility

This section provides bounds on utility in general networks. We study how utility ”flows” from
sellers with captive markets to sellers that are “far away” from captive markets. We study two
notions of being “far away:” (1) large distance in the graph to any captive market, and (2) small
cut separating from all captive markets.

Theorem 8.1. Take a non trivial network with n sellers and let αmax = maxi αi be the size of the
largest captive market. Then there exist constants c1, c2 that depend only on the maximum degree
of the network as well as on the maximum ratio between sizes of markets in the network such that,
for every seller i, the following are true.

1. In every equilibrium, αmax/(c1)
di ≤ ui ≤ αmax · (c1)

di where di is the distance of i from the
seller with captive market αmax.
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2. Let E be an edge cut that separates i from all captive markets and does not contain edges
adjacent to i, and change all market sizes in E to be of size η then in every equilibrium of
the modified network we have that ui ≤ c2

nαmax · η and ui ≤ c2
nαmax/η.

An implication of item 2 is that i’s utility goes to 0 if the cut size goes to 0 or infinity.
Subsection 8.1 proves (a more explicit version of) part 1 of this theorem and subsection 8.2

proves a more explicit and more general version of part two of this theorem. We will use the
following parameters in our estimates:

1. The diameter of the graph denoted by D.

2. The “Effective degree” of a seller i: ∆i = maxj
αi+

∑
k∈N(i) βik

βij
. When all market sizes (βij and

αi) faced by i are the same then this is exactly the degree of the seller i plus 1. When the
market sizes are not identical, this parameter is increased by the imbalance. The effective
degree of the entire graph is ∆ = maxi∆i.

3. αmax = maxi αi.

8.1 Utilities and Distance

The following lemmas provide bounds on seller utilities with respect to the network topology. The
first bounds the possible gaps between utilities of neighbors, and the second applies this bound
along a path to a captive market.

Lemma 8.2. In any network and any equilibrium, for any two sellers j ∈ N(i), we have that
uj ≥ ui/∆i.

Proof. Clearly i can never price below p = ui

αi+
∑

k∈N(i) βik
since even winning all his markets at a

lower price would lead to lower utility than ui. It follows that if j prices at p he would certainly
win his whole shared market with i, getting utility at least

uibij
αi+

∑
k∈N(i) βik

≥ ui/∆i which is a lower

bound to uj .

Lemma 8.3. In any network and any equilibrium, for every seller j we have that αmax/∆
D ≤

uj ≤ αmax ·∆
D.

Proof. For the lower bound on uj take the seller i with αi = αmax and apply lemma 8.2 repeatedly
along the shortest path between i and j. For the upper bound on uj take the seller i for which
Theorem 4.6 (6) ensures ui = αi ≤ αmax and again apply lemma 8.2 repeatedly along the shortest
path between i and j, but this time using it to provide upper bounds.

The following examples show that both a dependence in ∆ and an exponential dependence in
D are needed.

Example 8.4. Consider a line of length n, with a single captive market at one end, and all markets
of equal sizes. Formally, α1 = 1, and for all 1 ≤ i < n βi,i+1 = 1. Thus we have ∆ = 2 and
D = n− 1. While u1 = 1 per Theorem 4.6 (6), our analysis in Section 6.4 shows that ui = Θ(ρ−i),
where ρ is the golden ratio. Thus we see that utilities may indeed decrease exponentially in the
distance.
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Example 8.5. Consider a line of three sellers with α1 = 1, β12 = C, and β23 = C2 for some large
C (so in particular ∆ = C − 1). While u1 = 1 per Theorem 4.6 (6), our analysis of Example 3.2
shows that u2 = Θ(∆). Thus we see three interesting and perhaps non-intuitive effects: first, the
utility of a seller with no captive market may be larger than that of any seller with a captive market,
and the gap may be unbounded. Second, a small captive market may increase the utility of sellers
by more than its size, again with the gap being unbounded. Third, these gaps may indeed increase
with the effective degree even when the graph size is fixed.

We still do not know though whether the upper bound on uj may be improved, e.g. to uj ≤
αmax ·∆.

8.2 Utilities Across Cuts

Take a network and consider “part” G of the network which is “rather separated” from captive
markets (perhaps except from tiny ones). We would expect that seller utilities in this part of the
market be indeed quite low. In this section we justify this intuition for two different notions of
“separate”, one of them quite natural and the second more surprising.

More specifically, consider an edge-cut separating G from the rest of the network. It would
seem that if the sizes of all markets on this cut are very small then the influence of the captive
markets outside of G cannot be too large on G. This is indeed justified by the following lemma:

Lemma 8.6. Let G be a subset of sellers in the network such that for every i ∈ G, αi+
∑

j 6∈G βij ≤ ǫ.

Denote by ∆G = maxi,j∈G
αi+

∑
k∈N(i) βik

βij
and by DG the diameter of the largest connected component

of G. Then for every i ∈ G we have that ui ≤ ǫ∆DG

G .

Proof. We will prove it for every connected component of G separately. Take the seller with highest
supremum price in a component, and as in the proof of Theorem 4.6 (6), we can assume without
loss of generality that none of his neighbors in G has an atom at 1. When pricing arbitrarily close
to his supremum, he will not win any markets that are shared within G and thus his utility will be
at most ǫ. At this point we proceed like in lemmas 8.2 and 8.3, only staying inside the connected
component of G and thus we get the same upper bound as in lemma 8.3 but with ∆ and D replaced
by ∆G and DG.

In particular this shows a phenomena that can be expected: take an edge-cut that separates a
subset of sellers G from any captive market, and let the size of all markets in this cut approach
zero, then the utilities of all sellers in G will approach zero.

The following phenomena may be more surprising: if instead of letting all market sizes in the
cut approach zero, we let them approach infinity, then it turns out that the utilities of all sellers
in G will also go down to zero, possibly except those who are direct neighbors of one of these cut
markets that approach infinity. The following theorem looks at a situation where a graph has two
different scales of market size: “regular” ones and “big” ones, where the big markets separate a
subset of sellers G from all captive markets. We show that in this case too, the sellers in G get low
utility.

Consider a network where all captive markets satisfy αi ≤ 1 and all joint market sizes are either
similarly small βij ≤ 1 or much larger βij ≥ M (for some M >> 1), and denote by E the set of
large edges and by B the sellers that share some large market. For the following lemma we denote
∆ = max(∆B ,∆G−B) and D = max(DG,DG−B) where ∆B and DB are the maximum diameter
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of a connected component and the effective degree in the sub-network that only contains the large
edges within B and similarly DG−B and ∆G−B in the sub-network that only contains the small
edges within G−B.

Lemma 8.7. If E separates a subset G of the sellers from all captive markets then for all i ∈ G−B
we have that ui ≤ n2∆2D/M .

The point is that as M is taken to infinity the utilities go to zero.

Proof. Let us first look at the sub-network on B and try to apply lemma 8.6 to it. Notice that after
scaling all market sizes down by a factor of M , we have an instance where all markets that go out
of B have weight of at most 1/M , and so we can apply lemma 8.6 to it with ǫ ≤ n/M (where n is
the total number of sellers in the graph). This would give us a bound of ui ≤ n∆DB

B /M , where we
need to emphasize that ∆B only takes into account the large edges in B and does not depend on
M . (To be slightly more precise, in case that there are small edges between some the sellers in B,
we need to apply a variant of lemma 8.6 that defines ∆G using only the big edges – as we did – but
allows additional small edges as long as their total weight is also summed up as part of the markets
whose weight is bounded by ǫ. The proof of this variant is identical to the proof of lemma 8.6. If we
now scale back up all market weights by a factor of M , the strategies of all sellers remain exactly
the same, but the utilities scale up by a factor of M too, giving ui ≤ n∆DB

B for all i ∈ B. This

implies that for any i ∈ B and any possible price level x we have that 1 − Fj(x) ≤ n∆DB

B /(Mx)
since otherwise the i ∈ B that shares a large market with j could price at x and obtain more than
n∆DB

B utility just from this market.
Now consider a connected component of G−B and take the seller i in it with highest supremum

price. When he prices at his supremum he can only get win markets that are shared with some j ∈ B
(since E separates him from Gc). Now we can estimate his utility from above by noting that a price
of x can only win the shared market (i, j) with probability bounded by 1 − Fj(x) ≤ n∆DB

B /(Mx)

giving utility of at most n∆DB

B /M from this market an a total utility bounded by ui ≤ n2∆DB

B /M .
For the rest of the sellers in i’s connected component we apply lemma 8.3 on G−B obtaining the
lemma.

9 Conclusions and Open Problems

We have studied price competition between sellers that have access to different sets of buyers,
focusing on the case that at most two sellers can access each of the buyers’ populations. Our work
leaves an ample supply of open problems. Is it possible to compute an equilibrium in any graph?
We have reduced the problem of equilibrium computation to the problem of finding the supports
and the set of sellers with an atom at 1, but it is not clear how to compute these in polynomial time
in a general network. Another interesting question concerns the structure of the sellers’ supports in
equilibrium: is the support of the equilibrium distributions necessarily finite for a generic instance?
Finally, one might like to consider the more general case of hyper-graphs instead of graphs, and
relax our assumptions about the forms of the supply and demand curves.
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A Trees with a Single Captive Market: Details

We now provide the details of proofs from Section 6.

Claim A.1 (Restatement of Claim 6.3). We have F r(1) > 0 and F 1(i) = 0 for all i 6= r. Also,
supi ≤ supP (i) for each seller i 6= r, with equality only if P (i) = r.

Proof. Observation 4.10 immediately implies F i(1) = 0 for all i 6= r. Next, suppose for contradic-
tion that there exists a seller i 6∈ C(r)∪{r} such that supi ≥ supP (i). Let j be a seller of maximum
depth such that supj ≥ supP (j). The maximality of j then implies supj ≥ supk for all k ∈ C(j),
and hence supj ≥ supℓ for all ℓ ∈ N(j). This implies uj(supj) = 0, and hence uj = 0, contradicting
Observation 4.7.
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Next suppose Ar(1) = 0. By Observation 4.12, there exists some j ∈ C(r) with supj ≥
supr. Since we have already shown supj ≥ supk for all k ∈ C(j), we have uj = 0, contradicting

Observation 4.7. Thus F r(1) > 0, and hence supr = 1. From this we can infer supj ≤ supP (j) = 1
for all j ∈ C(r).

Proposition A.2 (Restatement of Proposition 6.4). For each seller v, Sv ⊆ [LF
v ,H

F
v ]. Moreover,

for each j ∈ C(v) that is not a leaf, there exists k ∈ C(j) with supk = LF
v .

Proof. Note that the definition of HF
v implies that supv ≤ HF

v for all v, so to show Sv ⊆ [LF
v ,H

F
v ]

it suffices to show that infv ≥ LF
v .

If v is a leaf, then N(v) = {P (v)} and hence Observation 4.12 implies infv ≥ infP (v) = LF
v as

required. In the case that CC(v) = ∅ but v is not a leaf, we have infv = LF
v by definition. We are

left with the case that v that has at least one grandchild: CC(v) 6= ∅.
Suppose for contradiction that there exists v and k ∈ CC(v) such that infv < LF

v . Let t =
sup{Sv ∩ [0, LF

v ]}, and choose v such that this value of t is maximized (over all v with infv < LF
v ),

breaking ties in favor of v closer to the root.
We claim that there exists z < LF

v such that z ∈ Sv and either v = r or FP (v)(z) = FP (v)(L
F
v ).

If v = r then this follows immediately from the fact that infv < LF
v . Otherwise, if FP (v)(z) <

FP (v)(L
F
v ) for all z ∈ Sv ∩ [0, LF

v ), then we conclude that sup{SP (v) ∩ [0, LF

P (v)]} ≥ sup{SP (v) ∩

[0, LF
v ]} ≥ sup{Sv ∩ [0, LF

v ]}, contradicting our choice of v. We therefore have FP (v)(z) = FP (v)(L
F
v )

as claimed.
If v 6= r, we have

uv(z) = z(F P (v)(z)βvP (v) +
∑

j∈C(v)

F j(z)βvj)

and
uv(L

F

v ) = LF

v (F P (v)(L
F

v )βvP (v) +
∑

j∈C(v)

F j(L
F

v )βvj).

Since FP (v)(L
F
v ) = FP (v)(z) < 1, we can write X = FP (v)(z)βvP (v) and conclude

zX +
∑

j∈C(v)

zF j(z)βvj = uv(z) ≥ uv(L
F

v ) = LF

v X +
∑

j∈C(v)

LF

v F j(L
F

v )βvj (11)

where X > 0. If v = r we also have (11) with X = F r(1) > 0, so (11) holds for any choice of v.
Our strategy for the remainder of the proof of Proposition 6.4 is to show that LF

v F j(L
F
v ) ≥

zF j(z) for each j ∈ C(v). This plus the fact that zX < LF
v X will contradict (11), leading to the

desired contradiction.
From the definition of Lv, there must exist j ∈ C(v) and k ∈ C(j) with supk = LF

v , and in
particular 1 = Fk(L

F
v ) > Fk(w) for all w < LF

v . Since LF
v ∈ Sj, we then have uj(L

F
v ) ≥ uj(w) for

all w ≤ LF
v , where

uj(L
F

v ) = LF

v βvjF v(L
F

v )

and
uj(w) ≥ w(βvjF v(w) + βjkF k(w)) > wβvjF v(w)

so, in particular, LF
v F v(L

F
v ) > wF v(w) for all w < LF

v .
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Choose j ∈ C(v) and first suppose that j is a leaf. Then uj(L
F
v ) = LF

v F i(L
F
v ) > wF v(w) =

uj(w) for all w < LF
v . We conclude that [0, LF

v ) ∩ Sj = ∅, and in particular Fj(L
F
v ) = Fj(z), so

LF
v F j(L

F
v ) ≥ zF j(z) as required.

Suppose j is not a leaf. From the definition of LF
v , supk ≤ LF

v for all k ∈ C(j). We claim that
there exists k ∈ C(j) with supk = LF

v (this will establish the second claim of Proposition 6.4). Let
x = maxk∈C(j) supk, and suppose for contradiction that x < LF

v . We must then have x ∈ Sj , since
Claim 6.3 implies that j is the only neighbor of k who can price at supk, for each k ∈ C(j). But
then uj(L

F
v ) = LF

v F v(L
F
v ) > xF v(x) = uj(x), a contradiction.

We conclude that there exists k ∈ C(j) with supk = LF
v , and hence uk(L

F
v ) ≥ uk(z) for this k.

Since all children of k have suprema strictly less than supk = LF
v by Claim 6.3, we then have

LF

v F j(L
F

v )βjk = uk(L
F

v ) ≥ uk(z) ≥ zF j(z)βjk

and hence LF
v F j(L

F
v ) ≥ zF j(z) as required.

Proposition A.3 (Restatement of Proposition 6.5). For each seller v, Sv∩ [LF
v ,M

F
v ] = [LF

v ,M
F
v ]∩

(∪j∈C(v)Sj).

Proof. If v is a leaf then this is vacuously true. Note that (LF
v ,M

F
v ) ∩ Sk = ∅ for each k ∈ CC(v),

since LF
v = HF

k ≥ supk for any such k by Proposition 6.4. Thus, for any j ∈ C(v), we must
have Sj ∩ [LF

v ,M
F
v ] ⊆ Sv by Observation 4.12. Similarly, if v 6= r then infP (v) ≥ LF

P (v) = MF
v ,

(LF
v ,M

F
v ) ∩ SP (v) = ∅. We must therefore have Sv ∩ [LF

v ,M
F
v ] ⊆ ∪j∈C(v)Sj, again by Observation

4.12.

Proposition A.4 (Restatement of Proposition 6.6). [LF
v ,M

F
v ) ⊆ Sv for each seller v.

Proof. We first claim that LF
v ∈ Sv. If CC(v) = ∅ then LF

v = infv ∈ Sv by definition. Otherwise,
there exists some j ∈ C(v) and k ∈ C(j) with supk = LF

v by Proposition 6.4. We must therefore
have LF

v ∈ Sj by Observation 4.12, and hence LF
v ∈ Sv by Proposition 6.5.

Let x = sup{x : [LF
v , x] ⊆ Sv}. Since LF

v ∈ Sv we know x ≥ LF
v . Suppose for contradiction that

x < MF
v . Then there exists some range (x, x+ǫ) ⊆ [LF

v ,M
F
v ) such that x ∈ Sv but (x, x+ǫ)∩Sj = ∅

for each j ∈ C(v). However, since infP (v) ≥ LF

P (v) = MF
v , we then conclude that

uv(x+ ǫ) = (x+ ǫ)(βvP (v) +
∑

j∈C(v)

βjvF j(x)) > x(βvP (v) +
∑

j∈C(v)

βjvF j(x)) = uv(x),

a contradiction. Thus x = MF
v , so [LF

v ,M
F
v ) ⊆ Sv as required.

A.1 Uniqueness of Intervals

In this section we prove Lemma 6.7, which is that there exists a profile of staggered intervals
{[Lv,Hv]}v such that {[LF

v ,H
F
v ]}v = {[Lv ,Hv}v for every equilibrium F.

Choose an equilibrium F and consider the corresponding profile of staggered intervals {[LF
v ,H

F
v }v

(and values MF
v ). Write w ≻ v to mean that w is a (strict) ancestor of v. We now show that each

MF
v is determined by the values of Fw(M

F
w ) for the ancestors of v.

Claim A.5. MF
v =

∏

w≻v Fw(M
F
w )
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Proof. If v = r then MF
r = 1 as required. Otherwise, let w = P (v). By Proposition 6.5 there exists

some j ∈ C(w) with MF
w ∈ Sj. For this seller j, we have uj(M

F

j ) = uj(M
F
w ), which implies

MF

j βjw = MF

wβjwFw(M
F

w ).

SinceMF

j = MF
v from the definition of a staggered interval profile, we then haveMF

v = MF
wFw(M

F
w ).

The result then follows by structural induction on the tree, with base case MF
r = 1.

Claim A.6. For each seller v, F v(M
F
v ) is positive and uniquely determined by the network weights.

Moreover, F v(M
F
v ) is independent of αr for each v 6= r.

Proof. We proceed by structural induction on the tree network. For the base case, suppose v is
a leaf; then F v(M

F
v ) = F v(L

F
v ) = 1. Next suppose that C(v) 6= ∅ and v 6= r. By Lemma 6.2

we have that [MF
v , LF

v ) ⊆ Sv and hence uv(M
F
v ) = uv = uv(L

F
v ). Choose j ∈ C(v) and note that

LF
v = MF

j = MF
v F v(M

F
v ) by Claim A.5. We conclude that

MF

v βvP (v) = MF

v F v(M
F

v )



βvP (v) +
∑

j∈C(v)

βjvF j(M
F

j )





which implies

F v(M
F

v ) =
βvP (v)

βvP (v) +
∑

j∈C(v) βjvF j(MF

j )
> 0. (12)

Since each F j(M
F

j ) is uniquely determined by the network weights by induction, we conclude that

F v(M
F
v ) is as well. Finally, for v = r, a similar analysis yields

F r(M
F

r ) =
αr

αr +
∑

j∈C(r) βjrF j(MF

j )
> 0 (13)

and hence our induction implies F r(M
F
r ) = F r(1) is positive and uniquely determined by the

network weights, as required.

Claims A.5 and A.6 together imply that the values MF
v are uniquely determined by the network

weights. Note that this specifies the values of LF
v and HF

v as well, since HF
v = MF

P (v) and LF
v = MF

j

for any j ∈ C(v) (or LF
v = MF

v if C(v) = ∅).
We conclude that interval profile {[LF

v ,H
F
v ]}v is independent of F, and hence there is a unique

profile {[Lv ,Hv]}v corresponding to every equilibrium. This completes the proof of Lemma 6.7,
and of Theorem 6.1.

A.2 Utilities and Captive Market Size

In this section we prove Proposition 6.9, which states that for fixed edge weights β, the value of uv
is strictly increasing as αr increases, for every seller v.

Observation A.7. For every seller v 6= r, there exist positive Xv, Yv, Zv independent of αr such
that

Mv =
αrXv

αrYv + Zv
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Proof. We proceed by structural induction on the tree network, top-down. Suppose first that
v ∈ C(r). Claim A.5 and (13) imply that

Mv = F r(1) =
αr

αr +
∑

j∈C(r) βjrF j(Mj)
.

Since each F j(Mj) is positive and independent of αr (from Claim A.6), we have that Mv is of the
required form.

For v 6∈ C(r) ∪ {r}, Claim A.5 and (12) imply

Mv = MP (v)F P (v)(MP (v)) = MP (v)

βP (v)P (P (v))

βP (v)P (P (v)) +
∑

j∈C(P (v)) βjP (v)F j(Mj)
.

Since each F j(Mj) is positive and independent of αr, we have by induction that

Mv =
αrXP (v)

αrYP (v) + ZP (v)
·
W

U

where W and U are positive and do not depend on αr, and hence Mv is of the required form.

We can now complete the proof of Proposition 6.9. If v = r then we have ur = αr so the result
holds. For v 6= r, we have

uv = MvβvP (v) =
αrXv

αrYv + Zv

where each of Xv , Yv, Zv is positive and independent of αr, by Observation A.7. This implies that
uv is strictly increasing in αr.

A.3 Special Case: A Line with a Single Captive Market

Claim A.8 (Restatement of Claim 6.11). For the line network with a single captive market be-
longing to a seller at one endpoint, there is a unique equilibrium. Moreover, this equilibrium has
a sketch of the following form: |T | = n, only seller i1 has an atom at 1, and Sik = [tk+1, tk−1] for
each k (where we define t0 = 1 and tn+1 = tn for notational convenience).

Proof. By Theorem 6.1, there is a staggered profile of intervals such that [Li,Mi) ⊆ Si ⊆ [Li,Hi],
and moreover [Li,Mi) ⊆ ∪j∈C(i)Sj . Since C(ik) = ik+1 for all k < n, we have ∪j∈C(ik)Sj = Sik+1

,
and hence [Lik ,Mik) ⊆ Sik+1

for each k < n. Since Lik = Mik+1
and Mik = Hik+1

, we conclude
that [Mi,Hi) ⊆ Si for each i 6= r. We therefore have Si = [Li,Hi] for each seller i.

We can now describe the sketch of our equilibrium. We have a set of boundary points T =
{t1, . . . , tn}with tj = Mij for each j ≤ n. Our supports are of the form Sik = [Lik ,Hik ] = [tk−1, tk+1]
for each i.

The analysis of Section 6.2 provides a sketch solution for this sketch. Noting that the line
network has full rank over this sketch, Lemma 5.6 implies that there is a unique equilibrium
satisfying this sketch solution, and hence a unique equilibrium for our network.
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A.4 Non-uniqueness for Cycles with a Single Captive Market

Here are the details of the example depicted in figure 4(a). The set of sellers is {1, 2, 3, 4, 5}. We
will have α3 = 1 and αj = 0 for j 6= 3. The shared market weights are (β12, β23, β34, β45, β51) =
(1, 0.5, 0.5, 1, 1). Note that this market is symmetric in terms of reflection around seller 3.

We now describe a sketch for this network. Our set of boundary points will be T = (t1, t2, t3, t4, t5).
Seller 3 is the only one with an atom at 1. The sellers’ supports are S1 = [t4, t2], S2 = [t3, t1],
S3 = [t2, t1], S4 = [t5, t4] ∪ [t2, t1], and S5 = [t5, t3].

Thinking of program (LP1) from Section 5 as a quadratic program in which the boundary
points ti are treated as variables, we can solve to find a sketch solution. The boundary points of
this solution are (approximately)

(t1, t2, t3, t4, t5) = (1, 0.933163, 0.645242, 0.357321, 0.311054)

and the relevant values of F i(tj) are given by

F 1(t3) = 0.223111 F 2(t2) = 0.691457 F 3(1) = 0.933163

F 4(t4) = 0.741037 F 5(t4) = 0.805778

At this equilibrium, u5 = t5(α5 + β45 + β51) = 0.622108 and u1 = t3(α1 + β12) = 0.645242.
By symmetry of the network, there exists a second equilibrium in which the cycle is reflected

about seller 3; that is, with the roles of sellers 2 and 4 reversed, and the roles of sellers 1 and 5
reversed. In this equilibrium, u5 = 0.645242 and u1 = 0.622108. These two equilibria are therefore
not utility-equivalent for the sellers, as required.

B Star: Proof of Theorem 7.1

We restate and prove Theorem 7.1.

Theorem B.1. For a star network with generic ~α, there exists a unique equilibrium.

We first outline the proof. To prove the claim we first show that for any equilibrium, a sketch
that satisfies the equilibrium must has the following form. The center price on a non-trivial interval
with supremum 1, and the peripheral sellers each price on an interval (possibly degenerated to the
point 1), the interior of these intervals do not overlap. Moreover, the interval of a peripheral seller
is above the intervals of any other peripheral seller with a smaller captive market. Formally, for
some 1 = b0 ≥ b1 ≥ . . . ≥ bn such that bn < 1 it holds that the support of the center is the interval
[bn, 1]. Additionally, Each peripheral seller i has support Si = [bi, bi−1]. Next, in Lemma B.7 we
show that for a star network with generic ~α, there is a unique sketch (set of sellers with atoms at
1, and setting of {bi}i∈[n]) that can be satisfied in equilibrium. For any sketch with these supports,
the network has full rank with respect to the given sketch. Equilibrium uniqueness follows from
Lemma 5.6.

Consider any equilibrium in this market. For any seller i and any point x ∈ [0, 1], recall that
F i(x) = 1 − F−

i (x). As each peripheral node has only one neighbor (the center), and its support
(except possibly an atom at 1) must be contained in the center’s support (Observation 4.12), the
center cannot be pricing at 1 with probability 1. Additionally the same observation implies that
there is at least one peripheral seller that is not always pricing at 1.
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Observation B.2. For a star network with α1 > α2 > . . . > αn > 0 in any equilibrium the
intersection of the supports of any two peripheral sellers includes at most one point.

Proof. Consider two peripheral sellers i, j and assume that both x′ and x′′ 6= x′ are in the support
of both sellers, and optimal for them. That is,

(αi + F 0(x
′))x′ = (αi + F 0(x

′′))x′′

and
(αj + F 0(x

′))x′ = (αj + F 0(x
′′))x′′

Thus

αi =
F 0(x

′′)x′′ − F 0(x
′)x′

x′ − x′′
= αj

a contradiction to αi 6= αj for every i 6= j.

Observation B.3. For a star network, in any equilibrium the support of the center is an interval
with supremum of 1, and this interval is exactly the union of the supports of the peripheral sellers.

Observation B.4. For a star network, in any equilibrium, for any peripheral sellers i < j with
αi ≥ αj it holds that ui ≥ uj , with strict inequality if αi > αj.

Proof. For any x ∈ Sj

uj = uj(x) = (αj + F 0(x))x

The utility of i is at least his utility by pricing at some x ∈ Sj thus

ui ≥ ui(x) = (αi + F 0(x))x ≥ (αj + F 0(x))x = uj(x) = uj

when the right inequality follows since αi ≥ αj and is strict if αi > αj (since x ∈ Sj means x > 0,
by Corollary 4.8).

Observation B.5. Fix any star network and any equilibrium. For any pair of peripheral sellers
i < j with αi > αj it holds that any price in the support of i is at least as high as any price in the
support of j. That is for any x′ ∈ Si and x′′ ∈ Sj it holds that x′ ≥ x′′.

Proof. Assume in contradiction that x′ < x′′ for x′ ∈ Si and x′′ ∈ Sj. We will show that seller j
can increase his utility by pricing at x′ instead of x′′. As x′ ∈ Si it holds that

ui = ui(x
′) = (αi + F 0(x

′))x′ ≥ (αi + F 0(x
′′))x′′ = ui(x

′′)

Thus,

x′ ≥ x′′
αi + F 0(x

′′)

αi + F 0(x′)

Combining with x′′ being optimal for j (as x′′ ∈ Sj), it holds that

uj = uj(x
′′) = (αj + F 0(x

′′))x′′ ≥ uj(x
′) = x′(αj + F 0(x

′)) ≥ x′′
αi + F 0(x

′′)

αi + F 0(x′)
(αj + F 0(x

′))

we conclude that

(αj + F 0(x
′′)) ≥

αi + F 0(x
′′)

αi + F 0(x′)
(αj + F 0(x

′))

Simplifying this shows that this is equivalent to αi ≤ αj , a contradiction.
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Corollary B.6. For a star network with α1 > α2 > . . . > αn > 0, any equilibrium must have the
following form. For some 1 = b0 ≥ b1 ≥ . . . ≥ bn such that bn < 1 it holds that the support of the
center is the interval [bn, 1]. Additionally, Each peripheral seller i has support Si = [bi, bi−1].

Note that in particular, there is no equilibrium with infinite-boundary for any of the CDFs.

Lemma B.7. For a star network with generic ~α, any equilibrium has finite boundary. Moreover,
there is a unique sketch that can be satisfied in equilibrium.

Proof. We continue by presenting additional properties that must hold in any equilibrium. The
support of the center is the interval [bn, 1]. For every i with bi < 1, bi is in the support of the
center, thus u0 = u0(bi) = bi(α0 + i). We conclude that

bi =
u0

α0 + i
(14)

This means that if bi < 1 then bi
bi−1

= α0+i−1
α0+i

= 1 − 1
α0+i

. Thus, once we fix some j such that
bj−1 = 1 and bj < 1 we fix every bi.

We next compute F 0(bi) for every i such that bi < 1, starting from F 0(bn) = 1 and decreasing
i by one at every step. For every peripheral seller i with bi < 1 and every x ∈ Si it holds that
ui(x) = x(αi + F 0(x)). This holds in particular at bi−1, bi ∈ Si.

ui = ui(bi−1) = bi−1(αi + F 0(bi−1)) = bi(αi + F 0(bi)) = ui(bi)

alternatively

F 0(bi−1) =
bi
bi−1

· (αi + F 0(bi))− αi =

(

1−
1

α0 + i

)

· (αi + F 0(bi))− αi

Thus

F 0(bi−1) = F 0(bi)−
αi + F 0(bi)

α0 + i
(15)

Equation (15) gives a recurrence for computing F 0(bi−1) given F 0(bi), starting with F 0(bn) = 1,
this recurrence must hold in any equilibrium. For generic ~α it holds that F 0(bi) 6= 0 for every i. In
equilibrium it must be the case that F 0(bi) ≥ 0.

Case 1: If F 0(b0) = F 0(1) > 0 it means that the center must have an atom at 1. This means
that no other seller has any atom. This implies that u0 = α0, which means that for every i ∈ [n],
bi =

α0
α0+i

. Thus for this case we have a unique sketch that can be satisfied in equilibrium.
We remark that for this case to happen it is necessary that α0 is quite large since for every i it

must hold that ui = ui(bi) = bi(αi + F 0(bi)) ≥ αi which implies that α0
α0+i

(αi + 1) ≥ αi and thus
α0 > iαi.

Case 2: If by using the recurrence of Equation (15) we get F 0(b0) = F 0(1) < 0, then let
j be the maximum (i.e. first) value for which (15) yields F 0(bj−1) < 0 (thus F 0(bj) > 0 for a
generic α). It must hold that j has an atom at 1 and bj−1 = 1 while bj < 1. This imply that
1 = b0 = b1 = . . . = bj−1 > bj and thus every seller i < j always price at 1 (has an atom at 1 of
size Ai(1) = 1) and no other seller has any atom. Additionally, for any i ≥ j this allows us to fix
every bi using the recursion bi

bi−1
= 1 − 1

α0+i
. Thus for this case we have a unique sketch that can

be satisfied in equilibrium.
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B.1 Equilibrium Utilities

As there is unique equilibrium in each star network, it is meaningful to talk about the equilibrium
utilities of the seller. We next aim to understand how the utilities of the sellers change as the sizes
of the captive markets change slightly (change that is small enough such that the order of captive
market sizes and the sketch of the equilibrium do not change). We focus on the case that the center
has a large market, large enough for the equilibrium to be of the first kind, with the center having
an atom at 1.

The center seller has an atom at 1 and has utility α0. For the peripheral sellers we can compute
their utilities as follows. Given u0 = α0 we can compute the utilities recursively, starting with un
and moving down to u1. It holds that

un = un(bn) = bn(αn + 1) =
u0

α0 + n
(αn + 1)

Consider any peripheral seller i − 1 that is not always pricing at 1. Since bi−1 belongs to
both Si−1 and Si, it holds that ui = ui(bi−1) = bi−1(αi + 1 − F0(bi−1)) and ui−1 = ui−1(bi−1) =
bi−1(αi−1 + 1− F0(bi−1)), thus

ui−1 = ui + bi−1(αi−1 − αi) = ui +
u0

α0 + i− 1
(αi−1 − αi) = u0





αn + 1

α0 + n
+

n
∑

j=i

αj−1 − αj

α0 + j − 1





As we consider parameters for which case 1 holds, that is, the center has an atom at 1, and no
other seller has an atom, we know that u0 = α0. We conclude that the center gains nothing from
having access to additional market. Note that every peripheral seller i has utility larger than αi (as
his equilibrium utility is it least as much as he can gain by pricing arbitrary close to 1). The utility
ui of each peripheral seller i depends on α0 and the captive markets sizes αi, αi+1, . . . , αn, but not
on the other captive market sizes. The utility ui increases in α0, but not linearly. The dependence
on every αi, αi+1, . . . , αn is linear, increasing linearly with αi and decreasing linearly in αl in

αi+1, αi+2, . . . , αn. To see this, observe that the linear coefficient of αl is α0

(

1
α0+l

− 1
α0+l−1

)

< 0.

B.2 Non-uniqueness of Equilibrium: Lines with Captive Markets

We now privide the details for the example that tree networks can exhibit multiple, non-utility-
equivalent equilibria when there is more than one captive market, as depicted in figure 4(b) .

Our network is a line of sellers {1, . . . , 6}, with weights (α1, . . . , α6) = (10, 1, 1, 1, 1, 10) and
(β12, β23, β34, β45, β56) = (0.5, 1, 1, 1, 0.5).

We now describe a sketch for this network. Our set of boundary points is 1 = t1 > t2 > . . . > t6.
Sellers 1 and 6 have atoms at 1. The sellers’ supports are S1 = [t3, t1], S2 = [t6, t5] ∪ [t3, t1],
S3 = [t6, t4], S4 = [t5, t2], S5 = [t4, t2] and S6 = [t2, t1]. Treating program (LP1) from Section 5 as
a quadratic program in which the boundary points ti are variables, we can obtain a sketch solution.
The boundary points at this solution are (approximately)

(t1, t2, t3, t4, t5, t6) = (1, 0.960749, 0.960197, 0.87288, 0.610929, 0.576118)

and the relevant values of F i(tj) are given by

F 1(1) = 0.880591 F 2(t5) = 0.82906 F 3(t5) = 0.85755
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F 4(t4) = 0.150999 F 5(t2) = 0.817081 F 6(1) = 0.882248

At this equilibrium, u2 = t3(α2 + β12) = 1.4403 and u5 = t2(α5 + β56) = 1.44112.
By symmetry of the network, there exists a second equilibrium with the order of the sellers

reversed; in this alternative equilibrium, we have u2 = 1.44112 and u5 = 1.4403. These two
equilibria are therefore not utility-equivalent for the buyers, as required.
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