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Abstract—This paper describes our experience of performing
reactive security audit of known security vulnerabilities in core op-
erating system and browser COM components, using an extended
static checker HAVOC-LITE. We describe the extensions made
to the tool to be applicable on such large C++ components, along
with our experience of using an extended static checker in the
large. We argue that the use of such checkers as a configurable
static analysis in the hands of security auditors can be an effective
tool for finding variations of known vulnerabilities. The effort has
led to finding and fixing around 70 previously unknown security
vulnerabilities in over 10 millions lines operating system and
browser code.
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I. INTRODUCTION

Ensuring security of software has become of paramount im-

portance to the software industry. Every software development

group, representing either a small team of developers or an

entire company, mandates extensive testing and analysis to

safeguard against security breaches. However, security flaws

will remain a part of life, at least in the case of legacy

applications that cannot be redesigned from scratch. In such

cases, effective defense mechanisms are required to mitigate

the impact of security vulnerabilities. In particular, finding all

possible variants of a known security vulnerability can go

a long way in safeguarding the known attack surface of a

software system.

The Microsoft Security Response Center (MSRC) identifies,

monitors, resolves, and responds to security incidents and Mi-

crosoft software security vulnerabilities. The following quote

summarizes some of the activities that the team performs in

conjunction with product teams to mitigate future occurrences

of known vulnerabilities that merit security bulletins:1

”...The MSRC engineering team investigates the

surrounding code and design and searches for other

variants of that threat that could affect customers.”

This is an expensive and arduous process that involves a mix

of manual testing, fuzzing and a large amount of manual

security audit. Such audits need to be responsive and timely in

order to prevent attackers from crafting similar attacks in the

near future. We define the term reactive security audit as this

1http://www.microsoft.com/security/msrc/whatwedo/updatecycle.aspx

process of performing effective audit for variants of known

vulnerabilities, over a large code base. Although the current

practices are effective, they leave a lot to be desired in terms

of scalability and confidence obtained after the reviews.

In this work, we explore the use of extended static checking

tools towards improving the productivity of auditors perform-

ing reactive security audit, and increasing the confidence of the

audit2. Extended static checking tools (such as ESC/Java [1],

HAVOC [2]) offer a potential to develop configurable static
analysis tools with high coverage guarantees. These tools

provide the user the ability to write contracts (specifications

of procedures) in the form of preconditions, postconditions,

assertions and discharge them using modern Satisfiability

Modulo Theories (SMT) solvers [3]. The semantics of the

source language is precisely defined once by the tool (and does

not vary by the property being checked), and the assumptions

are well documented. Many such tools are also equipped

with simple yet robust user-guided contract inference tools

(such as Houdini [4]) to reduce the manual overhead of

writing simple intermediate contracts. Unlike full functional

correctness verifiers (such as VCC [5]), they make pragmatic

assumptions to reduce the complexity of proofs, and provide

a lot more automation in the form of inference. Although the

use of extended static checkers had been proposed for ensuring

security a decade back [6], not much success has been reported

in practical usage. Our conjecture is that the absence of a

usable, robust and scalable tool for the space of core operating

system and browser implementations has been one of the main

causes for the lack of adoption.

In this paper, we present a case study of using an extended

static checker HAVOC-LITE3 for checking variants of security

vulnerabilities in Microsoft Windows and Internet Explorer.

We document the challenges encountered in deploying the pre-

vious version of the tool (henceforth called HAVOC) and the

extensions needed to apply the tool in a realistic setting. The

extensions include modeling most common C++ language fea-

tures used typically in such applications, scaling the contract

inference to be applicable to modules with several hundred

thousand procedures, and early annotation validation. We then

2The work was done when the first author was employed at Microsoft.
3HAVOC-LITE is the new version of HAVOC [2] developed to meet the

needs of this deployment.
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present our experience of security engineers using the tool on

several properties devised as a response to several existing

vulnerabilities. Over the course of one year, the effort led to

discovering and fixing around 70 previously unknown security

vulnerabilities in over 10 million lines of production code. We

discuss the effort involved in modeling, performing inference

of annotations and dealing with false alarms encountered along

the way. We conclude that in spite of the current limitations,

such a tool can be (and already is) quite cost-effective in

complementing existing efforts based on fuzzing and manual

audit. We conjecture that it can improve the productivity of

security auditors who invest in implementing ad-hoc tools to

aid their manual audit.

The rest of the paper is organized as follows:

1) In Section II, we present an overview of our approach

using two simplified examples. The examples illustrate

some of the challenges posed when analyzing low-level

systems code, a brief summary of the modeling effort,

dealing with object-oriented features and the use of

annotation inference.

2) In Section III, we provide a brief description of the

existing tool HAVOC that has been applied to large

Windows modules to find errors. In Section IV, we

describe the main shortcomings of HAVOC that limited

its application for our problem domain. We describe

the design of HAVOC-LITE that includes modeling an

expressive subset of C++ features, scaling the annotation

inference by using a two-level algorithm that avoids

memory blowup for large modules, along with other

features required for making the tool robust and usable

in the hands of security auditors.

3) In Section V, we describe the effort of applying

HAVOC-LITE on the core OS and browser compo-

nents. We discuss the properties that were modeled as

variants of existing security vulnerabilities, candidate

annotations required for inferring intermediate annota-

tions, and some representative errors. We show the need

for various pragmatic decisions (such as dealing with

unsound modifies clause) to trade off soundness for cost-

effectiveness of the analysis. We highlight the effort

required in devising the inference to reduce false alarms

and the payoff over the different properties.

4) In Section VI, we discuss other related static analysis

tools, and finally conclude in Section VII.

II. MOTIVATING EXAMPLES

In this section, we introduce two concrete examples con-

taining commonly found programming style in C++ and COM

(Component Object Model [7]) applications. These examples

can only be precisely analyzed if the semantics of bit-level

manipulations are properly modeled, the common object-

oriented and interface-oriented programming are well handled

by the extended static checker.

1 t y p e d e f s t r u c t tagVARIANT {
2 s t r u c t tagVARIANT {
3 VARTYPE v t ;
4 union {
5 . . .
6 SAFEARRAY ∗ p a r r a y ;
7 BYTE ∗pbVal ;
8 . . .
9 PVOID b y r e f ;

10 . . .
11 } ;
12 } ;
13 } VARIANT;
14
15 bool t 1good ( ) {
16 VARIANT v ;
17 v . v t = VT ARRAY;
18 v . p a r r a y = 0 ;
19 re turn true ;
20 }
21
22 bool t 1 b a d ( ) {
23 VARIANT v ;
24 v . v t = VT ARRAY;
25 v . pbVal = 0 ;
26 re turn true ;
27 }
28
29 bool t 2good ( ) {
30 VARIANT v ;
31 v . v t = VT BYREF | VT UI1 ;
32 f u n c u s e v f i e l d (&v ) ;
33 re turn true ;
34 }
35
36 void f u n c u s e v f i e l d (VARIANT ∗v ) {
37 v−>pbVal = 0 ;
38 }
39
40 bool t2good2 ( ) {
41 VARIANT v ;
42 f u n c s e t v t (&v ) ;
43 v . pbVal = 0 ;
44 re turn true ;
45 }
46
47 void f u n c s e t v t (VARIANT ∗v ) {
48 v−>v t = VT BYREF ;
49 v−>v t |= VT UI1 ;
50 }

Fig. 1. Example of analysis requiring inter-procedural bit-level reasoning

A. Example 1: Inter-procedural and bit-precise reasoning

The first example shows a generic container data structure

called a VARIANT and commonly used in C++/COM applica-

tions. This structure contains a special field vt and a union of

data attributes. The value of the vt field indicates the union

field that is correctly initialized. Failure to check the value

of the vt field can lead to using the wrong union field and

therefore may use a pointer field with an invalid integer value.

Such mistake is likely to lead to a security vulnerability (such

as in functions t1bad). The check for the vt field and the

34



use of the associated union field are often done in separate

functions (such as in t2good and t2good2). Therefore,

constraints must be adequately propagated inter-procedurally

to avoid false positives from static analysis warnings. In

addition, since the vt attribute is a bit field, bit-level program

semantics needs to be supported by the static checker. Finally,

a user needs to be able to document the desired property

by checking each dereference of the set of fields (such as

pbarray, pbVal) under consideration. Such features are

supported by HAVOC-LITE and was used to find multiple

security vulnerabilities in a critical browser component.

1 # i n c l u d e <windows . h>
2 # i n c l u d e "havoc.h"
3
4 /∗ F i e l d i n s t r u m e n t a t i o n s ∗ /
5
6 r e q u i r e s ( v−>v t == VT ARRAY)
7 i n s t r u m e n t w r i t e p r e ( v−>p a r r a y )
8 void i n s t r u m e n t w r i t e a r r a y (VARIANT ∗v ) ;
9

10 r e q u i r e s ( v−>v t == (VT BYREF |VT UI1 ) )
11 i n s t r u m e n t w r i t e p r e ( v−>pbVal )
12 void i n s t r u m e n t w r i t e p b v a l (VARIANT ∗v ) ;
13
14 /∗ Func i n s t r u m e n t a t i o n s w i t h c a n d i d a t e s ∗ /
15
16 c a n d r e q u i r e s ( v−>v t == (VT BYREF |VT UI1 ) )
17 c a n d r e q u i r e s ( v−>v t == VT ARRAY)
18 c a n d e n s u r e s ( v−>v t == (VT BYREF |VT UI1 ) )
19 c a n d e n s u r e s ( v−>v t == VT ARRAY)
20 i n s t r u m e n t u n i v e r s a l t y p e ( v )
21 i n s t r u m e n t u n i v e r s a l i n c l u d e ("*" )
22 void i n s t r u m e n t c a n d v a r i a n t (VARIANT ∗v ) ;

Fig. 2. Annotations for the first example.

Figure 2 shows the annotations written by the user to

create a checker for this property. There are two parts to the

annotations: (a) devising the property and (b) creating an inter-

procedural inference.

The “Field instrumentations” are instrumentations

provided to insert an assertion at reads to particular

fields. For example, the instrumentation provided using

__instrument_write_array method (the name

of the method can be arbitrary except for the prefix

__instrument_) specifies that every write to the

field parray in the structure VARIANT is preceded

by (“write_pre”) an assertion that the vt field in

the structure equals the value VT_ARRAY. There is a

similar check before writes to the pbVal field using the

instrumentation __instrument_write_pbVal. These

two instrumentations allow the user to document the property

to be checked.

We now look at how the user can configure the inter-

procedural annotation inference. The “Func instrumentations”

are used to write annotations on a set of methods, instead

of listing each individual method. The instrumentation

primitive __instrument_universal_type
specifies that any method that takes a parameter

of type VARIANT * is instrumented. The filter

__instrument_universal_include can be used

to restrict the instrumentation to only methods whose

names match a particular pattern — in this case, the wild-

card pattern “*” matches any method. The annotations in

__cand_requires and __cand_ensures are candidate
preconditions and postconditions. These candidates are fed to

the inter-procedural annotation inference engine that infers

a subset of them as annotations that actually hold on every

context.

When the user runs HAVOC-LITE with the property and

candidate annotations, the tool infers two annotations: The

func_use_vfield has a precondition

__requires(v->vt == (VT_BYREF | VT_UI1))

and the method func_set_vt has a postcondition

__ensures(v->vt == (VT_BYREF | VT_UI1))

These additional annotations allow the tool to only complain

about the method t1bad, which corresponds to the only true

error. Although for this simple example, it is easier to simply

write the two additional annotations, it is immensely useful

when dealing with modules with several thousand deeply

nested procedures.

B. Example 2: Object-oriented reasoning

A second example involves the IUnknown interface class

which is responsible for all the reference counting mechanisms

necessary to maintain object consistency in COM applications.

In this example, the class method A::Action performs a call

to QueryInterface which is in charge of retrieving an

instance of the interface given an input interface identifier.

Such a call performs an implicit call to AddRef which

increases the reference counter for this interface. Success of

this call (when the return status is S_OK) leads to calling

method WebAction which performs the expected operation

on class B. Failure to retrieve the interface methods leads

to early termination, where the IUnknown interface pointer

is released using a call to method ReleaseInterface,

which is in charge of decrementing the reference count for

this interface (provided the interface pointer is non-NULL).

A security vulnerability exists in this example due to the

lack of NULL initialization of the IWebIface pointer, which

leads to corrupting the reference counter of an unknown

location in the program in case the call to QueryInterface
is not successful. Such example requires an accurate object-

oriented awareness from the static checker. We later show how

HAVOC-LITE was used to uncover multiple similar security

vulnerabilities in a critical browser component.

To model this property, the user can introduce a ghost

field Queried in every object — the ghost field tracks

whether an object has been created by a successful call to

QueryInterface. The value of the ghost field for an object
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1 c l a s s A {
2 A( ) { } ;
3 HRESULT A c t i o n ( ) ;
4 B ∗Lookup ( ) ;
5 } ;
6 c l a s s B : p u b l i c IWebIface ,
7 p u b l i c IUnknown {
8 B ( ) { } ;
9 HRESULT Q u e r y I n t e r f a c e ( IID id , void ∗∗p ) ;

10 ULONG AddRef ( ) ;
11 ULONG R e l e a s e ( ) ;
12 HRESULT WebAction ( ) ;
13 } ;
14 void R e l e a s e I n t e r f a c e ( IUnknown ∗ i ) {
15 i f ( i ) i−>R e l e a s e ( ) ;
16 }
17
18 i n t main ( i n t ac , char ∗∗ av ) {
19 A ∗a = new A ( ) ;
20 B ∗b = a−>Lookup ( ) ;
21 a−>A c t i o n ( b ) ;
22 re turn ( 0 ) ;
23 }
24
25 HRESULT A : : Ac t io n (B ∗b ) {
26 HRESULT r = S FAIL ;
27 IWebI face ∗w;
28 i f ( b == NULL)
29 goto Cleanup ;
30 r = b−>Q u e r y I n t e r f a c e ( IID WebIface , &w ) ;
31 i f ( r == S OK)
32 r = b−>WebAction ( ) ;
33 Cleanup :
34 R e l e a s e I n t e r f a c e (w ) ;
35 re turn ( r ) ;
36 }

Fig. 3. Example of analysis requiring precise object-oriented semantics

x is written as __resource(‘‘Queried’’, x). One

can write a precondition for the Release methods of B and

any of its derived classes:

#define QUERIED(x) \
__resource(‘‘Queried’’, x) == 1 \

__requires(QUERIED(this))
ULONG B::Release();

to indicate that the receiver object of the method Release has

to be created by an earlier call to QueryInterface. This

is in turn modeled by writing the following postcondition for

the method:

__ensures(__return != S_OK || QUERIED(*p))
HRESULT B::QueryInterace(IID id, void **p);

where __return denotes the return value of the procedure.
Finally, one needs to infer annotations such as:

__requires(i == NULL || QUERIED(i))
void ReleaseIface(IUnknown *i);

which can be done with the help of the first populating can-

didate annotations on all methods that consume a IUnknown

as an argument (we do not show the instrumentation here),

and then performing inter-procedural annotation inference.

III. BACKGROUND: HAVOC

In this section, we provide a background on HAVOC. We

describe HAVOC-LITE along with the extensions created for

this paper in Section IV.

HAVOC can be best thought of as an extended static checker

for C programs, in the spirit of ESC/Java [8]. It provides an (a)

extensible property checker with the aid of an annotation/con-

tract language, (b) a procedure modular verifier that provides

an accurate depiction of C semantics, (c) an user-guided inter-

procedural annotation inference engine, along with (d) various

instrumentation primitives. Figure 4 shows the overall usage

model of HAVOC (and also of HAVOC-LITE) in the hands

of a user. We describe each of the components briefly in the

next few subsections. More details about these features can be

found in an earlier work [2].

Source 
code 

Property 
+  

Manual 
annots 

Inferred 
annots 

Modular 
checker 

Houdini 
inference 

Candidate 
annots 

template 

Refine 
annots? 

Concrete program  
     semantics 

Warning 
review 

Fig. 4. HAVOC and HAVOC-LITE flow.

A. Contract language

A user can document contracts about the code using an

annotation language. An annotation is an assertion over the

state of the program. There are four classes of assertions (i)

assertions __assert (e), (ii) assumptions __assume (e),

(iii) preconditions __requires (e) and (iv) postconditions

__ensures (e). Here e refers to a side-effect-free C expres-

sion that evaluates to a scalar or pointer value — in other

words, e cannot be a structure value. For example, one can

write __ensures (*x == y->f) to indicate that on exit

from a procedure the value obtained by dereferencing the

variable x is identical to the value stored in a field f inside

the structure pointed to by y. In addition to assertions, a user

can specify a __modifies clause that specifies which part

of the heap is modified by a procedure. For the purpose of
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Locs l ::= ∗e | e → f
Expr e ::= x | n | l | &l | e1 op e2 | e1 ⊕n e2

Command c ::= skip | c1; c2 | x := e | l := e | if e then c | while e do c
| f(e, . . . , e)

E(x) = x
E(n) = n

E(e → f) = Memf [E(e) + Offset(f)]
E(∗(e : τ)) = Memτ [E(e)]
E(&e → f) = E(e) + Offset(f)
E(& ∗ e) = E(e)
E(e1 op e2) = E(e1) op E(e2)
E(e1 ⊕n e2) = E(e1) + n ∗ E(e2)

C(skip) = skip

C(c1; c2) = C(c1);C(c2)
C(x := e) = x := E(e);
C(l := e) = E(l) := E(e);
C(if e then c) = if (E(e)) C(c)
C(while e do c) = while (E(e)) do C(c)
C(f(e1, . . . , ek)) = call f(E(e1), . . . , E(ek))

Fig. 5. A simplified subset of C, and translation from C into BoogiePL. E() maps a C expression into BoogiePL expression and C() maps a C statement
into a BoogiePL statement.

this paper, we ignore discussion on loop invariants, which are

also supported in HAVOC.

In addition to the expressions in scope, a user can refer

to the return variable by using the symbol __return in a

postcondition, refer to the value of an expression at entry

to a procedure using __old () in a postcondition. For ex-

ample, __ensures (__return == __old (*x) + 1)

signifies that the value of return variable is one more than the

value stored in *x at the entry to the procedure. The user can

also refer to the state of ghost fields that augment the state

of the program using a keyword __resource4. The scalar

expression __resource (s, e) where s is a string and e is

a side-effect pointer/scalar expression, refers to the value of a

ghost field named “s” inside the structure pointed to by e; i.e.

the value of e->s. The user can modify such ghost fields in

the program.

The annotation language, along with the presence of ghost

fields allows user to encode various interesting properties of

the program. Section II provides a few examples of such

properties. Several more examples of properties can be found

in earlier works [2].

HAVOC provides a sufficiently accurate memory model

for C programs that provides meaning to constructs such as

pointer arithmetic, casts, yet supports common disambigua-

tion required for scalable reasoning of high level properties.

Figure 5 provides a simplified subset of C (for illustration

purposes) without nested structures and addresses of variables.

Figure 5 also provides the translation of this subset into an

intermediate verification language BoogiePL [9]. BoogiePL

is a simple procedural language, where the set of variables

are restricted to Booleans, integers and arrays over them. The

operator C() maps a C statement to the equivalent BoogiePL

statement in a straightforward manner. In addition, the lan-

guage has support for assertions, assumptions, preconditions

and postconditions — the HAVOC annotations map directly

to them.

4Ghost variables are also supported as a degenerate case of ghost fields.

The operator E() maps a C expression (present in either a

statement or an annotation) into a BoogiePL expression. The

heap is split into a finite number of arrays (named Memf [] or

Memτ []), one per scalar field or pointer field (f ) or pointer

type (τ ). Dereferencing a pointer is modeled as indexing into

the appropriate array with a suitable offset — the operator

Offset(f) provides the offset of the field f inside its parent

structure. The heap splitting assumes field safety [10] that

allows exploiting the types and fields in the program to get dis-

ambiguation. Under field safety, it is (optimistically) assumed

that &x → f can never alias with &y → g for distinct field

names f and g. Further, addresses of a field &x → f does not

alias with the address & ∗ e. Although HAVOC has an option

to not assume field safety, the annotation overhead increases

several fold even for simple examples. In our experience, we

have seldom found this optimistic assumption to limit our

ability to find violations of security properties described in

this paper.

B. Modular verifier

An annotated BoogiePL program is checked for correctness

one procedure at a time by the Boogie program verifier. The

verifier uses verification condition generation (translation of

the program into a logical formula with near linear size) [11]

and automated theorem proving (namely Satisfiability Mod-

ulo Theories solvers [3]) to check the satisfiability of the

formula. HAVOC lifts an intraprocedural counterexample at

the BoogiePL level to display over the C source code. In

our experience, the ability of Boogie to generate a compact

verification for the theorem prover is key to the scalability of

HAVOC compared to tools that employ symbolic execution

based path enumeration. The theorem prover can internally

perform complex reasoning to prune parts of a procedure (with

often several thousand paths) that are not relevant towards

proving an assertion.
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C. User-guided inference

HAVOC uses a variant of the Houdini algorithm to

perform inter-procedural inference of procedure annota-

tions [4]. A user can write a set of candidate pre-

conditions (__cand_requires (e)) and postconditions

(__cand_ensures (e)) in addition to the usual annotations.

The Houdini algorithm performs an inter-procedural greatest

fix-point analysis to retain the (unique) maximum subset of

these candidates that can be proved modularly by the program

verifier, while assuming the non-candidate annotations. The

fix-point proceeds by maintaining a worklist of procedures

to be checked. At each step, a procedure p is checked using

the modular verifier. Any candidate annotation that cannot be

proved is removed from the list of annotations. Depending on

the nature of the removed candidate, either the callers of p (for

candidate postcondtiions), or the callee q (whose candidate

preconditions are removed) are added to the worklist, in

addition to p. The process is repeated until the worklist is

empty. The simple algorithm terminates in at most n ∗ c
iterations, where n is the total number of procedures in the

module, and c is the total number of candidate annotations.In

practice, it runs almost linear in c, thus guaranteeing a quick

turnaround.

D. Instrumentations

Finally, various syntax-based instrumentation facilities are

provided to avoid manually writing annotations on large code-

bases. For example, an user can instrument all procedures

whose names match a regular expression with a postcondition

on globals, or instrument all procedures that take a parameter

x of type τ∗ by a precondition parameterized by x. Moreover,

these annotations can include candidate annotations as well

— this is crucial to performing the annotation inference. In

addition to procedure annotations, the user can also instrument

reads and writes to specific fields, types or globals to insert

an assertion or assumption before or after the source line (as

illustrated in Section II).

IV. HAVOC-LITE

Although HAVOC had earlier been applied to large Win-

dows source modules [2], we found it lacking in terms of us-

ability and applicability for the code bases under investigation.

The principal limitations that we addressed and describe in

this section are: (i) need for modeling common C++ language

constructs, (ii) augmenting the instrumentation mechanisms

to exploit C++ class structure, (iii) scaling the annotation

inference to modules containing hundreds of thousands of

procedures, and several other usability concerns such as the

need to modify source code to insert annotations. In the

process of making the tool more robust, we dropped support

for some of the earlier features in HAVOC (hence the name

HAVOC-LITE) such as checking type-safety of C programs,

using fine-grained modifies clauses, dealing with linked list

invariants and checking for complex modifies clauses in can-

didate annotations described in earlier works [12].

1 c l a s s D {
2 p u b l i c :
3 i n t a , b ;
4 v i r t u a l vo id f ( ){}
5 } ;
6 c l a s s A : p u b l i c D {
7 p u b l i c :
8 i n t c ;
9 A ( ) ;

10 void f ( ) ;
11 } ;
12 c l a s s B : p u b l i c D {
13 p u b l i c :
14 i n t d ;
15 B ( ) ;
16 void f ( ) ;
17 void h ( ) ;
18 } ;
19 c l a s s C : p u b l i c A, p u b l i c B {
20 p u b l i c :
21 i n t e ;
22 C ( ) ;
23 void f ( ) ;
24 } ;
25 . . .
26 /∗ p o s t c o n d i t i o n ∗ /
27 e n s u r e s ( t h i s−>e > o l d ( t h i s−>e ) )
28 void C : : f ( ) { e ++;}
29 . . .
30 i n t main ( ) {
31 C∗ pc = new C ( ) ; /∗ a l l o c a t i o n ∗ /
32 B ∗pb = (B∗ ) pc ; /∗ dynamic c a s t ∗ /
33 D ∗pd = (D∗ ) pb ; /∗ dynamic c a s t ∗ /
34
35 pc−>e = 4 ; /∗ f i e l d a c c e s s ∗ /
36 pb−>a = 6 ; /∗ base f i e l d a c c e s s ∗ /
37
38 pc−>h ( ) ; /∗ method c a l l ∗ /
39 pd−>f ( ) ; /∗ v i r t u a l method c a l l ∗ /
40 }

Fig. 6. A simple C++ example.

A. Modeling C++ language constructs

By far, the most significant shortcoming of HAVOC was

inability to deal with most C++ constructs. In this section,

we briefly describe some of the changes required to handle

the most common C++ features used commonly in the COM

components. We illustrate the translation of C++ to BoogiePL

program with the aid of a simple example in Figure 6 and the

translated BoogiePL program in Figure 7.

To handle instance methods, we make the receiver object

explicit by exposing the this pointer. The BoogiePL transla-

tion of the procedure C::f takes this as an argument, and

updates the field array Mem_e that represents the field e in the

class. We use the function Offset_f_C to denote the offset

of a field f in a class C. Further, the annotation expressions

can refer to this in assertions, as shown for this method.

Constructor calls are modeled by first allocating a con-

tiguous buffer with the size of the class by invoking the

special method __HV_malloc. The mutable variable alloc
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1 f u n c t i o n Delta D A ( x ) {x+0}
2 . . .
3 f u n c t i o n Delta B C ( x ) {x+12}
4 . . .
5 f u n c t i o n O f f s e t e C ( x ) {x+24}
6 . . .
7 v a r a l l o c : i n t ;
8 c o n s t Base : [ i n t ] i n t ; /∗ p o i n t e r t o t h e s t a r t o f an o b j e c t ∗ /
9 c o n s t DT: [ i n t ] i n t ; /∗ dynamic t y p e ∗ /

10
11 m o d i f i e s a l l o c
12 e n s u r e s ( new == o l d ( a l l o c ) )
13 e n s u r e s ( a l l o c > o l d ( a l l o c ) + n )
14 e n s u r e s ( f o r a l l u \ i n [ new , new+n ) . Base ( u ) = new )
15 e n s u r e s (DT( new ) == t y p e ) /∗ s e t t h e dyn t y p e ∗ /
16 p r o c e d u r e HV malloc ( n , t y p e ) r e t u r n s new ;
17
18 e n s u r e s (Mem e [ O f f s e t e C ( t h i s ) > o l d (Mem e [ O f f s e t e C ( t h i s ) ] ) ) )
19 p r o c e d u r e C : : f ( t h i s ){Mem e[ O f f s e t s e t e C ( t h i s ) ] + + ;} /∗ e x p l i c i t ‘ ‘ t h i s ’ ’ ∗ /
20
21 p r o c e d u r e main ( ) {
22 pc = HV malloc ( 2 8 , C ) ; /∗ 7 i n t e g e r f i e l d s o f 4 b y t e s ∗ /
23 c a l l C : : c t o r ( pc ) ; /∗ c o n s t r u c t o r c a l l ∗ /
24
25 pb = ( pc == 0 ? 0 : Delta B C ( pc ) ) ; /∗ c a s t ∗ /
26 pd = ( pb == 0 ? 0 : Delta D B ( pb ) ) ; /∗ c a s t ∗ /
27
28 Mem d[ O f f s e t e C ( pc ) ] = 4 ; /∗ f i e l d a c c e s s ∗ /
29 Mem d[ Of f se t a D ( Delta D B ( ( pb ) ) ) ] = 6 ; /∗ f i e l d a c c e s s o f base c l a s s ∗ /
30
31 c a l l B : : h ( Delta B C ( pc ) ) ; /∗ method c a l l ∗ /
32 /∗ v i r t u a l method c a l l ∗ /
33 base = Base ( pd ) ; /∗ o b t a i n t h e s t a r t o f o b j e c t ∗ /
34 s w i t c h (DT( base ) ) {
35 case A: c a l l A : : f ( ba s e ) ; break ;
36 case B : c a l l B : : f ( b a s e ) ; break ;
37 case C : c a l l C : : f ( b a s e ) ; break ;
38 d e f a u l t : c a l l D : : f ( ba se ) ; break ;
39 }
40 }

Fig. 7. The BoogiePL (cleaned up) for the C++ example.

monotonically increases to ensure that the buffer allocated is

fresh.5 The constant map Base tracks the base of the buffer

for any pointer in the buffer, and the constant map DT maps

the base of the buffer to its dynamic type (the type used during

allocation). The constraints are enforced by the specification of

the procedure __HV_malloc specified using the ensures

annotations. The newly allocated object is then passed to the

constructor of the class.

Dynamic casts is modeled by a conditional assignment that

checks if the right hand side (RHS) of the assignment is null

or not. In case, the RHS is non-null, it assigns the pointer

shifted by the offset of the base class in the derived type.

The functions Delta_A_B model the offset of a base class

A inside a derived class B.

Field access is modeled similar to C programs as before,

except for accessing fields inside base classes. To access fields

in a (transitive) base class (such as the field a defined within

the base class D from within B), we first add the offset of

5We currently do not model deallocation.

the base classes in the access path from the derived class

(Delta_D_B for this example).

Non-virtual method calls are handled similar to C, except

the addition of the this parameter. Similar to field access,

calling a method in one of (transitive) base classes requires

the addition of the offsets of the base classes in the access

path. Virtual method calls require looking up the dynamic

type (stored in DT) of the start of the object into a temporary

variable base and performing a case split on the possible set

of runtime types. For each dynamic type, the corresponding

virtual method is invoked (assuming for simplicity the method

is defined in each derived class). In each of the cases, the

pointer passed as the this parameter is the start of the

object stored in the map Base during allocation. Currently,

we assume a separate analysis to compute the set of potential

target types that is fed into HAVOC-LITE as an input.

In addition, HAVOC-LITE also handles operator overload-
ing, simple forms of templates (both parameterized by types

or values) and other C++ features commonly encountered in
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COM. Although the modeling is far from being considered

complete for C++, it allows us to get substantial coverage of

many C++ code-bases using COM.

B. Instrumentations

The instrumentation mechanism in HAVOC was extended

to support some object-oriented constructs. These include (a)

instrumenting all instance methods declared in a given class,

and (b) instrumenting an instance method in all classes.
The first feature is useful for annotating class invariants,

by instrumenting all instance methods in a class with a pre-
condition and postcondition. In addition, the user can remove
the constructors and destructors from the set by using a set of
patterns that are excluded. For example,

__requires(x->f != null)
__ensures (y->f != null)
__instrument_universal_exclude(‘‘A$dtor’’)
__instrument_universal_exclude(‘‘A$ctor’’)
__instrument_universal_include(‘‘A$*’’)
__instrument_universal_type(x)
void __instrument_class_inv(A *x);

instruments all methods in the class A (denoted by the

_include pattern) except the constructor and destructor

(denoted by the _exclude patterns) require and ensure that

a field f is non-null for the receiver (“this”) object. Instance

methods that take additional objects of type A or static methods

that take an object of type A have to be manually excluded

though.

The second feature is often useful for getting the effect of

annotation inheritance, where annotation on a virtual method

is inherited by the overriding methods of all derived classes.

All instance methods with the name foo can be specified

with the pattern ‘‘*$foo’’. However, we currently do not

provide any support for checking that derived classes only

weaken preconditions and strengthen postconditions — it is

left to the user to enforce.

C. Inference

HAVOC used the Houdini algorithm [4] to choose inductive

invariants from a set of candidates. Although the inference was

successful in scaling to modules with several hundred to a few

thousand procedures [2], it did not scale to the modules that

had several hundred thousand procedures measuring several

million lines of code. In this section, we discuss the improve-

ments made to make the inference scalable to these modules.

1) Persisting fewer Boogie files: The approach in HAVOC

generated a single BoogiePL file on disk containing the

definition of all the procedures, and then invoked the Houdini

procedure inside Boogie. However, creating a Boogie file with

almost a million procedure did not scale as HAVOC crashed

due to memory blowup during the generation of the Boogie

file, and Boogie could not load such a file and perform VC

generation. Instead, we first changed the flow to generate a

Boogie file per procedure, and fed Boogie a list of Boogie

files. This avoided the memory blowup in HAVOC, but still

caused Boogie to take a long time.

Our first observation is that for the purpose of Houdini

inference, one can safely filter procedures that do not have

any (a) candidate assertions inside the body of the procedure,

(b) does not have any candidate postconditions, (c) does not

have (immediate) callees that have a candidate precondition.

This is because analyzing such procedure will always return

“verified” as there are no assertions to check. This simple

optimization allowed us to reduce the number of Boogie files

used during the inference by at least 2 orders of magnitude,

when the annotations were sparse.
2) Two-level Houdini algorithm: In spite of the dramatic

reduction in the number of procedures being analyzed during

Houdini, we were still left with several tens of thousand of

procedures to analyze, and maintaining all the procedures (and

their VCs) in memory during Houdini exceeded memory. To

alleviate it, we designed a two-level Houdini algorithm that

uses a cache to only pass a small set of procedures to the

Houdini procedure.
Given a set of procedures P with candidate annotations C

and a cache size n, the algorithm operates as follows.

1) It first initializes a work list W with all the procedures

in P .

2) At each stage, it removes a set S of n procedures from

W (or all procedures if |W | ≤ n) and invokes Houdini

on S.

3) Houdini removes a (possibly empty) subset of annota-

tions R ⊆ C after analyzing S.

4) For each removed candidate c ∈ R, we update the

worklist as follows: (a) if c is a precondition of a

method p �∈ S, then we add p to W , and (b) if c is

a postcondition of a method p then we add any of its

caller q that is not present in S.

5) At the same time, C is updated to C \ R by removing

the candidates removed by Houdini.

6) The method is repeated until W is empty.

It is not difficult to show that when W is empty, then the set

of candidates in C can be proved modularly.
The size of the cache influences the overall runtime as

the larger the cache, the more chance the (inner) Houdini

algorithm gets to perform optimizations, and thus the outer

loop converges faster. On the other hand, making the cache

large increases the memory consumption for Houdini. We have

observed that the memory requirement is really a function of

the size of the procedures instead of the number of procedures.

For a given problem where the size of the largest procedure

is k, it is useful to set n so that n ∗ k does not exceed the

memory alloted to the process. For most of our experiments,

n is set between 20 and 100.
3) Candidates on roots and leaves: It is well-known that

if the set of candidate preconditions on root procedures (that

have no callees) or the set of candidate postconditions on leaf
procedures (that have no body) are inconsistent, then Houdini

can infer annotations that may not hold. Previously, the users

of HAVOC manually ensured that the root procedures have no

candidate preconditions and leaf procedures have no candidate

postconditions. This was an expensive process as determining
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the roots can be tricky when certain procedures are targets

of function pointers. To simplify matters, HAVOC-LITE first

removes candidate preconditions from the root and candidate

postconditions from the leaves of the call graph presented to

it for annotation inference. This substantially improves the

usability of the inference for the user.

D. Other

In addition to the above enhancements, a number of other

usability issues were addressed. First, we added a mechanism

to insert annotations completely non-intrusively — i.e. the

source tree did not have to be modified. Annotations were

first compiled with type and procedure declarations and then

linked with the definitions later. This greatly improved the

adoption in teams that did not want to modify the source

code, even to include an annotation header file. The separate

compilation of the annotation file also allowed us to correct

annotation parse errors quicker. HAVOC-LITE also added bit-

vector support by interpreting the scalars and pointers as fixed-

size bit-vectors, and using the theory of bit-vectors inside SMT

solver Z3. Earlier implementation in HAVOC used unbounded

integers and could not model the bitwise operations accurately.

Finally, the user can associate custom strings and identifiers

for warning messages that are displayed on assertion failures

— this allowed easier triaging of warnings when multiple

properties were checked in a single run.

V. EVALUATION

In this section, we go through the evaluation of the capabil-

ities of HAVOC-LITE to detect variations of known software

problems that are commonly reported in Microsoft products.

Security holes belonging to these vulnerability classes, when

reported by independent security researchers, give rise to

security bulletins and general distribution release of fixes.

Such bulletins are very costly for software vendors and users,

in particular for businesses with hundreds or thousands of

computers, whose activity is interrupted while the update

is performed. As such, each bulletin must ensure that it

covers not only the originally reported security problem, but

variations of the problem that may be more easily identified by

third party researchers after the bulletin is published. Extended

static checking helps software vendors increase coverage of

such reactive analysis.

A. Checked properties

We have evaluated the tool on the large scale on multiple

heterogeneous properties across multiple products written in C

and C++, summarized in Figure 8. The properties were derived

by studying a set of security vulnerabilities reported in a set of

recent MSRC bulletins ( [13], [14], [15], [16], [17], [18], [19],

[20]). We avoid relating the properties to specific MSRC cases

to avoid disclosing any confidential information not available

in the bulletins.

Some of the properties we describe in this table are in fact

a family of properties. For example, zero-sized allocations is

an umbrella denomination for calls to dynamic memory allo-

cation APIs such as the user-mode malloc, the kernel-mode

ExAllocatePool, dynamic array allocations via the new
operator, or object constructors taking an integer parameter

that is used to allocate an internal buffer used within this class

object.

Other interesting properties come from expected contracts of

special VARIANT object (recall the example from Section II).

The type names have been changed to avoid unintended

consequences of releasing such information. Such data struc-

tures holding run-time type information can be the source of

multiple security vulnerabilities if they are initialized or used

incorrectly.

Another interesting property (“Interface reference count-

ing”) arises from the need to enforce the usage of interfaces

in object-oriented programs. An interface can be seen as a

structure that holds a fixed list of function pointers. Interfaces

are usually reference counted and released once their expected

life time has been reached. Our introductory example in

the overview section was taken from this class of security

vulnerabilities affecting object-oriented software.

The property of library path qualification captures the intent

that no binary dependence should be loaded from an unknown

location under the threat of loading untrusted code (potentially

from a remote location if the path is in the UNC format

such as “\\remote\machine\untrusted.dll”). On the other

hand, a preceding call to a trusted path-retrieving API such

as GetSystemDirectory acts as a sanitizer, as it provides

a proof that such path is prefixed by a string of the form

“c : \windows\system32”.

B. Results

The result of checking those properties over the course

of a year is presented in Figure 9. We identified around 70

vulnerabilities in critical software components using a build

server equipped with 48 cores and 96GB of RAM to perform

this analysis. While the big number of cores significantly

speeds up the intra-procedural analysis, the inter-procedural

does not currently benefit from it due to the sequential im-

plementation. The “Check” time is the time to only check the

annotations intra-procedurally, including inferred annotations

if any. The “Inference” time is the time taken to perform the

inter-procedural annotation inference. We also report a few

other vulnerabilities for other properties later in this section

— we did not perform a thorough evaluation of times etc. for

these properties.

Each analyzed property corresponds to a class of security

vulnerability previously discovered and fixed in the analyzed

code base via general distribution release of security bulletins.

We only applied a particular property checking to the code

bases that were affected by the property — this explains the

difference in code size for each experiment. While some of the

properties (e.g. Library path qualification) affected all user-

mode code bases, others (such as the DOM property) only

affects the core browser engine. Other generic COM properties

such as the VARIANT initialization and type safety checking
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Properties Description

Zero-sized allocations Dynamic memory allocations should never be of size 0.

Empty array construction There is always at least one element in new[] allocated arrays.

VARIANT initialization VARIANT structures should never be used without initialization.

VARIANT type safety VARIANT union fields should never be referenced without proper field type value.

Interface reference counting Interfaces should never be released without prior reference or initialization.

Library path validation Dependencies modules should never be loaded without fully qualified path.

DOM information disclosure DOM accessors only returns success on successful completion.

Fig. 8. Checked security properties

Properties LOC Procnum Bugs Check Inference

time time

Zero-sized allocations 2.8M 58K 9 3h14 3h22

Empty array constructor 1.2M 3.1K 0 26m 6m13

VARIANT initialization 6.5M 196K 5 5h03 11h40

VARIANT type safety 6.5M 196K 8 5h03 11h40

Interface reference counting 2M 11.2K 4 2h26 20h

Library path qualification 20M Millions 35 5d N/A

DOM information disclosure 2.5M Hundreds 2 1h42 N/A

Fig. 9. Summary of results.

and the interface reference counting were ran on a set of large

user-mode code bases making heavy use of such features. Two

properties affecting the VARIANT structures were checked

together on the same code-base, hence the check time and

inference time are the same for both.
Note that inference information is not available for two

properties: the library path qualification acted on tens of

millions of lines of code, a size for which inference is not

able to scale due to the sequential implementation. Likewise,

the DOM information disclosure property only affected class

accessors of the form CBrowserObj::get_attr totalizing

only a few hundred methods to check in just 8 different classes

for which the manual warning review process was fast enough

without inference.
In addition to the properties described in Figure 8, we

also uncovered security critical bugs from other checks. We

describe a couple of them next.

1) We also applied HAVOC (earlier version) to check

user-kernel pointer probing on the Windows application

APIs — to ensure that user-mode pointer should always

be validated by specific Probe* APIs before being

dereferenced in the kernel [20]. The effort on around

300KLOC revealed another 7 bugs that were fixed.

These bugs are counted towards the 70 bugs that we

report.

2) We also discovered a set of errors during the translation

from C source files to the well-typed BoogiePL lan-

guage. One of the checked kernel driver was using the

following mechanism at multiple locations:
void fctelm() { (...) }
int syscall(int num) {

return ((*fctptrs[num])());
}

where syscall is a kernel entry-point returning an

integer error code to the unprivileged user, and fctelm
is a void-returning function, which is part of a function

pointer array fctptrs whose elements were supposed

to return an integer. Such unsafe function pointer ele-

ments in the array were possible at compilation time due

to the use of unsafe function pointer casts. Such defect

can result in information disclosure security vulnerabil-

ities since the return value (on the Pentium architecture,

held in the eax register) is uninitialized in the fctelm
function and used for another purpose (for example,

holding the pointer to sensitive kernel data structures).

We discovered around 30+ bugs in the driver that were

fixed. These are in addition to the 70 bugs that were

found as variants of existing vulnerabilities.

C. Inter-procedural annotation inference

Inference is a useful technique to improve the checker’s

result when properties depend on the caller function context

and the results of callee functions.

Figure 10 shows the difference in number of false positives

when the user-guided annotation inference was used. Inter-

procedural analysis brings improvements in precision and

lessen the amount of false positives, but the impact varies by

the property. We found that for most sparse properties (such

as the API related properties where only small numbers of

checks are performed compared to the program size), the

number of warnings diminishes by 10% to 45% depending on

the checked property. A simple example of inference used to

check the zero allocation property used generated candidate

contracts of the form:

__cand_requires(param != 0)
__cand_ensures(__return != 0)
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Properties Warnings Warnings Improvement Candidates Inferred

Warnings with inference candidates

Zero-sized allocations 71 50 29% 75162 42160

Empty array constructor 45 35 22% 4024 446

VARIANT initialization 216 117 45% 100924 770

VARIANT type safety 83 68 18% 100924 770

Interface reference counting 746 672 (3) 10% 234K 1671

DOM information disclosure 82 N/A N/A N/A N/A

Library path qualification 280 N/A N/A N/A N/A

Fig. 10. Results of running annotation inference. “Candidates” denotes the number of candidate annotations and “Inferred candidates” is the number of
annotations that were inferred to hold.

int fct(int param) { ... }

for every function accepting integer parameters and integer

return values. Therefore, enforced preconditions of the form:

__requires(size != 0)
void* ExAllocatePool(unsigned int size);

can be checked with knowledge of the inferred (persisted)

constraints at function boundaries. In this case, the burden of

writing the candidate annotations before the checking phase

is performed is very small and provides a good payoff in

diminishing the number of false positives. We have applied this

methodology to multiple properties as indicated in Figure 10.

Properties such as “interface reference counting” are ones

for which inference is the most useful as the number of

pointers to be tracked within the target modules is generally

quite large. Such pointers can also sometimes passed between

modules, which limit the ability of inference to filter out

false positives. This is reflected in the false positive ratio of

Figure 10. In general, our experiments support the fact that

while inference does not suffice to reach a perfect analysis

result, its use allow diminishing the burden of warning reviews

in an appreciable way for security auditors.

Annotation inference works best when the set of interme-

diate annotations can be concisely expressed using candidate

annotations that can be added with simple instrumentations. A

user starts with the property under check, inspects the warnings

from the checking and then devises a small set of candidates.

Annotation inference is performed and the new set of warnings

are noted and new candidates are added. The process remains

cost-effective up to a couple of iterations, beyond which the

auditor preferred to manually inspect the false alarms.

Cases where inference fails to diminish the number of

false positives include functions with aliasing between pointer

parameters for which no annotation can be synthesized without

introducing more complex conditional constraints. In other

cases, the annotations need to talk about type-states of deeply

nested fields of parameters, or global variables. While such

conditions can be encoded with modest manual effort for indi-

vidual functions, such a scheme will likely generate too many

candidate annotations for the modules under consideration.

D. Use of unsound modifies clauses

In addition to using inference, we also performed an

evaluation with the use of modifies clauses, where extra

assumptions were added telling that the state of the heap did

not change when function calls are performed. This is an

unsound assumption but has the advantage of bringing down

the number of false positives drastically. For example, when

checking the interface reference counting property, enabling

this option brought the warning number down from 672 (after

using inter-procedural inference) to 3, of which all were

valid vulnerabilities. We employed this unsound mechanism

for this particular property for two reasons: (1) the set of

alarms even after inference was very large, and (2) a random

sampling of the warnings revealed that state updates of the

interface pointers in callees was responsible for the false

alarms. No extra annotations were explicitly necessary for such

assumptions, as HAVOC-LITE provides an option through

the configuration file. A similar decrease in warning numbers

is witnessed on other properties though this option is only

deemed necessary when the initial set of (false positive) alerts

is large enough to justify losing soundness.

E. Cost-effectiveness and warnings review

The cost-effectiveness of using an extended static checker

varies depending on each property. We found that security

properties related to API calls are generally sparse; only a few

calls are instrumented with assertions or candidates compared

to the total number of lines of code and procedures of the

analyzed modules. Checking field dereference also came with

a reasonable return on investment as long as the number

of fields that were checked for dereferences remained small

enough. We found that the number of false positives for

sparse properties (such as library path qualification, zero-sized

allocations, VARIANT initialization or VARIANT type-safety)

was acceptable as we consistently found new vulnerabilities in

the reported warning list. Other denser properties (such as the

previous attempt of user kernel pointer probing) were harder

to check with only 5-10% of real vulnerabilities among the

total list of warnings. We explain this by the need to have

every single pointer dereference be instrumented, representing

tens of thousands of dereferences on medium sized modules.

Another interesting metric to measure the success of such

tool comes from the engineer feedback. We found that, on
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average, a security expert can review between 25 and 50

warnings per day. For some properties involving very deep

inference and for which a function containing an alert has a

large number of callees, we found that it can take one to four

hours to review a single warning. This can also happen in case

of very complex control flow that arises within or between

multiple components. Such cases often involve indirect call

sites via function pointers or virtual methods, including call-

backs that sometimes cross a domain boundary (i.e. user-mode

call-backs). For such instances of warnings, the help of a de-

bugger is often necessary to understand whether the discovered

vulnerable context is feasible, and more importantly, can be

controlled by the user. A bug may be benign from the security

perspective, if the variable values that can trigger the unsafe

behavior are not under the control of the user (for example,

the variables can be under control of a trusted third party

components on which the analysis was not performed).

Overall, we found that the use of HAVOC-LITE was cost-

effective compared to pure manual code review. A similar

analysis done purely in a manual fashion would have required

weeks if not months of work. The ability of static analysis to

focus on crucial control locations and specific data manipula-

tions was fundamental in this exercise. The ability to perform

inter-procedural inference brought down the warning number

consistently, saving hours of warning review to the analyst.

F. Found vulnerabilities

We now give a few examples of vulnerabilities that we were

able to identify using extended static checking, starting with

the interface reference counting vulnerability class.

1) Interface reference counting: The first example (Fig-

ure 11) of found and fixed vulnerability relates to the ref-

erence counting property of interfaces. The COM model

makes heavy use of interface pointers, in particular in object-

oriented projects like the browser where deep levels of in-

heritance are used and objects in different hierarchies share

some features. Those features are therefore implemented in

interfaces that classes can inherit without having to derive

from another class. The IUnknown interface serves as a

base interface for all other interface and class types (such

as CBrowserElement in this example) by implementing

three core methods called QueryInterface, AddRef and

Release. A call to QueryInterface accepts an interface

identifier and returns an array of function pointers that repre-

sents the implementation of the desired interface. If no such

interface is available in the base object, QueryInterface
will return an error. Otherwise, it will return status code S_OK.

Note that QueryInterface also performs a call to AddRef
on the base class if the query is successful, so that the class

is not freed while the program still holds a reference onto

one of its interface. A critical safety property of such model

states that any pointer on a COM interface written to via a

call to QueryInterface should be released by a call to

ReleaseInterface after usage, except when the call to

QueryInterface failed (in that case, there is nothing to

release). The ReleaseInterface API is simply a wrapper

to the Release method that adds a wrapping check that

ensures that the interface pointer is not NULL (in that case,

the function is simply a NO OP).

1 CSomeElement : : add ( CBrowserElement ∗pElem ){
2 HRESULT hr ;
3 IUnknown ∗ pUnk ;
4 i f ( ! pElem ) {
5 hr = E INVALIDARG ;
6 goto End ;
7 }
8 hr = pElem−>Q u e r y I n t e r f a c e ( I ID ExpectedType ,
9 ( void ∗∗ ) &pUnk ) ;

10 R e l e a s e I n t e r f a c e ( pUnk ) ;
11 i f (S OK != hr ) {
12 hr = E INVALIDARG ;
13 goto End ;
14 }
15 hr = AddOption ( pElem , pElem−>s t r , FALSE ) ;
16 End :
17 re turn ( S e t E r r o r I n f o ( h r ) ) ;
18 }

Fig. 11. A real interface reference counting vulnerability (obfuscated)

In this example, this mechanism is used to guarantee that

a given browser element pElem is of the intended type.

However, the interface is never used as the looked up content is

automatically discarded via the call to ReleaseInterface
and the element is simply passed to method AddOption for

storage. A vulnerability exists when the QueryInterface
method fails and ReleaseInterface is still being called.

This is due to (1) the pUnk pointer being uninitialized

and (2) the return check being placed after the call to

ReleaseInterface. The combination of those two bad

coding practices leads to a security vulnerability due to calling

method Release on an initialized interface pointer that will

later trigger in the form of a use-after-free vulnerabilities.

In order to exploit this flaw for untrusted code execution,

an attacker would need to control the content of the stack

and make the stack offset used by local variable pUnk
coincides with the stack offset used by another reference-

counted class in a previous stack context (for example, in

a function previously called and already returned from, that

held a local variable at the same stack offset just before

the call to CSomeElement::add was performed). Such

security exploits have already been demonstrated by industry

researchers.

2) VARIANT type confusion: The second vulnerability class

(Figure 12) that we present in this article is related to

the VARIANT data structure. The VARIANT data structure

is used in COM applications to transfer data items across

generic interfaces. A generic container for arrays of VARIANT

structures used in such COM programs is the DISPPARAMS
structure. This container type is used, among others, by the

IDispatch::Invoke interface method. A vulnerable spe-

cialization of this method is shown below. The CBrowserOp
class derives from IDispatch and overloads its Invoke
method. This derived method then assumes that the first
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1 STDMETHODIMP CBrowserOp : : Invoke ( DISPID d i s p I d , DISPPARAMS ∗dParams )
2 {
3 s w i t c h ( d i s p I d ) {
4 case DISPID ONPROCESSINGCOMPLETE :
5 i f ( ! dParams | | ! dParams−>r g v a r g | | ! dParams−>r g v a r g [ 0 ] . p d i s p V a l ) {
6 re turn E INVALIDARG ;
7 }
8 e l s e {
9 IUnknown ∗pUnk = dParams−>r g v a r g [ 0 ] . p d i s p V a l ;

10 I N e e d e d I n t e r f a c e ∗pRes = NULL;
11 HRESULT hr = pUnk−>Q u e r y I n t e r f a c e ( I ID NeededI face , ( void ∗∗ ) &pRes ) ;
12 i f ( h r == S OK) {
13 P e r f o r m A c t i o n ( pRes , dParams ) ;
14 R e l e a s e I n t e r f a c e ( pRes ) ;
15 }
16 }
17 break ;
18 d e f a u l t : re turn DISP E MEMBERNOTFOUND;
19 }
20 re turn S OK ;
21 }

Fig. 12. A real VARIANT type confusion vulnerability (obfuscated)

VARIANT array element is an IUnknown interface pointer

(which is the base interface for all COM classes and COM

interfaces) and looks up the desired interface (using a call to

QueryInterface) needed to perform the effective COM

operation. The rest of the VARIANT array elements is then

passed to this newly looked-up interface. On success, the

action is performed and the interface is properly released.

The safety of VARIANT manipulation relies on test-

ing its vt field to make sure that the contained pointer

corresponds to a data type that the interface is expect-

ing and able to treat. Failure to perform such check can

be devastating for the security of code, especially if the

input parameters are user-controlled. This method fails to

perform such check before calling QueryInterface on

the IUnknown pointer pUnk. If the first VARIANT struc-

ture field dParams→rgvarg[0].pdispVal were to con-

tain another type of interface, a different method than

QueryInterface would be called. An attacker could redi-

rect execution onto an instruction pointer of its choice, leading

to a likely exploitable memory corruption in the program.

The appropriate fix for this vulnerability is to extend the

conditional predicate to insert a test vt == VT_UNKNOWN
|| vt == VT_DISPATCH to make sure that the VARIANT

structure holds the appropriate interface pointer into which

the QueryInterface method is implemented, and returns

E_INVALIDARG if this is not the case.

VI. RELATED WORK

Extended static checking was pioneered for Java by the

work of ESC/Java [1] as a means to use program verification

methods to provide high coverage of user defined assertions.

It has since then been applied to other languages such as

Spec# for C# [21], and HAVOC for C [2]. Unlike these

tools, HAVOC-LITE provides a rich set of instrumentation and

inference capabilities to reduce the manual burden for large

modules. HAVOC-LITE provides support for most common

C++ features used in legacy applications.

Software model checkers such as SLAM [22] offer auto-

matic annotation inference based on predicate abstraction for

sparse type-state properties. However, these approaches are not

known to scale to modules greater than 100KLOC, thus cannot

be applied to most of the modules in this work. Since these

tools strive for complete automation, their architecture does

not provide mechanisms for users to configure the analysis

by providing the set of candidates as HAVOC-LITE provides.

Saturn [23] provides precise intra-procedural analysis using

SAT solvers, and uses procedure summaries over a set of

fixed vocabulary. The tool developer provides appropriate

summaries for various properties such as memory leaks, and is

not easily configurable. Saturn has been used to check specific

security properties such as validation of user-land pointers

passed to the kernel [24]; however, this required the careful

configuration of the Saturn checker that cannot be expected of

an average security expert. Chen et al. [25] apply the model

checker MOPS to check similar type-state properties on a

million lines of code. However, the properties are restricted

to finite state machines and its harder for the users to describe

type-state properties on fields of objects.

Hackett et al. [26] provide a checker for buffer overruns

in legacy applications using a combination of buffer length

annotation and a set of custom rules to check these annota-

tions. The checker uses a custom constraint solver (not modern

SMT solvers) using a few simple rules. However, they provide

useful heuristics to infer buffer annotations (relating buffers to

their lengths) that significantly reduces the annotation effort.

However, the technique cannot be readily extended to the

properties we discuss in this work and therefore not a good

match for security auditors.
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Theorem provers have recently been quite successful in

dynamic test generation tools such as DART [27], EXE [28]

and SAGE [29]. These techniques leverage existing tests to

create path constraints that can be negated to obtain tests for

alternate paths. These techniques have revealed several bugs

in large applications (in integration testing) or small libraries

(in unit testing). However, these approaches are oblivious of

the property being checked and aim at providing higher path

coverage. These techniques do not use procedure summaries

(such as those provided by our candidate annotations) and

therefore cannot provide coverage guarantees on the entire

attack surface. Since these techniques are primarily based on

testing, they suffer from few false alarms. On the other hand,

they require setting up complex harnesses and have difficulty

being exhaustive for deep components. Besides, several of the

security properties (e.g. double free) do not lead to crashes

and are consequently harder to detect by testing based tools.

Recent work on Automated Exploit Generation [30] attempts

both vulnerability checking and input crafting in order to find a

code defect and force execution to be redirected on malicious

code. Such an approach has been focused on basic security

properties such as buffer overflow induced by insecure APIs

like strcpy . Such combination of SMT solvers and dynamic

test generation is an interesting approach guaranteeing that

identified vulnerabilities are real and does not require warning

triage. Improvements in performance and expressiveness (such

as extending preconditioned symbolic execution [31]) will al-

low more properties to be checked. However, such framework

provides very limited configurability for a security auditor and

does not guarantee as much coverage as an extended static

checker.

Security properties such as the VARIANT type consis-

tency [32] and the reference counting invariants [33] have pre-

viously been studied for COM programs and web browsers via

run-time monitoring and unit testing. However, no systematic

program analysis was performed to the extent of this work.

As such, no guarantee of coverage could be made based upon

concrete executions of the program under scrutiny. HAVOC-

LITE provides security auditors with extended security audit

abilities and allow focusing on code locations where such

security properties could not be proved. As such, extended

static checking provides a much stronger guarantee that no

instance of such vulnerability has been left behind.

VII. CONCLUSIONS

Extended static checking is a good complement to fuzz

testing and other data-flow based static analysis techniques. In

particular, the inter-procedural inference is a key component

in diminishing the number of false positives (sometimes up

to 45%) to an acceptable level for security experts to review.

Nonetheless, the cost associated to running the inference is still

high. Our goal is to extend the two-level Houdini algorithm to

a distributed version that can invoke multiple versions of the

inner Houdini algorithm in parallel. HAVOC-LITE currently

does not weigh warning confidence and users have to go

through the entire list of alerts to have a faithful understanding

of the results — performing warning prioritization is an

important next step for HAVOC-LITE.
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