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Abstract

Zombie is an endurance management framework that
enables a variety of error correction mechanisms to ex-
tend the lifetimes of memories that suffer from in-the-field
bit failures, such as wearout in phase-change memory
(PCM). Zombie supports both single-level cell (SLC) and
multi-level cell (MLC) variants. It extends the lifetime
of blocks in working memory pages (primary blocks) by
pairing them with spare blocks, i.e., working blocks in
pages that have been disabled due to exhaustion of a sin-
gle block’s error correction resources, which would be
‘dead’ otherwise. Spare blocks adaptively provide error
correction resources to primary blocks as failures accu-
mulate over time. This reduces the waste caused by early
block failures, making all blocks in discarded pages a
useful resource. Even though we use PCM as the target
technology, Zombie applies to any memory technology
that suffers stuck-at cell failures.

This paper provides supplemental information to [4],
which describes the Zombie framework, a combination of
two new error correction mechanisms (ZombieXOR for
SLC and ZombieMLC for MLC) and the extension of two
previously proposed SLC mechanisms (ZombieECP and
ZombieERC). We present the read and write algorithms,
an analytical model for SLC, detailed discussion of the
MLC mechanism, and analysis demonstrating reduced
drift-induced soft errors for MLC. This additional infor-
mation could not fit in the page limitations of [4], demon-
strates feasibility of PCM, especially MLC, and supports
our results of 58% to 92% improvement in endurance
for Zombie SLC memory and an even more impressive
11x to 17x improvement for ZombieMLC, both with per-
formance overheads of only 0.1% when memories using
prior error correction mechanisms reach end of life.

1. Introduction

The current technology roadmap shows that scaling
DRAM to smaller features [8] is rapidly slowing down.
Fortunately, DRAM replacement solutions are emerg-
ing [12, 13, 16]. These solutions provide more stable

storage and are based on magnetic or physical properties
of materials. Phase-change memory (PCM) [1,3, 5], a
resistive memory technology, is already shipping as a
NOR-Flash replacement. It is faster, uses less power, and
achieves longer lifetimes than Flash.

Using PCM as a DRAM replacement for main memory,
however, poses challenges. One such challenge is the en-
durance of individual bits. While DRAM cells typically
support an average of 10! writes over their lifetime, PCM
cells last for as little as 10% writes on average. Perma-
nent DRAM cell failures are so rare that mechanisms to
tolerate them are wasteful: They disable the entire physi-
cal page where the failure occurred, which then becomes
unavailable for software use. Since PCM cells wear out
much faster, using the same approach would quickly dis-
able all PCM pages. Thus, to make PCM a viable alter-
native for main memory, lifetime-extending mechanisms
are crucial for both single-level cell (SLC) and multi-level
cell (MLC) PCMs. An additional challenge with MLC
PCM is drift: Once written, cell resistance may change
over time. This adds complexity to MLC error correction
mechanisms because they must tolerate both wearout and
drift.

Multiple hardware-only error correction mechanisms
tackle wearout by transparently correcting and hiding
failures from software layers [7, 11, 14, 15, 19]. Despite
significant progress, these mechanisms remain inefficient,
wasting a large number of working bits when they can no
longer correct errors and thus must disable pages.

To illustrate the opportunity Zombie leverages, Fig-
ure 1 shows the average number of bit flips (or writes
to a bit) and the average fraction of failed bits when a
page must be disabled, for several previously proposed
mechanisms that protect SLC PCM. We have added re-
sults for our PCM SLC schemes to the graph as well. The
fraction of failed bits measures the amount of waste —
the lower this fraction, the higher the number of unusable
working bits that are wasted. All practical mechanisms
waste at least 99% of the bits in a page. Oracle64 and
Oracle128 represent ideal mechanisms that correct 64 and



128 bit failures per block, respectively. Even though in-
creasing the error tolerance from 64 to 128 bit failures
dramatically reduces bit waste, it is arguably in the di-
minishing returns region with respect to increasing the
number of bit flips. Note that Oracle64 increases memory
endurance (68 million flips) by 50% or more compared
to other previously proposed mechanisms (SAFER at 44
million flips), representing a significant memory lifetime
improvement opportunity that can be realized by the Zom-
bie framework. The opportunity is significantly larger for
MLC PCM. We also show our new ZombieSLC mecha-
nisms (Zombie + Error Correcting Points: ZECP, Zombie
+ Erasure Codes:ZERC, and Zombie + Primary and Spare
block XOR: ZXOR) plotted with these other mechanisms
demonstrating the significant increase in the percentage
of failed memory cells. Our ZombieSLC mechanisms
increase the percentage of failed bits in a page by almost
20x.
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Figure 1: Average number of bit flips (x-axis) and average frac-
tion of failed bits (y-axis) when a page must be disabled for a
variety of error correction mechanisms that protect an SLC PCM
(represented by markers), assuming an average cell lifetime of
108 bit flips (writes) and a 0.25 coefficient of variance. The solid
line is the cumulative distribution function of failed memory bits
as a function of bit flips.

By leveraging this opportunity, the ZombieSLC mech-
anisms extend memory lifetimes by 58% to 92%. Zom-
bieMLC achieves even more impressive lifetime exten-
sions — of 11 x to 17 x— while also tolerating drift. Zom-
bie achieves these longer lifetimes with graceful degrada-
tion and at low performance overhead and complexity.

The Zombie framework lets a variety of error correction
mechanisms use the abundant working bits in disabled
pages to extend the lifetime of pages still in service. Its
unifying principle is to pair a block, or even a subblock,
sourced from disabled pages (spare blocks) with a block
in software-visible pages (primary blocks), extending the

primary block’s useful lifetime (and turning them into
‘zombies’). Zombie enables on-demand pairing and grad-
ual spare subblock growth, i.e., primary blocks are paired
with spare blocks only when they exhaust their own er-
ror correction resources and can gradually increase their
spare subblock size as additional resources are needed.

This paper provides supplemental information to [4],
which originally proposed two new error correction mech-
anisms, ZombieMLC and ZombieXOR, and extends two
existing ones (ZombieECP and ZombieERC) to showcase
the Zombie framework. ZombieMLC, as the name sug-
gests, is designed specifically for MLC and, to our knowl-
edge, is the first mechanism to tolerate both drift and
stuck-at failures. To demonstrate ZombieMLC feasibility,
we provide an analysis of the resistance levels and drift-
induced soft errors. The other mechanisms (ZombieXOR,
ZombieECP and ZombieERC, collectively called “Zom-
bieSLC mechanisms”) tolerate only stuck-at failures and
are better suited to SLC PCM.

The rest of this paper is structured as follows. Section 2
presents the read and write (we assume read-write-verify
or differential writes) algorithms for PCM-like memo-
ries. Section 3 provides an analytical model that matches
the simulation results for SLC mechanisms. Section 4
offers more details and examples for the ZombieMLC
mechanism and Section 5 evaluates the drift-induced soft
error tolerance, making PCM a viable MLC technology.
Section 6 concludes our discussion.

2. Algorithms

We present the three algorithms to access PCM mem-
ory using Zombie. Algorithm 1 shows how to perform
memory reads. We first read the given block position
and detect, from its metadata, if it is paired. For paired
blocks, we need to read both the primary block and its
spare, for unpaired blocks, we only require the intrinsic
ECP. If the block is paired, we need to read the spare
address and the spare value with ECP. The next step is to
decode the block and spare using the selected encoding
method (ZombieECP or ZombieXOR). In our evaluation,
only one method is used at a time, which simplifies the
real algorithm implementation.

We divided writes into two algorithms, depending on
the technique the Zombie used. The first, Algorithm 2,
implements ZombieXOR and ZombieECP. Implementing
ZombieECP is easier as we based our implementation on
top of an ECP-enabled memory controller; so it is only
necessary to increase the number of ECP bits. For Zom-
bieXOR we start by finding the spare address, which may
already be cached. The new spare value (S’ = P xor P') is



Algorithm 1 Memory Read

Algorithm 2 XOR Memory Write

INPUT: A memory block address Addrp
OUTPUT: The value at memory position Addrp
MemRead(Address: Addrp)
P =Read(Addrp)
if IsPaired(P) then
Addrs = GetSpareAddress(Addrp)
S = ReadECP(Addrs)
if IsAdaptive(P) then
if IsErasure(P) then
return ErasureDecoding(P,S)
else
return ECPCorection(P,S)
end if
else
return P xor S
end if
else
P =ReadECP(Addrp)
return P
end if

calculated to minimize bit flips in the main block. After
verifying §', if ' does not match S, the next step is to
calculate the bits that should be written to P (S’ xor P). If
we still have errors, we use the ECP bits in S to correct
the aligned errors. When the ECP bits in S are exhausted,
we unpair the block and try to find a new pair, restarting
MemWrite. Only a small number of unpair/pair are al-
lowed inside the write. If no compatible pair is found, the
primary block and its page are placed in the spare pool
and the spare block is disabled.

Algorithm 3 implements Memory Write for Zom-
bieERC. As with all pairing methods, it starts by looking
up the spare block address. At the same time, the error lo-
cations are fetched from the Error Location Cache. If they
are not present, the controller does two inverted writes to
the memory to detect the stuck-at errors in the primary
and spare and updates the cache. After that, the Erasure
Code is calculated and written to the memory. If an error
happens, the operation is repeated. When the ERC is
exhausted, the block is unpaired and paired again with a
bigger spare that can hold more stuck-at errors.

3. Analytical Model

We can build an analytic model for Zombie lifetime ex-
tension techniques based on the probability p of a write
failure occurring uniformly random across the memory.
The probability that no errors occur in our memory after a
single write to each location is (1 — p)°'%. Probability p is
typically fairly small, on the order of 107° < p < 1078,

INPUT: A memory block address Addrp, the value P
to be written, and the list of spare blocks L.
OUTPUT: none
MemWrite(Address: Addrp, Block: P)
if IsPaired(P) and !IsAdaptive(P) then
P’ = PreRead(Addrp)
Addrgs = GetSpareAddress(Addrp)
S=Pxor P
S" = WriteECP(Addrs, S)
if §' # S then
P =S xor P
WriteOnly(Addrp, P)
P' =PosRead(Addrp)
if P # (P’ xor §') then
Update ECP bits on S
if ECP bits exhausted then
UnPair(Addrp, Addrs)
Append(L, Addrs)
FindPair(Addrp, L)
MemWrite(Addrp, P)
end if
end if
end if
else
WriteECP(Addrp, P)
end if

If weset N =~ %, after N writes, the probability that no fail-
ures have occurred is (1 — %)N R~ é, so it is quite likely
for some cell to have failed. Now, if we consider kN
writes for small &, (typically 0.1 < k < 20 with j fail-
ures, where j is a number in the single or small double
digits and kN > j), we have no failures with probabil-
ity elk and j failures with probability ~ J% Our model
computes these binomials more exactly using built-in Ex-
cel functions for binomial coefficients based on the error
correction characteristics (number of writes per memory
operation, expected bit flips, etc.) for ECP and Zombie,
as shown below in Figure 2.

Figure 2 is a good approximation of our system, but
has some shortcomings. In ZombieXOR, we re-pair pri-
mary blocks with spare blocks to find new combinations
which do not have aligned errors. This is something not
covered in the analytic model. We found empirically that
re-pairing significantly extends the lifetime of primary
blocks, greatly extending the 50% lifetime plateau. Thus,
the analytic framework provides a fast mechanism to com-
pare error correction schemes (Zombie is better than ECP,
SAFER and FREE-p, the latter two not shown in Fig-
ure 2), but simulation is still required for mechanisms that



Algorithm 3 ZombieERC Memory Write

INPUT: A memory block address Addrp, the value P
to be written, the bit error locations E, the codeword C,
and the lists (by size: 128 bit, 256 bit, and 512 bit) of
spare blocks L[0 : 2].
OUTPUT: none
MemWrite(Address: Addrp, Block: P)
if IsPaired(P) and IsAdaptive(P) then
P' =PreRead(Addrp)
Addrg = PairAddress(Addrp)
E = ErrorLocationCache(Addrp, Addrs)
if E == NULL then
S = Write(~ S)
P' = Write(~ P')
E = (P’ xor P')CAT (S xor §)
UpdateErrorLocationCache(Addrp, Addrs, E)
end if
C = ErasureEncoding(P', S, E)
C' = WriteERC(Addrp, Addrs, C)

if C' # C then
E' = (C' xor C)
E"=EorkE'

UpdateErrorLocationCache(Addrp, Addrs, E')
if FailedCodeword(C’) then
C = ErasureEncoding(P', S, E")
C' = WriteERC(Addrp, Addrs, C)
end if
end if
if ERC exhausted then
UnPair(Addrp, Addrs)
Append(L][size + 1|, Addrs)
FindPair(Addrp, L[size])
MemWrite(Addrp, P)
end if
else
WriteECP(Addrp, P)
end if

are hard to model analytically as juxtaposed to Figure 3,
where the simulation does spare block repairing.

Noting the differences between the simulations and
models, we reflected on Perfect Matching work done
initially by Karp and Sipser [9], as improved by Aronson
et al. [2], to realize that greedy re-pairing was likely to
succeed as long as the number of potential matches was
large enough. Combining the estimate of the number of
failures, and considering birthday paradox collisions, we
were able to predict the probability of successful repairing
from the error rate; we then folded this into the analytic
model to extend that model, with the resulting expected
lifetime now a good match to the simulation results.
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Figure 2: Analytical predictions of PCM lifetime for ECP, ZombieECP,
ZombieERC, and ZombieXOR.
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Figure 3: Simulation predictions of PCM lifetime for ECP, ZombieECP,
ZombieERC, and ZombieXOR.

4. ZombieMLC: Drift-Tolerance plus ECC

ZombieMLC overcomes the challenges of drift and stuck-
at cell faults for MLC non-volatile memory by combining
rank modulation and new error correction schemes that
are complementary to rank modulation. We layer error
correction on top of the drift tolerant rank modulation
without degrading the performance of either process. We
provide an optimal failure encoding by only adding cells
for failed cells, without incurring additional storage over-
head. Here we describe the process of converting an
integer number to a string of symbols for handling resis-
tance drift in MLC PCM. We also modify the strings to
handle 1, 2, and 3 stuck-at cells, where the cell failure
can be due to probe delamination or probe degradation.
We assume these failure modes map to the maximum and
minimum states of the cell and that the failed cells can be
differentiated from normal working cells. We describe an
algorithm and provide an example that generates a string



of length 2m over an alphabet S = {0,...,m — 1} of size
m where each symbol occurs exactly twice. First, the
number of such strings is given by

m2 (om—2j
=T, )
Jj=0

Our algorithm takes an integer i € {0,...,N —1} as
input and produces the j”* string in this collection. The

algorithm involves two parts:
e The first part is to write i = {ro,...,r,—2} Where r; €

{0,..., (%) —1}.

e In the next part, at step j = 0 we use ry to pick

So C {1,...,2m} of size 2 and assign two positions the
value m — 1. This leaves us with S\ S of size 2m — 2 po-
sitions to assign. Recursively at step j € {1,...,m—2},

we have 2m — 2 positions left to be assigned, which
are given by S\ Ulj;ol S;. We use assign the index
rj € (2'"5 2 ) to assign some two position S; the value
m— j— 1. At the end, we are left with two positions
S\ U;”:_OzSt which are assigned the value 0.

For the first part, we need to write i € [N] as
(ro,--.,rm—2) and we are just performing the translation.
To do this, we write

i qu(zén)-ﬁ-i’o, roe{ov'”v(zén)_l}

and for j € {1,...,m—2},

_ 2m—2j
q4j =d4j+1 ( 2

) +rj, rj€ {0,..., (2m;2j) -1}
Note that in the last step we have
qdm—-2 = I'm—2.

For our example, we assume an [8,5,1] where i =
1,001, the equations are:

1,001 =q;(3)+r
q1 :%(S)Jrn
Q@ =q3 g)-l-rz
q3 =1

1,001 =35x28+21
35 =2x15+5
2 =0x6+2
q3 =r3=0

Given values for ry,...,r,_2, it is easy to recover i by
recomputing ¢,;,—2,gm—-3,---,q1 and then i by the above
equations. In all cases, g3 = r3 = 0.

For the second, we need a procedure which takes a
set Sop = {s1,...,52} and an index i € {0, ..., (sz)} and
produces a two element subset of Sy;. This is done as
follows:

Lett,t’ € {1,...,2k} be such that

() err=()

t—1
t'= 1—
e (%)
Output {s;,s;}.

For our example, the coordinate space or indices are
{13 27 33 47 5’ 67 7’ 8}

=28
t—1

t = 1—
Vk+ ( 2 )
=22-21=1

3’s is placed in coordinates {8,1}. This leaves us with the
six positions { 2, 3,4,5,6,7}.

2’s is placed in coordinates/indices {4,3} or positions
labeled {5.4} from {2, 3, 4, 5, 6, 7,} which leaves { 2, 3,
6,7}.



I’s is placed in coordinates/indices {3,2} or positions
labeled {6,3} from {2, 3, 6, 7,} leaving positions { 2, 7}
for the 0’s. The resulting string to write on to memory is
{3,0,1,2,2,1,0,3}.

For the decode step, we need to be able to invert this
procedure efficiently. In other words, we are given a two
element subset (s;7,s;) of S where 1 <¢' <1 <2k, and
we want its index r; € {0,..., (zzk)} The index is given

by
r—1
rk:( 2 )—l—l‘/—l.

For our example, we reconstruct the sets starting with
00 and going up to 33. The coordination locations of 00
are fixed, so we move on to 11, with a string that looks
like {0, 1, 1, 0}. The 1’s are in location {3, 2}, providing
t and r — 1, which translates back to r, = 2.. Next, we
add 2 back in and get the string {0, 1, 2, 2, 1, 0} for

the coordinates {4,3}, which translates back to r; = 5.

Adding the 3’s back in provides the final coordinates
{8,1}, which translates back to ro = 21. Knowing ¢3 =0,
is the final piece of information required to reverse the
encoding:

q1 :6]2(2)+5
@ =93 §)+2
g5 =r3=0
1,001 =31(5)+21
31 =2(§)+5
2 =0(§)+2
g3  =r3=0

4.1. 2-bit MLC with 1 stuck-at cell

The process is the same for 1-cell stuck-at errors. If we
use 2-bit MLC as the example. We can specify the code

like this [8,4,2].

The message is a string of 4 symbols over an alpabet
of size 4. We view this as a number i € {0,...,4* —1}.
We use this to generate a string s” of length 7 which has
exactly 23’s,22’s,2 I’s and a single 0, using an algorithm
similar to that used before. We would like to write the
string s = Os” which has a 0 in position 1. Note that s
contains every symbol in {0,...,3} exactly twice.

But since there is one stuck-at fault, we may be unable
to write s. Let s + a denote the string (s;,+a,...,s3 +a)
where we add a displacement a to each co-ordinate (and
the addition is mod 4). Note that there exists some a
such that we can write s 4 a to memory, regardless of the
location of the stuck-at fault.

For decoding, we are given the string » = s +a. We
can recover the displacement a by reading position 1. By
subtracting this from the string in memory, we can recover
s = 0s’. From s’, we can recover the message i using a
similar algorithm as before.

In this scenario, we are using 7 symbols to encode
a number of size 28. We use the last 7 symbols and
add an anchor symbol, say 0, to the beginning of the 7
symbols to get a codeword size of 8. Once we know
the error location and value at that location, we calculate
the difference between the cell we want to write and the
stuck-at location. We add this difference to all the cells
mod 2" (or 4). On decode, we can take the value of the
first cell and add it to the 7 other cells, one-by-one and
mod 2™ (or 4) to recover the original 7 symbol string.

For example, suppose we had the string ({ anchor ,
string}) { 0, 1 023 12 3} and the error location is the
left-most 2 and it is stuck in the low or O state, the string
we write to memory is {2,32013 01 }. Decode adds 2
then mod 4 to each cell to recover the original string.

Building the string from the number happens in the
same way, but with the restriction that the pair of 0’s
must be partially determined. One 0 is always placed at
index/coordinate 1. We must solve the above equations
for the rest:

q1(3)

q1 ZCI2(§)+V1
a(3)

g3 =r3=0

The encode and decode of the string is done the same
way, just the number of sets is reduced because we grab
one symbol as the anchor.



4.2. Correcting 2 or 3 errors

These schemes have similar overall structure. Let k €
{2,3} be the number of errors we wish to correct. We set
aside k anchor symbols M = {my,...,m} C {l,...,m—
2}. Note that anchors are distinct from 0 and m — 1. Our
encoding will first map messages to strings of length n —k,
which contain (roughly) equal number of symbols from
M. In particular, 0 and m — 1 will occur at least k times in
these strings.

Fix one such string s’. We will try to write the string s =
my,...,my,s to memory, which contains the k anchors in
the first k positions followed by s’. But the presence of
stuck-at faults implies that some indices are ij,i,,i3 are
stuck (either at O or at m — 1). So we may not be able to
write .

To overcome this, we permute indices of the string
using a family of (k-wise independent) permutations I
on [n]. TI; has the strong property that for any k target
indices i1,... i, and any k indices #},.. ., i}, there exists a
unique permutation 7 € IT; such that 7(i}) = i for every
i €{l,...,k}. These families only exist for certain values
of n: n must be a prime power for k =2 and a prime
power +1 for k = 3. Such families of permutations are
not known to exist for k > 4.

Returning to our problem, assume that iy,...,i; are
stuck (some to 0, some to m — 1). We will find indices
i\,...,i; which are currently mapped by s’ to to these
values (0 or m — 1). Note that there could be several
possible choices for i},. .., i, in which case we pick one
arbitrarily. We find the unique permutation 7 such that
(i) = ij. We then write the codeword 7(s) to memory.
The reason this works is because if i; is currently stuck at
0, = maps the location i’j (which currently holds the value
0in s) to it.

This completes the description of the encoding, we
now turn to decoding. This is where the anchor sym-
bols are used. Note that the codeword 7(s) contains a
unique occurrence of my,...,m;. We know that in s, these
symbols occur in locations 1,. .., k. This fixes the permu-
tation 7 uniquely, by the property of IT;. By inverting the
permutation, we recover s and s', and hence the original
message.

More about the families ITj:

e Assume that n is a prime power, so there exists a finite
field F,,. Let m,(x) = ax+ b where a € F\ {0} and
bel.

e Assume that n is a prime power + 1. Take the set of
elements to be IF,,_; Ueo. I3 is given by the group
of Mobius transformations ax+ b/ (cx +d) with ad —
bc=1.

4.3. 4-bit ML C with 2 or 3 stuck-at cell

In the scenario where there are 2 or 3 stuck-at cells in a 4-
bit MLC PCM, we use 2 or 3 anchor values, respectively.
These strings differ from the previous construction in that
the strings have a non-uniform distribution of symbols,
with the anchor symbols appearing only once. The anchor
values can be any value except the highest and lowest
values. As an example, we will use the [29,20, 3] code.

For 2-bit stuck-at cells, the transformation of the num-
ber to a string is the same as described above. In this case,
we map 280 number on to 27 symbols and reserve the first
two symbols in the string for the anchors. Let us assume
the anchor values are 7 and 8 and we will map 15°s to the
two error locations. In converting the number to a string,
we have the {position, symbol} mappings: {1, 7}, {2,8},
{4,15}, and {6,15}. Furthermore, cell positions 2 and 5
are stuck-at cells.

For 2 stuck-at cells, the equation y = ax+ b provide the
linear shuffle, where the original positions of the values
used to cover the faulty cells provide the x coordinates
and the coordinates of the faulty cells provide the y co-
ordinates. This equation maps all the combinations of
new and old coordinates on the same line. Because we
know the starting location of the anchor values and we
read back where they moved to, we can reconstruct the
linear equation and solve for x to move the cells back.

These operations happen over a finite field, guaran-
teeing a unique solution, where a and b are integer val-
ues. For our example, x; =4 and y; =2 and x, = 6
and y, = 5. Substituting these values into the equation
gives us: 2 =4a+b and 5 = 6a+ b. This simplifies
to 2a = 3. Because we operate over a finite field and
the codeword is a prime power, we can use the identity
properties to solve this equation, where all operations are
mod?29. The inverse value for 2 mod 29 is 15 (or 30 mod
29 = 1), so we multiple both sides by 15 and mod each
side by 29: 2 x 15 x @ mod 29 = 3 x 15 mod 29 resulting
ina=3x15mod29=16and b =2 — 64 mod 29 = 25.
y=16x+25 mod 29. In this scenario, the anchor values 7
and 8 map to coordinate positions 12 and 28, respectively.
12 = 16x+25mod 29 = —13 = 16xmod 29 or 16 =
16x,x = 1. Likewise, 28 = 16x +25mod 29 = 3 =
16x mod 29 or 32 = 16x,x = 2.

For 3 stuck-at cells, we use the following equation
to shuffle the symbols in the string around, moving the
+/- o symbols to cover the stuck-at cells positions :
y= ‘Cljis, where ad — bc = 1, and o maps to the high-
est or lowest symbol. In this case, there are three unique
anchor values that enable constructing the equation and

unshuffling the string.




5. Mitigating Drift Induced Soft Errors

Rank modulation addresses the resistance drift common
in MLC PCM for a bounded amount of time. Over time,
the resistance values of cells could converge or cross over,
introducing soft errors into the data. [18] demonstrated
this to be a concern when the cell resistance values where
uniformly distributed in log space, with fixed guard bands
and large resistance distribution around the mean. Under
these assumptions, drift-induced soft errors can occur in
a reasonably large memory array on the order of a few
seconds. For the statical analysis, [17] provides a good
foundation. Resistance drift over time is quantified by the
equation below. This relationship of time and resistance
is linear in log-log space and as [6] demonstrates, is
not influenced by an electrical field increasing the drift
over time, ruling out an major contribution by tunneling.
Table 1 provides the data for the states, guard bands, and
deviations (in log base 10) common in literature used in
[17, 18] for their analysis. Equation 1 provides the drift
resistance equation. Note from the table that we are using
3 o as the guard band and it is assumed that programming
the initial value in the cell is within 2.75 ¢. We can
also rule out the lower half of the symbols and focus on
only on the upper half of combinations based on the drift
coefficients. This reduces the number of candidate cells
to analyze.

R(t) =Ro(-)"
fo
log1oR 1%
cell level | data | mean | dev | mean | SDMR

1 00 3.0 0.001

2 01 40 | 0.17 | 0.02 40%
3 11 5.0 0.06

4 10 6.0 0.1

Table 1: Resistance and drift values for 4-level cell PCM, where
SDMR-= standard deviatio to mean ratio.

Rank modulation removes the fixed guard bands that
have been used in previous studies [17, 18] because the
cells drift together and the decoding is based on relative
ordering of the cells and not the absolute value. This
means that a soft error occurs when the two different
neighboring cell values are equal or cross over. If they are
equal, they can’t be differentiated and if they cross over,
the cell values are exchanged. Rank modulation does not
completely solve the drift problem, but does provide a

longer time interval before the error will occur, making
scrubbing/wear-leveling of old data still necessary.

However, by setting PCM cell resistance values to non-
uniform values in the resistance log space [10] and tight-
ening the resistance distributions (longer programming
time) we can significantly increase the time before drift-
induced soft errors occur, all but eliminating the refresh
process that would significantly reduce the lifetime of
wear-out prone non-volatile memories. [17, 18] assumes
a resistance value distribution of 2.75 o, which is very
close to the fixed guard band. Reducing this resistance
distribution to 1.375 ¢ requires more time to program
the cell, but also provides more resistance space for the
cells to drift. Table 2 shows a non-uniform distribution
of the levels in the resistance space that mirrors a similar
resistance distribution shown in later work [10], which
clusters levels 1-3 much closer than we have in the ta-
ble. Furthermore, we can reduce the resistance deviation
and dramatically reduce the time before a drift-induced
software error occurs. For the values in Table 2, the time
before a soft error is approximately 5 days. Many more
combinations of feasible cell data levels and associated
deviation metrics could yield even longer data lifetimes.

log1oR v
cell level | data | mean | dev | mean | SDMR
1 00 3.0 0.001
2 01 40 | 0.17 | 0.02 40%
3 11 5.2 0.06
4 10 7.0 0.1

Table 2: Non-uniform resistance distribution and previous drift
values for 4-level cell PCM, where SDMR= standard deviatio to
mean ratio.

Finally, we could use redundant cells in the spare block
to store additional information about the location of the
top rank values or other information to correct for soft
errors. Table 3 shows which encodings provide additional
cells that can be used for this purpose.

Overall, we can incur longer latency programming
times or add more information in order to address the
issue of drift-induced soft errors. In our PCM evalua-
tion, we assumes 32GB, 4-channel, 8-bank, DRAM with
12.8GB/s, full bandwidth with 2 simultaneous write on
averags. In this case, the memory system lasts 3-5 years,
assuming wear-level. The interval between writes to the
same memory location is about 5 seconds, well below the
5 days required by drift and non-uniform cell resistance
levels. Thus, even if we have to move data in the system
due to drift, the system will still survive longer than the



code Stuck-at | cells/block | cells/encoding | spare size | spare sub-block
2-bit MLC
[20,16,1] 0 320 320 - 0
[12,8,2] 1 320 384 64 1/4 (80)
[8,4,2] 1 320 512 192 1 (320)]
4-bit MLC
[64,55,1] 0 192 192 - 0
[48,39,2) 1 192 192 0 0
[41,30,3] 2 192 205 13 1/8 (24)
[28,17,4] 3 192 224 32 1/4 (48)

Table 3: Block size and spare cells required for each MLC encoding. Note: We start with a block size that can store the rank

modulated 512 bits.

expected lifetime when we are not writing all the memory
all the time.

6. Conclusions

This paper provides supplemental information for Zom-
bie, a framework that can be used with prior and new error
correction mechanisms to significantly improve SLC and
MLC PCM lifetimes. Zombie uses memory that has been
disabled due to exhaustion of intrinsic block error correc-
tion resources to keep memory that is still in service alive
longer. Three of these mechanisms — ZombieXOR, Zom-
bieECP, and ZombieERC— show endurance superior to
various state-of-the-art SLC PCM error correction mech-
anisms. These mechanisms can also be used to correct
stuck-at failures in MLC PCM, but doing so would re-
quire an additional compatible mechanism to tolerate drift.
The fourth mechanism, ZombieMLC, is to our knowledge
the first proposal to tolerate both stuck-at failures and
drift in an integrated and seamless manner. ZombieMLC
increases the lifetime of MLC PCM by over an order
of magnitude compared to a standard rank-modulation
mechanism, which tolerates only drift.

With all new technologies comes some uncertainty and
we try to address these main issues in this paper. We
provide the details that describe the fundamental behavior
of proposed system. We provide the algorithms for reads
and writes because they vary slightly depending on the
Zombie scheme used. The analytical model provides a
framework for analyzing new error correcting schemes
for non-volatile memories that experience permanent cell
failures. We were pleasantly surprised by how well the
analytical model matched the simulation results. We then
provide comprehensive details and examples for the Zom-
bieMLC scheme. This is followed by insuring that MLC
PCM is viable in the face of drift-induced soft errors.
This is done by removing the fixed guard bands, using
non-uniform initial resistance values in log space, and

tighten the resistance value distribution when the cells are
written.

In summary, the Zombie framework enriches the tool-
box of designers seeking error correction mechanisms
that match their specific system design goals.
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