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Abstract. Synthetic biology focuses on the re-engineering of living or-
ganisms for useful purposes while DNA computing targets the construc-
tion of therapeutics and computational circuits directly from DNA
strands. The complexity of biological systems is a major engineering
challenge and their modeling relies on a number of diverse formalisms.
Moreover, many applications are “mission-critical” (e.g. as recognized
by NASA’s Synthetic Biology Initiative) and require robustness which
is difficult to obtain. The ability to formally specify desired behavior
and perform automated computational analysis of system models can
help address these challenges, but today there are no unifying scalable
analysis frameworks capable of dealing with this complexity.

In this work, we study pertinent problems and modeling formalisms
for DNA computing and synthetic biology and describe how they can
be formalized and encoded to allow analysis using Satisfiability Modulo
Theories (SMT). This work highlights biological engineering as a domain
that can benefit extensively from the application of formal methods. It
provides a step towards the use of such methods in computational design
frameworks for biology and is part of a more general effort towards the
formalization of biology and the study of biological computation.

1 Introduction

Significant progress in molecular and cellular biology and breakthroughs in ex-
perimental methods have raised hopes that the engineering of biological systems
can serve for technological and medical applications, with a tremendous promise
ranging from the sustainable production of biofuels and other materials [31] to
the development of “smart” therapeutics [4]. Among the different approaches
towards such molecular programming, DNA computation (the construction of
computational circuits directly from DNA strands) and synthetic biology (the
re-engineering of genetic networks within organisms) have emerged as promising
directions with a number of experimental studies demonstrating their feasibil-
ity [22,23]. Recently, NASA has acknowledged the importance of this domain
by creating the Synthetic Biology Initiative1 [17] designed to “harness biology
in reliable, robust, engineered systems to support NASA’s exploration and sci-
ence missions, to improve life on Earth, and to help shape NASA’s future”.

1 http://syntheticbiology.arc.nasa.gov/
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More generally, the engineering of biological systems can lead to a better under-
standing of biological computation (the computational processes within living
organisms) with the goal of addressing some of the following questions: What do
cells compute? How do they perform such computation? and In what ways can
the computation be modified or engineered? which is the focus here.

Biological complexity presents a major engineering challenge, especially since
many relevant applications can be considered as “mission-critical”, while robust-
ness is hard to engineer. Computational modeling currently focuses on using
simulation to help address these challenges by allowing in silico experiments,
however simulation alone is often not sufficient to uncover design flaws. For
such applications, foundational computer-aided design technologies that allow
desired behavior to be specified formally and analyzed automatically are needed.
However, unifying analysis frameworks capable of dealing with the biological
complexity and the diverse modeling formalisms used in the field are currently
missing. Inspired by the study and engineering of other computational systems
such as computer hardware and software, the application of formal methods has
already attracted attention in the context of biology. In this work, we take a Sat-
isfiability Modulo Theories (SMT)-based approach, utilizing transition systems
as a uniform representation for biological models, and enabling efficient analysis
for important properties of DNA computing and synthetic biology. Using theories
richer than Boolean logic as in SMT offers a more natural framework by allow-
ing higher-level problem descriptions and enhanced expressive power, provided
that (efficient) automatic reasoning procedures are available. Such decision pro-
cedures are being developed actively [1] and are implemented in modern solvers
such as Z3 [8] where, for certain applications, SMT-based methods outperform
simpler theories [28], while their model-generation capabilities are important for
the problems we consider. The richness of SMT accommodates analysis proce-
dures to address a diverse set of biological questions and leads to a framework
that is expressive (can capture a variety of formalisms and specifications), scal-
able (can handle models of practical interest) and extensible (additional models
and analysis procedures can be integrated).

The main goals of this paper are (1) to study the pertinent modeling for-
malisms and problems for DNA computing and synthetic biology as representa-
tive biological engineering disciplines, formalize them, and describe how they can
be encoded to allow analysis using SMT-based methods; (2) to exploit domain-
specific knowledge in order to identify properties of these systems to help improve
the scalability of analysis methods; (3) to present results from the application
of these methods on challenging examples beyond what was possible using pre-
vious analysis approaches; and (4) to explore the utility of a general framework
for analyzing biological computation.

2 Preliminaries and Notation

We denote a finite set as S = {s0, . . . , sN} where |S| = N + 1 is the number of
elements in S. We use S = {(s0, n0), . . . , (sN , nN )} to denote a finite multiset
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where each pair (si, ni) denotes an element si and its multiplicity ni with ni > 0.
Given a multiset S we use s ∈ S when the multiplicity of s is not important and
S(s) to indicate the multiplicity of s when s ∈ S and 0 otherwise. The union
of multisets (S

⊎
S′) as well as the multiplication of a multiset by a scalar (nS)

are used according to their standard definitions.

3 DNA Computation

In the field of chemistry, mathematical theories such as mass-action kinetics have
been developed to describe chemical reaction systems and predict their dynam-
ical properties[12]. In molecular programming, the long term vision is to study
the inverse problem where chemical and molecular systems are engineered with
the goal of obtaining specific behavior of molecular events. The use of DNA as
a chemical substrate has attracted attention, partially due to the availability
of experimental techniques, as well as the predictability of chemical properties
such as Watson-Crick pairing (the complementarity of the G-C and A-T base
pairs which dictates the binding of DNA sequences). These properties have been
exploited as early as in [3] where a strategy for computing a Hamiltonian path
in a graph using DNA is described. DNA strand displacement (DSD) [25] is a
particular DNA computation framework which, in principle, can be used to im-
plement arbitrary computational procedures [14] and allows the use of DNA as
a universal substrate for chemical reaction networks [27]. The feasibility of ex-
perimentally constructing large DNA computing circuits has been demonstrated
recently [23]. Even so, the manual engineering of DNA circuits is challenging
due to the parallel interactions of a large number of individual DNA species.
To address these challenges, tools enabling the computational design and simu-
lation of complex DNA circuits have been developed [16]. Here, we present an
SMT-based approach for the analysis of these systems.

3.1 DNA Strand Displacement (DSD) Circuits

In a DSD circuit, a network of chemical reactions is constructed from DNA
species (see Fig. 1), designed to interact according to DNA base-pairing rules.
The DSD language [20] formalizes the notion of DNA species and the possible
reactions between them. Briefly, a DNA species consists of a number of strands
(individual DNA sequences)2. For example, in Fig. 1-A species s0 consists of the
single strand ŝ0 while species s3 consists of strands ŝ1, ŝ2, and ŝ3 (all strands
are listed in Fig. 1-D).

We are interested in studying the dynamics of a DSD circuit with single-
molecule resolution by tracking how the amounts of species change as reactions
take place, currently abstracting from the exact reaction kinetics (see Sec. 6 for
additional discussion). A state of the system therefore describes the amount of
molecules from each species present (Fig. 1-B). The initial state defined as part

2 In the DSD language, strands are further subdivided into domains (e.g. t and x0 in
strand ŝ0 in Fig. 1-D) but for the current presentation this structure is not important.
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Fig. 1. A DSD circuit consisting of eight DNA species (S = {s0, . . . , s7}) and four
reactions (R = {r0, . . . , r3}) represented graphically in (A). The state space of the
system is shown in (B) where the multiplicity for each species is given in parenthesis
and no further reactions are possible in the highlighted states (q6 and q7). The melting
of a species and all species from a state (as discussed in Sec. 1.2) is illustrated in (C)
and (D), respectively. Each strand from (D) represents a single DNA sequence.

of a DSD program (q0 in Fig. 1-B), together with the rules of the DSD language,
allows the automatic generation of possible reactions and species in the system
[16]. We treat a DSD circuit as the pair (S,R) where S is a set of species andR is
a set of reactions3. A reaction r ∈ R is a pair of multisets r = (Rr, Pr) describing
the reactants and products of r, where for (s, n) ∈ Rr (resp. (s, n) ∈ Pr), s ∈ S
is a species and n is the stoichiometry indicating how many molecules of s are
consumed (resp. produced) through reaction r. To formalize the behavior of a
DSD circuit, we construct the transition system T = (Q, q0, T ) where Q is the
set of states, q ∈ Q is a multiset of species (q(s) indicates how many molecules of
s are available in q), q0 ∈ Q is the initial state4, and T ⊆ Q×Q is the transition
relation. Reaction r is enabled in q, if there are enough molecules of its reactants

enabled(r, q) ↔
∧

s∈S
q(s) ≥ Rr(s) (1)

The transition relation T is defined as

T (q, q′) ↔
∨

r∈R[enabled(r, q) ∧
∧

s∈S q′(s) = q(s)−Rr(s) + Pr(s)].

3 Reversible reactions are treated as two non-reversible ones (e.g. r0, r1 in Fig. 1-A).
4 We assume that the system is initialized in a single state (which is the case for DSD
circuits we consider in this paper), although the methods can be generalized.
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The definition of T aims to capture the firing of a single enabled reaction per
transition. Still, in some special cases multiple reactions can fire in a time step
(e.g. A → C and A + B → C + B) but this does not affect the structure of T
and its subsequent analysis.

We assume that the set of species is finite and can be generated a priory (see
discussion in Sec. 6). To enable the SMT-based analysis of DSD circuits, we rep-
resent the set of states of a transition system T using an integer encoding where
Q ⊆ N

|S| and the transition relation as a function T : N|S|×N
|S| → B. In Sec. 3.2

we prove that for a subset of DSD models the number of molecules of each species
cannot exceed some upper bound N which can be computed from the species’
structures5- this allows a finite representation of T and can help our analysis.
Finite transition systems can be encoded naturally as logical formulas [5]. As an
alternative to the integer representation, we encode the amount of species s ∈ S
as a bit-vector of size �lg(N+1)	, leading to Q ⊆ B

N̂ , N̂ = |S|�lg(N+1)	 where
q(s) ∈ B

�lg(N+1)� amounts to a bit-vector extraction and the transition relation

is encoded as a function T : BN̂ ×BN̂ → B. Note that, although T is finite when
species bounds are available, an explicit state-space representation of Q is often
unfeasible to compute for realistic DSD circuits.

3.2 Constraints Generation

Naturally occurring chemical reaction networks are often subjected to constraints
such as mass-conservation. In this section, we show that the known structure of
species in a DSD circuit allows us to directly compute such constraints, which
we exploit in our analysis. Intuitively, the individual strands from which all
species in the system are composed are preserved and their total amounts remain
unchanged. In the following, we exploit this conservation of strands property.

Let ŝ denote a single strand where it is possible that ŝ 
∈ S. Given a species
s ∈ S, we use the function melt(s) to compute the multiset of strands that s
is composed of (Fig. 1-C). The application of melt can be thought of as the
“melting” of a species by increasing the temperature to dissociate all individual
DNA strands. The function melt() can be extended to operate on a multiset of
species (Fig. 1-D), such as a state q ∈ Q

melt(q) �
⊎

s∈S
q(s)melt(s) (2)

Proposition 1. The conservation of strands allows us to restrict the set of
states reachable in T to a subset Q̂ ⊆ Q, for which the strands multiset is an
invariant

∀q, q′ ∈ Q̂,melt(q) = melt(q′) (3)

Corollary 1. The invariant multiset M0 can be computed from the initial state

∀q ∈ Q̂,melt(q) = M0 where M0 = melt(q0) (4)

5 As an additional optimization, separate bounds for each species can be computed.
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The following constraints account for the conservation of strands

∀q ∈ Q̂,
∧

ŝ∈Ŝ

[
∑

s∈S

q(s)Ms(ŝ) = M0(ŝ)

]

(5)

where Ms = melt(s) denotes the multiset of strands for species s, Ms(ŝ) denotes
the multiplicity of strand ŝ in the composition of species s, and Ŝ = {ŝ | ∃s ∈
S, ŝ ∈ melt(s)} denotes the set of all individual strands in the system. In prac-
tice, Eqn. (5) is translated into constraints that might be challenging to solve.
However, they can be simplified to obtain upper bounds on the multiplicities of
individual species by constructing Q̂′ ⊆ Q, where in general Q̂ ⊆ Q̂′ (i.e. Q̂′ is
an over-approximation of the states satisfying the conservation of strands invari-
ant). Let Ns = min{
M0(ŝ)/Ms(ŝ)� | ŝ ∈ Ms} denote the maximal number of
molecules of species s as restricted by its least abundant strand. Then

∀q ∈ Q̂′,
∧

s∈S
q(s) ≤ Ns (6)

We encode the constraints from Eqns. (5) and (6) using functions invariant :
Q → B where, for a state q ∈ Q, invariant(q) iff q ∈ Q̂, and bounds : Q → B

where bounds(q) iff q ∈ Q̂′ (the exact definition of these functions depends on the
encoding ofQ). In the following section, we will use these functions as constraints
that will allow us to study the existence of states with certain properties6. The
upper bounds from Eqn. (6) can also serve to determine the required bit-vector
size for the encoding from Sec. 3.1 (i.e. N = max{Ns | s ∈ S}), while using the
individual species bounds can lead to smaller encodings.

Example 1. For the DSD circuit from Fig. 1 the following constraints were gen-
erated: s0+ s4+2s5 = 2, s2+ s3+ s4+ s6 = 4, s3+ s4+ s5 = 2, s1+ s3+ s7 = 2,
and s6+s7 = 2. From these, the following species bounds were obtained: s0 ≤ 2,
s1 ≤ 2, s2 ≤ 4, s3 ≤ 2, s4 ≤ 2, s5 ≤ 1, s6 ≤ 2, and s7 ≤ 2.

3.3 Analysis of DNA Computation

To illustrate our method and discuss the formalization of properties relevant to
DNA computation, we study a family of transducer circuits. Here, a transducer
is a simple computational device constructed from DNA, which is intended to
convert all molecules of a certain (input) species to a different (output) species
through a set of chemical reactions [15]. A number of transducers can be con-
nected in series (where the output of one circuit is the input for the next),
which allows us to study systems of different size but with similar behavior. For
these circuits, computation terminates when a state is reached where no further
reactions are possible (this is also the case for the example from Fig. 1). As
an additional requirement, certain reactive species denoted by Sr ⊆ S must be

6 For the bit-vector state encoding described in Sec. 3.1, the preclusion of overflows
must be included as part of the constraints from Eqn. (5).
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fully consumed throughout the computation but for some system designs this is
not always the case [15]. We distinguish between “good” and “bad” termination
states depending on the presence of reactive species and express the property of
interest using standard temporal logic operators [21] as

AG(¬bad) ∧ EF (good).

Formally, for a state q ∈ Q, we define

good(q) ↔
∧

r∈R
¬enabled(r, q) ∧

∧

s∈Sr

s 
∈ q

bad(q) ↔
∧

r∈R
¬enabled(r, q) ∧

∨

s∈Sr

s ∈ q.

Using the constraints derived in Sec. 3.2, the feasibility of “good” and “bad”
termination states can be analyzed. We search for a state qg (resp. qb) where

good(qg) ∧ invariant(qg) (7)

bad(qb) ∧ invariant(qb) (8)

When an unsatisfiable result is obtained for the formula from Eqn. (7) (resp.
Eqn. (8)), the existence of a “good” (resp. “bad”) state can be ruled out, and
otherwise, a specific termination state qg (resp. qb) can be extracted from the
model generated by the SMT solver. The constraints derived in Sec. 3.2 over-
approximate the reachable states of a DSD circuit, which can only allow us to
show that no reachable states with certain properties (e.g. “good” or “bad”
states) exists. Identifying states qg or qb through this procedure, on the other
hand, does not guarantee their reachability. To complete the analysis, we test the
reachability of “good” and “bad” states using Bounded Model Checking (BMC)
[5]. A “bad” state is reachable through K reactions or less if a trace q0, . . . , qK
can be identified where q0 is the initial state and

K∨

k=0

bad(qk) ∧
K−1∧

k=0

[T (qk, qk+1) ∨ bad(qk)] (9)

while a similar procedure is used to search for reachable “good” states. If (9) is
unsatisfiable, a “bad” (“good”) state is not reachable by executing K reactions
or less but increasing K might lead to the identification of such states.

Besides increasing the number of transducers, system complexity can also be
controlled by including multiple copies of the circuit [15], which amounts to
changing the number of molecules available in the initial state (e.g. q′0 = mq0
for a system with m copies), while the set of species and reactions remain the
same. This can make analysis more challenging as the length of computation
traces increases. Once a reachable “bad” state qb is identified in a system, we
show that such a state is also reachable for multiple copy systems by proving
that no reactions are enabled in state q′ = mqb. State q′ can be reached in a
multi-copy system if each sub-system was to independently reach state qb.
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Fig. 2. Computation times for the identification of traces of lengths up to K = 100 in
the flawed transducer circuits such that a “good” state (left panel) or a “bad” state
(right panel) is reached (note the difference in scales). BitVec‘ and BitVec (resp. Int‘
and Int) indicate a bit-vector (resp. integer) encoding with or without the additional
constraints from Sec. 3.2 asserted for each state q0, . . . , qK−1 in (9).

We applied the procedure described in this section to DSD circuits consisting
of between n = 2, . . . , 10 transducers in series where all transducers were based
on one of two different designs (a flawed and a corrected one). These circuits
were found to include |S| = 14n+ 4 species and |R| = 8n reactions and, when
the bit-vector encoding was used, a state was encoded as a bit-vector of size 64
(resp. 70) for the flawed (resp. corrected) circuit of size n = 2 and 576 (resp. 342)
for n = 10. For the flawed system design, both “good” and “bad” states were
identified using Eqns. (7) and (8) while for the corrected design only “good”
termination states were possible. For each of the investigated circuits (encoded
either using integers or bit-vectors) computation7 required under 1 sec.

To confirm the reachability of states we searched for traces with depth up to
K = 100, which was sufficient to identify computation traces leading to both
“good” and “bad” states for flawed transducer circuits of different size (Fig. 2)
and “good” states for the corrected one (Fig. 3-left)(the existence of “bad” states
for these circuits was already ruled out). For the corrected transducers, we show
that the additional constraints from Sec. 3.2 allow us to rule out the possibility
of “bad” states, even for systems with many copies of the circuit (Fig. 3-right).

4 Synthetic Gene Circuits

In the field of synthetic biology, engineering principles are applied to redesign
genetic networks with the goal of constructing biological systems with specific

7 All computational results were obtained using the Z3 (version 4.1) theorem prover
[8] on 2.5 Ghz Intel L5420 CPU machines with a 2GB memory limit per benchmark.
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Fig. 3. Computation times for the identification of traces of lengths up to K = 100
in the corrected transducer circuits (left panel) and the verification of multiple copies
of a circuit with ten transducers based on the corrected design (right panel). BitVec‘
and BitVec (resp. Int‘ and Int) indicate a bit-vector (resp. integer) encoding with or
without the additional constraints from Sec. 3.2. For the integer encoding with the
additional constraints, the memory limit was reached for circuits of size five and up
during the identification of traces (left panel).

behavior (see [22] for a review). The construction of biological devices (relatively
small gene networks which can serve as basic building-blocks) has been pursued
initially and tools and programming languages to support this process have
been developed (e.g. [19]). The construction of larger-scale systems from devices
presents a challenging design problem [22], where chemical species serving as
“wires” must be matched to ensure proper function and other constraints must
also be satisfied (e.g. if the same species is an output of two separate devices in a
circuit, cross-talk might occur), while in addition, specific system behavior must
be obtained. The development of computational tools enabling the automated
design of systems from expressive specification of the desired behavior and ca-
pable of handling the complexities of the problem can address these challenges.
In the following, we formalize the constraints specific to the synthesis problem
of designing a gene network with certain behavior from a library of devices and
propose an SMT-based solution.

A device d is a tuple d = (Id, Sd, Fd) where Id and Sd are finite sets of
input and internally produced (output) species such that Id ∩ Sd = ∅ and
Fd = {f s

d | s ∈ Sd} is a set of update functions (f s
d is the update function

for species s). We capture the dynamics of a device as a Boolean network - a
popular formalism for modeling interaction networks [7]. In a Boolean network
each species is described as available or not, thus its exact concentration (number
of molecules) is abstracted (unlike the DSD formalism we described in Sec. 3).
We treat a device d as a transition system Td = (Qd, Qd0, Td) where q ∈ Qd cap-
tures which species are available in the system (in the following, we use q(s) ∈ B

as a Boolean, indicating whether species s is available in state q) and Qd0 = Qd

(i.e. all states are initial). The dynamics of the system are given by the functions
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Table 1. Additional constraints for constructing systems from gene network devices

Constraints Description
∧

s∈S
∧

d,d′∈Ds,d �=d′ ¬(D(d) ∧D(d′)) To prevent cross-talk, two devices producing
the same species are never selected at the
same time.

∧
s∈I

∨
d∈Ds

D(d) All species specified as input serve as inputs
to a selected device.

∧
s∈O

∨
d∈Ds D(d) All species specified as output are produced

by a selected device.
∧

d∈D
(
D(d) → ∧

s∈Sd\O
∨

d′∈Ds
D(d′)

)
To prevent the production of species that do
not serve any function, all species produced
by a selected device are outputs of the circuit
or serve as input to another selected device.

∧
d∈D

(
D(d) → ∧

s∈Id\I
∨

d′∈Ds D(d′)
)

All species serving as inputs to a selected de-
vice are inputs of the circuit or are produced
by another selected device in order to ensure
that all device inputs are part of the system.

f s
d : Qd → B where, for states q, q′ ∈ Qd, the synchronous transition relation
(where all species are updated at each time step) is defined as

T (q, q′) ↔
(

∧

s∈Sd

q′(s) = f s
d(q)

)

(10)

Note that Td is finite and non-deterministic: while each species s ∈ Sd is updated
deterministically, there are no restrictions on the dynamics of species from Id.

Given a set of devices D = {d0, . . . , dn} we define the set of species S =⋃
d∈D(Id ∪ Sd). A specification of some required system behavior is given over

the dynamics of a set of input and output species denoted by I ⊆ S and O ⊆ S
where I ∩O = ∅ and I ∩ (

⋃
d∈D Sd) = ∅. Our goal is to select a subset of devices

D ⊆ D where D(d) ∈ B indicates whether device d is used as part of the system.
Let Ds = {d ∈ D | s ∈ Sd} denote the set of devices producing species s

and Ds = {d ∈ D | s ∈ Id} denote the set of devices using s as an input. We
construct the transition system T = (Q,Q0, T ) where q(s) ∈ B indicates the
availability of species s ∈ S and Q0 = Q. The following constraints are asserted
for all valid system states

∀q ∈ Q,
∧

s∈S\I

(

(
∧

d∈Ds

¬D(d)) → ¬q(s)
)

(11)

In other words, a species s that is not produced by any device is never available in
valid states of the system, unless s ∈ I. To prevent cross-talk between devices and
obtain a smaller solution (e.g. where devices that produce unnecessary species
are never included), we impose the additional constraints described in Table 1
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(note that only the cross-talk constraint is required to avoid contradictions in
the following definition). The transition relation of T is defined as

T (q, q′) ↔
(
∧

s∈S
q′(s) = f s

d(qd)

)

(12)

where qd denotes the part of state q relevant for device d (i.e. describing species
from Id ∪ Sd). With the exception of the inputs I, the system is deterministic.

For this problem, a bit-vector encoding is appropriate due to the Boolean
structure of the system. For an individual device d we have Qd = B

|Id|+|Sd|

where each f s
d ∈ Fd is a function f s

d : B|Id|+|Sd| → B. For the overall system,
we have Q = B

|S| where T is a function B
|S| × B

|S| → B. We use a bit-vector
D ∈ B

|D| to encode the set of selected devices. Given a device d, qd can be
encoded using appropriate bit-vector extraction and concatenation to select the
species from S ∩ (Id ∪ Sd), which allows the application of functions from Fd.

Fig. 4. A library of devices (D = {d0, . . . , d4}) is represented graphically in (A). Indi-
vidual devices are specified by their input and output species (e.g. arabinose (ara) and
the protein CI are the inputs of device d3, while NRI and LacI are its outputs), together
with a Boolean update function for each species. For example, species LacI is available
in the next state (indicated by LacI’) only if arabinose is available in the current state
and the repressor CI is not (positive and negative regulation is represented by pointed
or flat arrows). We seek a circuit with an arabinose input and green fluorescent protein
(gfp) output (B) which is capable of oscillations and stabilization and satisfies the con-
straints discussed in Sec. 4. Our procedure identifies the solutions shown in (C, where
D = {d0, d1}) and (D, where D = {d2, d3, d4}) but only the solution from (D) has the
desired dynamic behavior.

The characterization of device behavior and the construction of device li-
braries is currently an ongoing effort in synthetic biology. Therefore, we consider
a hypothetical device library (Fig. 4-A) constructed from frequently-used com-
ponents [22] to demonstrate the proposed approach. The Boolean update rules
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we use as an illustration abstract the detailed gene regulation behavior which
has been observed and engineered experimentally. Our goal in this example is to
design a circuit with the input/output characteristics shown in Fig. 4-B. In addi-
tion, we require that it is possible for the output gfp to oscillate for one value of
the input ara and stabilize for the other. Two possible solutions satisfying all con-
straints from Table 1 were identified (Fig. 4-C,D). However, this alone does not
guarantee that their dynamical properties are consistent with the required behav-
ior. We specify two paths of the system q0, . . . qK and q′0, . . . , q′K with the prop-

erties that
∨K

i=1 qi(ara) = q0(ara),
∨K

i=1 q
′
i(ara) = q′0(ara) and q0(ara) 
= q′0(ara)

(i.e. a different, constant input signal is applied in each case), qK−1 = qK (in the

first case, the circuit stabilizes) and
∨K−1

i=0 (q′i = q′K ∧
∨K−1

j=i+1 q
′
j(gfp) 
= q′K(gfp))

(in the second case, the circuits oscillates between multiple states where the
value of gfp changes). These additional constraints eliminate the device from
Fig.4-C as a possible solution, while the device from Fig.4-D is still identified as
a candidate (overall, the solution was found in under 1 sec). Besides specifying
behavior that the system must be capable of (i.e. the existence of trajectories
with certain properties), specification of properties that all system trajectories
must satisfy are also supported in our approach through the use of quantifiers.

5 Related Work

The application of formal methods to biology has already received attention (e.g.
[6], among others) but here we focus specifically on biological engineering appli-
cations where formal specifications and analysis can supplement computational
modeling and simulation to enable the computer-aided design of larger, more
reliable systems. DNA circuits have been studied using stochastic simulation, or
more recently, using probabilistic model checking [15], which also allows prop-
erties regarding the time required for computation or the probability of failure
to be expressed. In synthetic biology, computational design platforms exists to
target the construction of devices [29,19], while formal specifications have also
been considered [30]. Here we focus on the problem of combining devices into
systems, while satisfying additional design constraints, including desired system
behavior. This problem is related to the synthesis of software programs from
components [10] - here we formalize features of the biological design process and
address this problem using SMT-based methods.

The Petri-net formalism [11] can naturally describe some properties of the
DNA circuits from Sec. 3. The application of formal methods to Petri-nets has
been studied extensively, and in the future, relevant analysis procedures can
be adapted to the problems we consider. More specifically, the computation of
invariants for Petri-nets has been studied as an analysis strategy (e.g. in the
context of biology [26]). This problem is related to the computation we describe
in Sec. 3.2 but here we derive constraints directly from the known composition of
DNA species, while for Petri-nets such information is not available and invariants
are computed from the network structure (e.g. through its incidence matrix [11]).
Since the structure of species also determines the possible reactions between
them combining these approaches is an interesting future direction.
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6 Discussion and Future Work

Our approach is general and suitable for the analysis of biological models beyond
the applications discussed in this paper. For example, with the exception of the
additional species properties we exploit in Sec. 3.2, DSD circuits can be viewed as
general Chemical Reaction Networks (CRNs) and therefore such systems might
be analyzed using the proposed methods. Furthermore, the Boolean networks
we use in Sec. 4 are a popular modeling formalisms for biological interaction
networks (such as gene regulation, and signaling networks) as studied in the field
of systems biology. A number of realistic models have been constructed based
on this formalism, including large-scale (approaching whole-cell) regulatory and
metabolic reconstructions [24] where our methods can help address challenging
analysis problems. Besides providing analysis capabilities within tools such as
Visual DSD [16], the discussed methods are also available as an online tool at [2].

The expressivity, scalability and extensibility of SMT, together with its model
generation capabilities, which served for the identification of (counter)examples
in this work but can also allow synthesis applications in the future, were the
major consideration during the development of our methods. Our choice of bit-
vectors as a specific theory of interest was motivated by the availability of re-
cently developed efficient decision procedures, which allow the use of quantifiers
[28]. The investigation of the integer and bit-vector representations we propose
on a larger set of benchmarks is a direction of future work.

In Sec. 3 we assume that all species and reactions of a DSD circuit can be
generated a priory (e.g. using Visual DSD [16]), which is often the case for cir-
cuits of practical interest with some notable exceptions [14], which might still
be approached using SMT (e.g. through the use of recursive datatypes [18]).
When a sufficient number of molecules is present in chemical and biological sys-
tems, species concentrations can be described as continuous values (e.g. using
(non-linear) ODEs) [7], which is also a common description of the synthetic gene
networks studied in Sec. 4. Such systems, as well as other infinite-state, contin-
uous and hybrid models used in biology, can be encoded directly into SMT and
analyzed using recently developed decision procedures [13]. As an alternative,
(conservative) finite transition system abstractions can be constructed (e.g. as
in [30]) to enable the SMT-based analysis of such systems.

In the modeling of biological systems, capturing individual molecules numbers
(as in Sec. 3) can provide detailed and biologically accurate system descriptions,
which are often difficult to analyze. Constructing (finite) transition system rep-
resentations as in Sec. 3 allows us to express important properties (e.g. reach-
ability) with such level of detail, which is important for applications such as
DNA computing. Currently, we ignore all probabilistic aspects of these systems
(which arise, for example, when reaction rates are considered) but SMT reason-
ing procedures for probabilistic systems (e.g. [9]) can help address some of the
current limitations and extend our approach to other model classes (e.g. prob-
abilistic Boolean networks). For challenging areas such as probabilistic SMT, it
seems natural to explore biological applications for motivation and as a source
of benchmarks that can help drive the development of novel methods.
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7 Conclusion

As a step towards the development of an SMT-based analysis framework for
studying biological computation that is scalable and supports a wide set of
models and specifications, in this paper we focus on problems related to the
engineering of biological systems, as part of the emerging fields of DNA com-
putation and synthetic biology. We show that for a number of applications in
these domains, transition systems capture important behavior and can be an-
alyzed together with relevant specifications and additional constraints through
SMT-based methods in an efficient manner, going beyond what was possible
using other techniques. Our approach is general and is currently being applied
to other biological models and formalisms. This work highlights biological engi-
neering as a domain that can benefit extensively from the application of formal
methods, while the biological complexity can also motivate the development of
novel analysis methods.
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