
TimeStream: Reliable Stream Computation in the Cloud

Zhengping Qian1 Yong He1,2 Chunzhi Su1,3 Zhuojie Wu1,3 Hongyu Zhu1,3

Taizhi Zhang1,4 Lidong Zhou1 Yuan Yu5 Zheng Zhang1

1 Microsoft Research Asia, 2 South China University of Technology, 3 Shanghai Jiaotong University,
4 Peking University, 5 Microsoft Research Silicon Valley

Abstract
TimeStream is a distributed system designed specifically for
low-latency continuous processing of big streaming data on
a large cluster of commodity machines. The unique charac-
teristics of this emerging application domain have led to a
significantly different design from the popular MapReduce-
style batch data processing. In particular, we advocate a
powerful new abstraction called resilient substitution that
caters to the specific needs in this new computation model
to handle failure recovery and dynamic reconfiguration in re-
sponse to load changes. Several real-world applications run-
ning on our prototype have been shown to scale robustly with
low latency while at the same time maintaining the simple
and concise declarative programming model. TimeStream
handles an on-line advertising aggregation pipeline at a rate
of 700,000 URLs per second with a 2-second delay, while
performing sentiment analysis of Twitter data at a peak rate
close to 10,000 tweets per second, with approximately 2-
second delay.

Categories and Subject Descriptors D.1.3 [PROGRAM-
MING TECHNIQUES]: Concurrent Programming—
Distributed programming

General Terms Design, Performance, Reliability

Keywords Distributed Stream Processing, StreamInsight,
Cluster Computing, Real-time, Fault-tolerance, Dynamic
Reconfiguration, Resilient Substitution

1. Introduction
We are witnessing the rise of a new type of data driven by
rapidly expanding coverage of sensors, growing use of the
mobile Internet, and increasing popularity of social media,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

such as Twitter and Facebook. Together with the availability
of distributed-system infrastructure running on large clusters
of commodity machines, this new type of data has further
fostered a new class of applications for low-latency analytics
on big streaming data, with the following defining character-
istics: (i) incoming data arrives continuously at volumes that
far exceed the capabilities of individual machines; (ii) input
streams incur multi-staged processing at low latency to pro-
duce output streams, where any incoming data entry is ide-
ally reflected in the newly generated results in output streams
within seconds.

The new class of applications for real-time streaming ana-
lytics represents a significant departure from the traditional
batch-oriented MapReduce [10]-style (big) data processing
and requires a different distributed-system infrastructure. A
MapReduce job runs on static input data and performs the
computation once, whereas our computation has to run con-
tinuously as new data enters the system. When running on
a large cluster of commodity machines, fault tolerance is
of paramount importance, especially for continuously run-
ning computation. Recomputation-based failure recovery in
MapReduce does not apply to stream computation because
reloading data from the start of the computation is infeasible
in practice. In addition, unlike one-time batch processing,
long-running stream computation must cope with temporal
dynamics related to load changes, variations in load distri-
bution and balance, as well as failure and recovery.

Streaming data have been the subject of extensive re-
search in the database community, where the modeling
of both data and computation has been carefully studied.
Clearly, we are now confronted with challenges at a signifi-
cantly larger scale and with often abundant computation and
storage resources in the cloud to leverage. Those seemingly
quantitative differences have led to potentially qualitative
advances in underlying mechanisms for big streaming data
processing on a large commodity cluster, especially in terms
of how to achieve reliable stream computation.

Stream computation is defined to be reliable if, despite
dynamic reconfigurations in response to load fluctuations
and failure recovery, the computation produces the same out-
put streams as in a fail-free run with no reconfigurations,

where each incoming data item in an input stream is pro-
cessed exactly once. Such strong semantics are clearly ideal
if achievable at a reasonable cost; they might be required by
applications such as an accounting pipeline for on-line ad-
vertising, where the exactly-once semantics are needed for
correctness. Streaming database systems tend to use replica-
tion for reliability [7, 8, 17, 24, 26]; such a solution is often
costly and relies on strong assumptions on how many fail-
ures can occur concurrently.

In this paper, we present a system, TimeStream, that takes
on the challenge of building a distributed-system infrastruc-
ture for reliable low-latency continuous processing of big
streaming data. TimeStream manages to combine the best
of both MapReduce-style batch processing and streaming
database systems in one carefully designed coherent frame-
work, while at the same time it offers a powerful abstraction
called resilient substitution that serves as a uniform founda-
tion for handling failure recovery and dynamic reconfigura-
tion correctly and efficiently.

In particular, TimeStream makes the following technical
contributions. First, TimeStream develops a mechanism that
tracks fine-grained data dependencies between the output
and input streams to enable efficient recomputation-based
failure recovery that achieves strong exactly-once seman-
tics. Those dependencies are at the core of the new abstrac-
tion of resilient substitution. Second, TimeStream adopts
the programming model of StreamInsight [6] for complex
event processing (CEP), and extends it to large-scale dis-
tributed execution by providing automatic supports for par-
allel execution, fault tolerance, and dynamic reconfiguration.
TimeStream is able to generate and track data dependencies
automatically at runtime from the declarative operators pro-
vided by the language to enable reliable stream computa-
tion. Third, we have built several real-world applications on
TimeStream and evaluated its ability to maintain a simple
and concise programming model and to scale in a robust
manner while providing real-time performance. For exam-
ple, our system handles sentiment analysis of Twitter data at
a peak rate close to 10,000 tweets per second, with approxi-
mately 2-second delay. It maintains this real-time character-
istics with a moderate 20% resource over-provisioning, un-
der single failure and multiple concurrent and correlated fail-
ures. For a real-time monitoring service, TimeStream scales
elastically with load swings, without compromising the cor-
rectness of the computation during the reconfiguration.

In what follows, we begin with a discussion of the re-
lated work in Section 2, followed by an introduction of the
programming model in Section 3. Sections 4 and 5 describe
the design and implementation of TimeStream, respectively.
Section 6 describes example applications and Section 7 cov-
ers detailed evaluation. We conclude in Section 8.

2. Related Work
In contrast to many other systems that deal with off-line
batch processing, TimeStream focuses on large-scale low-
latency stream computation, as with a number of recent
systems including Storm [2], S4 [20], D-Streams [28],
Puma [19] and Flume [14]. There is also a much broader
context including the work from the more traditional stream-
ing database community. Our contributions are multi-faceted,
spanning across programming model and mechanisms for
fault tolerance and dynamic reconfiguration. We discuss
TimeStream’s novelty in each of these areas.

Programming model. In TimeStream, as in other stream-
ing systems, every new data entry triggers state change and
possibly produces new results, while the computing logic,
informally known as a standing query, may run indefinitely.
Such a standing query can be translated into a query net-
work. A number of existing systems such as Storm and S4
require that users wire the query network topology manually.
Our philosophy is to hide such complexity using a declara-
tive language, as seen in Trident [3], the recent extension to
Storm, which has started to include some limited declarative
features and APIs. TimeStream therefore preserves the ele-
gant and well-formed data and computation model from the
streaming database research in a declarative language that
allows user-defined functions, much like DryadLINQ [27],
PigLatin [21], and SCOPE [13] do for MapReduce-type
computation. In addition, TimeStream uses streaming DAG
(directed acyclic graph) as a lower-level computation model,
further evolving the general DAG model in systems like
Dryad. In a similar fashion as Dryad (or PIG) generalizes
the more restrictive MapReduce (or Hadoop), TimeStream’s
streaming DAG enables more general computation than in
Storm or S4.

More specifically, TimeStream leverages the StreamIn-
sight API [6] and adopts the declarative style of LINQ [5];
the resulting code is concise and easy to understand. These
building blocks enable us to program a variety of real-time
applications, instead of simple aggregation logics as in Puma
and Flume [14].

While D-Streams provides a set of stream-transformation
operators similar to those in TimeStream, it takes a different
approach treating a streaming computation as a series of
deterministic batch computations on small time intervals,
in order to reuse the fault tolerance mechanism for batch
processing.

Fault tolerance. In the context of isolated deployments or
when a single machine is sufficient to handle the load, using
hot standby technique such as process pairs (e.g., Flux [24],
StreamBase [4], and StreamInsight [6]) is appropriate. Un-
fortunately, these options have high overhead and limited
flexibility when the system needs to scale up.

The emerging big streaming data analytics in the cloud
are driven by scenarios such as on-line service monitoring

and real-time user-behavior analytics or advertising. In those
settings, the latency requirement is somewhat lax, where a
delay of seconds or tens of seconds is often acceptable. S4
achieves such kind of low-latency requirement by keeping
computation in memory and uses data-partitioning for scal-
able stream computation. When a failure occurs, S4 simply
restarts a computation with the potentially lost data/state,
taking a best-effort approach. These weak semantics might
be sufficient for some scenarios, but are often inadequate.

Compared to S4, Storm provides a stronger at-least-once
semantics by tracking each (intermediate) output during
computation back to the dependent input(s) with the help
of functions that application programmers must provide.
Once some output gets lost, it replays the dependent input(s)
for recomputation. This approach guarantees that every in-
put must be computed at least once despite failure. Trident
for Storm supports transactional semantics; it currently sup-
ports only the simple operators and does not cover common
streaming operators such as windowing and temporal joins.
Storm does not enforce a deterministic order on how a com-
putation consumes input entries, making it challenging to
support strong semantics transparently at the system level;
often programmers have to implement a set of APIs in order
to support strong semantics.

D-Streams models a stream computation as a series of
deterministic mini-batch jobs and leverages the MapReduce-
style recomputation-based recovery for each mini-batch be-
cause each mini-batch captures the needed computation de-
pendencies between output and input entries across time.

TimeStream differs from Storm and D-Streams by sup-
porting precise failure-induced recovery with minimal re-
computation. Unlike Storm, it enforces deterministic exe-
cution (when needed) that preserves a well-defined order-
ing of inputs to each computation, which makes it possi-
ble to do lightweight dependency tracking to provide the
strong exactly-once semantics. The same mechanism also
supports dynamic changes to the DAG for elasticity with
the same strong semantics. TimeStream further benefits from
the use of a high-level declarative programming model from
StreamInsight (with extensions) to hide the complexity of
dependency tracking from programmers. In contrast to D-
Streams, TimeStream tracks dynamic data dependencies for
handling stateful computation and can in some cases (e.g., a
sliding window with incremental aggregation) avoid check-
pointing used to prevent cascading recomputation as needed
in D-Streams.

Tracking dependency is a powerful idea that has been ex-
ploited to compute what is absolutely necessary when there
are limited changes in the input set (e.g., incremental com-
puting as in Incoop [11], DryadInc [22], Nectar [15]), or fru-
gal recomputation to repair lost state as in MadLINQ [23].
The streaming database community has proposed upstream
backup [17] that deals with a single failure with two levels
of acknowledgments.

Dynamic reconfiguration. In today’s cloud environment,
a system needs to cope with both resource and load fluctua-
tions, as well as recovering from failures. Streaming systems
must deliver results with low latency and are therefore more
sensitive to such dynamism. In addition, an early study [26]
shows that the cost of an individual operator may also
change even when the event rate stays the same. Dynamic
load management and balancing is a well-studied topic in
the streaming database community (e.g., [26]). Though the
latency requirements differ in our setting, many results on
the policies to trigger reconfiguration can be applied. At the
same time, it is important to have the capability of adapting
the configuration on-demand without compromising compu-
tational integrity, which is the foundation to implement any
appropriate reconfiguration policies.

Leveraging the efficient fault tolerance mechanism, a no-
table novelty in TimeStream is to enable robust elasticity.
The system uses resilient substitution as a single unifying
mechanism, allows runtime substitution of a portion of the
computation DAG, and maintains data and state integrity de-
spite changes. Such on-demand reconfiguration for scaling is
absent in most distributed stream processing engines.

3. Programming Model
TimeStream is designed to faithfully preserve the program-
ming model of StreamInsight [6], and as a result it can be
used to scale out any existing StreamInsight applications
to large compute clusters without any modification. In this
section, we provide a high-level view of the programming
model, highlighting the key concepts of the programming
model including the data model and query language.

3.1 StreamInsight
StreamInsight is a powerful platform for developing com-
plex event processing (CEP) applications, which is a Data
Stream Management System (DSMS) based on the CEDR [9]
research project. For CEP applications, data is represented as
event streams, each describing a potentially infinite collec-
tion of events that changes over time. An event is the basic
unit of data processed by a CEP engine. Each event con-
sists of two parts: an event header and a payload. The event
header defines the event kind and one or more timestamps
that define the time interval for the event; the payload holds
the actual application data associated with the event.

There are two kinds of events: INSERT and CTI. An
INSERT event carries actual payload and can be in one of
three shapes. An interval event represents an event that is
valid for a given interval of time. The event header specifies
the start and end time. A point event represents an event
occurrence at a single point in time. An edge event specifies
the occurrence of either the start or the end of an event. Both
point and edge events can be regarded as special cases of
interval events.

A CTI event is a special punctuation event that asserts the
completeness of the event history before a given timestamp.
It enables the processing of out-of-order events. TimeStream
relies on CTI events to determine data granularity at runtime,
as will be elaborated in Section 4.

StreamInsight queries are written in LINQ with a .NET
language such as C#. LINQ introduces a set of declarative
operators into .NET languages to manipulate collections of
.NET objects. In StreamInsight, the base type for an event
collection is CepStream〈TPayload〉, where TPayload
is the .NET type of the payload, and the query operators
are defined to perform transformations on CepStream
collections. StreamInsight supports a comprehensive set of
relational operators including projection (Select), filters
(Where), grouping (GroupBy), and joins (Join). Their
semantics are slightly adapted to handle events. For exam-
ple, the join condition is changed to include/process only
events with overlapping time intervals.

Windowing is another key concept in stream process-
ing. A time window is just a finite collection of events, to
which aggregations such as Count and Sum can be applied.
StreamInsight supports several types of windows. They en-
able applications to perform operations such as aggregations
over subsets of events that fall within some period of time.
We briefly describe the types of windows used in the pa-
per. Hopping windows are windows that “jump” forward in
time by a fixed size. The windows are controlled by two pa-
rameters: the hop size H and the window size S. A new
window of size S is created for every H units of time.
Tumbling windows are a special case of hopping windows
with H = S, representing a sequence of gap-less and non-
overlapping windows. Similarly, Count windows are sliding
windows, each including a fixed number of events.

Example. Figure 1 shows an example of a simple program
that continuously computes for each time window the fre-
quency of all words that have appeared in an infinite stream
of tweets. The input of the program is a continuous stream
of events with payload of type Tweet. The source of the
input could be some live on-line server that continuously
publishes the new tweets it collects. The program first calls
the user-defined operator GetWords to turn each incom-
ing tweet into a sequence of word events. It then applies the
GroupBy operator to partition the words. The result of this
grouping conceptually returns a set of CepStreams, one
for each unique word denoted by wordGroup in the ex-
ample. The words in each wordGroup are further trans-
formed into time windows by the TumblingWindow op-
erator, which are subsequently aggregated to compute the
count of the events in the window.

3.2 TimeStream Extension
TimeStream preserves the StreamInsight/LINQ program-
ming model and extends it to large-scale distributed execu-

// An input stream containing tweets
CepStream<Tweet> tweets = CepStream<Tweet>.Create(...);

// Counts word frequency in each time window
var counts = from w in tweets.GetWords()

.HashPartition(w => w, 3, uid)
group w by w into wordGroup
from win in wordGroup.TumblingWindow(winSize)
select new { Word = wordGroup.Key,

Count = win.Count() }

Figure 1. Continuous word count that computes word fre-
quencies in each time window with HashPartition.

tion by providing automatic support for parallel execution,
fault tolerance, and dynamic reconfiguration.

TimeStream introduces a new re-partitioning operator
HashPartition〈K,T〉, which is primarily used to re-
partition a CepStream for parallel execution. It also gives
the programmer more control to configure dynamically
a continuously running application based on runtime in-
formation. For example, to enable parallel execution of
continuous word count, the programmer simply adds a
HashPartition to the word stream as shown in Figure 1.

The HashPartition breaks the word stream into
three partitions so that the query can be executed for ex-
ample on three machines in parallel. The uid argument of
HashPartition is a unique identifier for this partitioning
operation. TimeStream can use it to reconfigure dynamically
the number of partitions at runtime. For example, a monitor
of a continuously running query may identify a slow com-
putation stage and improve the performance by increasing
the parallelism dynamically with the identifier and a new
partition count.

4. TimeStream Design
TimeStream supports stream applications as continuous
queries that compute over a potentially infinite sequence of
input entries and produce output entries continuously. Un-
like MapReduce-style computation, where a batch job typ-
ically involves a single multi-stage execution, TimeStream
computation is continuous and long running, making it crit-
ical to handle runtime dynamics, such as load fluctuations
and failures, and demanding different mechanisms from
those used in batch processing. This section presents the
system model, as well as the key concepts, abstractions, and
mechanisms in the design of TimeStream to enable efficient
and correct failure recovery and dynamic reconfiguration.

4.1 Streaming DAG
TimeStream compiles a continuous query into a streaming
DAG that can be mapped to physical machines for execution
and dynamically reconfigured at runtime. Each vertex v in
a streaming DAG takes a set of input streams, maintains
an internal state (optionally), and implements a streaming
function fv . The computation in vertex v is triggered by an
arriving entry i in an input stream, which updates v’s state
from τ to τ ′, and produces a sequence o of output entries as

Tweets

GetWords

HashPartition

GroupBy

TumblingWindow

Select

WordCounts

GroupBy

TumblingWindow

Select

WordCounts

GroupBy

TumblingWindow

Select

WordCounts

User-defined stream

operator (UDSO)

TimeStream extension

for dynamic partitioning

Figure 2. Streaming DAG for the continuous word count
query in Figure 1.

part of the output streams for downstream vertices, denoted
as (τ ′, o) = fv(τ, i).

We map each stream operator in a StreamInsight query
onto such a vertex. For HashPartition, the input stream
is partitioned into multiple output streams and the segment
of operators that follows are replicated for each of the par-
titions. To preserve the operator semantics and achieve re-
liability, the INSERT and CTI events (even from multi-
ple inputs) to an operator have to be consumed in a de-
terministic order. We pack a segment of consecutive IN-
SERT events with a CTI that follows into a single entry in a
stream; such an entry constitutes the finest data granularity
for transfer and computation. Each vertex then reorders the
entries (when needed) according to the corresponding CTI
timestamps before consumption. Both event packing and re-
ordering are transparent to the operator. Figure 2 shows the
streaming DAG corresponding to the query in Figure 1.

We assume that the computation fv in each vertex v
is deterministic in that the current state and the input en-
try decide the output and the state transition deterministi-
cally. We introduce source vertices as special input adapters
that generate output from various sources (e.g., sensor read-
ings) continuously to drive the computation of the rest of the
DAG. We use result vertices to denote those that generate
the output streams for the computation to be consumed else-
where. The input streams to the source vertices and the out-
put streams from the result vertices are assumed to be stored
persistently and reliably, as they are the original input and
final output of the computation.

A DAG itself has the same logical structure and function
as a vertex. We further define a subgraph consisting of a
subset of the vertices with the edges in between to be a valid
sub-DAG if the following condition holds: for any vertices
v1 and v2 in the sub-DAG and any v in the DAG, v must
also be in the sub-DAG if v is on a directed path from v1 to
v2. A sub-DAG is logically equivalent and can be reduced
to one vertex. Figure 3 shows an example of a streaming
DAG consisting of seven vertices, with v1 being a source
vertex and v7 being a result vertex. The subgraph comprised
of v2, v3, v4, and v5 (as well as all their edges) is a valid sub-

V3 V4

V2

V5

V7

V6

V1

I

O

Figure 3. Streaming DAG and sub-DAG example: the cir-
cled subgraph is a sub-DAG with input stream I and output
stream O.

DAG and can be reduced to a “vertex” with I as its input
stream and O as its output stream. It may seem counter-
intuitive, but the subgraph comprised of v3, v4, and v6 is
also a valid sub-DAG. A subgraph with only v2, v3, and v5
is however not a valid sub-DAG because v3 is on the path
from v2 to v5, but not part of the subgraph; reducing that
subgraph to a single logical vertex would create a graph with
cycle, not a DAG.

4.2 Resilient Substitution and Dependency Tracking
TimeStream supports dynamic reconfiguration at runtime in
response to server failures and load fluctuations through re-
silient substitution that can be applied to any vertex or sub-
DAG. When a vertex in the DAG fails (e.g., due to the fail-
ure of the underlying machine), a new vertex is initiated to
replace the failed one and continues execution, possibly on a
different machine. TimeStream can also apply resilient sub-
stitution to a sub-DAG in order to adjust the number of par-
titions in a computation stage based on the incoming rate
of the input streams. For example, in Figure 4, the sub-
DAG comprised of vertices v2, v3 , v4, and v5 implements
the three stages: hash partitioning, computation, and union.
When the load increases, TimeStream can create a new sub-
DAG (shown on the left), which uses 4 partitions instead of
2, to replace the original sub-DAG. Similarly, TimeStream
can also replace that sub-DAG with a single vertex if the
load is light through resilient substitution. The current im-
plementation of TimeStream provides such dynamic recon-
figuration. The policy by which such reconfiguration events
are triggered is specified by applications.

To ensure resilience to faults, TimeStream requires that
any modification made to the topology due to reconfigura-
tion or maintenance does not affect the output data entries
produced by the system. To achieve this goal, resilient sub-
stitution mandates that a new sub-DAG is equivalent to the
one being replaced, where the notion of sub-DAG equiva-
lence is defined as follows. Given two sub-DAGs, they are
equivalent if and only if they compute the same function,

(1) Select

i1 i2 i3

o1 o2 o3

D
ep

en
d
en

cy

i1 i2 i3

o1 o2

i4 i5 i6

t

i4 i5 i6

t

State

(2) TumblingWindow(3)

o1 o2

t

a1

b1

a2

b2 b3

(3) Join

i2 i3 i4

o4 o5

State

i5

t

i1

o2 o3o1

(4) Smoothing (UDSO)

State

1

State

2

Figure 5. Dependency structure examples for common operators.

V3 V4

V2

V5

V7

V6

V1

Sub-DAG

I

O

HashPartition

Union

Computation

V9 V12

V13

V10 V11

V8

Substitute

Figure 4. Resilient substitution example: the circled sub-
DAG on the right can be substituted by the one on the left.

i.e., given the same input stream(s), the two sub-DAGs will
always produce the same output stream(s).

State and output dependencies. Implementing resilient
substitution to be simultaneously efficient and correct is a
challenging task. For example, when a vertex fails, its state
may be lost and need to be reconstructed. While it is always
possible to restart the entire computation from the beginning
of the computation for correctness, this is clearly infeasible
in practice. The difficulty lies in recovering the states and
the missing entries correctly with a minimal amount of re-
computation, while allowing dynamic reconfigurations dur-
ing computation. Resilient substitution in TimeStream does
so by tracking state and output dependencies for each vertex
of a stream computation.

Given a vertex v that computes over a set of input streams,
at any state τ , we define its state dependency (denoted as
deps(v, τ)) to be a subsequence of the input data entries,
such that the vertex reaches the same state after consum-
ing this subsequence of input data entries. For each out-
put entry e that the vertex emits at state τ in response to a
newly arrived input entry i, we define its output dependency
depo(v, τ, e) to be deps(v, τ) ◦ {i}. To record the state and
output dependencies, TimeStream labels data entries in an
input or output stream using sequence numbers to identify

them uniquely. State and output dependencies can be defined
and constructed for any sub-DAG1.

Figure 5 shows the dependency structures in four dif-
ferent streaming-computation examples. The first case is a
stateless computation, where each entry in the output stream
depends on the corresponding entry in the input stream; e.g.,
depo(v, , o3) = 〈i3〉. The second case uses a tumbling win-
dow of size 3. We therefore have deps(v, τ1) = 〈i4, i5〉,
depo(v, τ1, o2) = 〈i4, i5, i6〉, and deps(v, τ2) = 〈i5, i6〉.
The dependency structure has a clear pattern that can be in-
ferred from the operator itself. The third case involves a join
of two streams and its dependency structure depends on the
values of the entries in the input streams. For example, we
have deps(v, τ) = 〈a2〉 and depo(v, τ, o2) = 〈a2, b3〉. In
the last case, a user-defined stream operator applies expo-
nential smoothing to a stream of events. At any time, the
current state depends on all consumed data entries in the in-
put stream. Therefore, we have deps(v, τ) = 〈i1, i2, i3, i4〉,
depo(v, τ, o5) = 〈i1, i2, i3, i4, i5〉. TimeStream is able to re-
store the state from the data entries in its state dependency.
which requires only a subset of the input data entries in all
the cases except the last one.

Recovery using dependencies. With state and output de-
pendencies, TimeStream recovers output data entries from a
vertex by initiating a recovery task on a given vertex, with
the labels of the output data entries to be recovered. To re-
cover output entry labeled o generated at state τ in response
to entry i, the recovery task retrieves its output dependency
and the corresponding state dependency, and recursively ini-
tiates a new recovery task for any input data entries that are
needed, but not available, on the upstream vertex to supply
these entries. When these data entries become available, this
recovery task clones the vertex at its initial state and feeds
this new vertex all these data entries to reach state τ and
then produces output o. In practice, TimeStream recovers

1 We calculate state and output dependencies for a sub-DAG by combining
the state and output dependencies of each individual vertex in the sub-
DAG, leveraging the input ordering and temporal semantics of the stream
operators.

V3 V4

V2

V5

i1

o1

i2
i3
i4

j1
k1k2k3

l1 m1

o2

Figure 6. Dependency inference of a sub-DAG.

a set of data entries together, rather than for each individ-
ual one. Given that each stream computation is determin-
istic, it is easy to prove that the recovery task can produce
the same output o based on the definition of state and out-
put dependencies. For example, to recover output o2 from
v5 in Figure 6, a recovery task can be initiated on v5. Ac-
cording to the dependencies indicated by the directed dotted
lines, this might further invoke the recovery task for 〈m1〉
on vertex v4, which in turn might invoke the recovery task
for 〈k1, k2, k3〉 on vertex v2. This final recovery task can be
completed by applying the streaming function of v2 on input
sequence 〈i1, i3, i4〉, as captured in the dependencies.

A recovery task can be initiated on any sub-DAG to re-
cover output data entries for that sub-DAG by using the com-
puted state and output dependencies for the sub-DAG. A re-
covery task on a sub-DAG becomes necessary after a substi-
tution on a sub-DAG, as shown in the example of Figure 4.
If v7 fails, its recovery would request data entries from O,
which cannot be recovered directly on vertex v13 in the new
sub-DAG due to the lack of state and output dependency in-
formation: those data entries were computed in the original
sub-DAG. In order to recover output data entries in O from
input data entries in I , TimeStream computes the state and
output dependencies for the sub-DAG using the state and
output dependencies on the individual vertices, as illustrated
in Figure 6. As a result, the output dependency of o2 will
be computed as 〈i1, i3, i4〉. To recover o2, the new sub-DAG
can simply take 〈i1, i3, i4〉. In fact, even with multiple sub-
stitutions, TimeStream can always find a sub-DAG with the
computed state and output dependencies to recover data en-
tries in an output stream.

Garbage collection using dependencies. Stream computa-
tion in TimeStream is continuous; garbage collection is used
to remove information that is no longer needed, including the
reliably stored source input data entries and the tracked de-
pendency information for the execution. Garbage collection
involves figuring out what information is no longer needed
after some final output of the computation is stored reliably
and will not be requested again. TimeStream again lever-

Vertex2

(VP)

Node1

Vertex2

(VP)

Node2

Cluster Manager

(CM)

Node Service

Vertex1

(VP)

Query

Coordinator

(QC)

Shared

Persistent Storage

Head Node

Compute Node

Node Service

Compute Node

Figure 7. TimeStream distributed runtime overview.

ages the dependency information to do so. At any point,
TimeStream can compute for each vertex in a reverse topo-
logical order the input data entries that are needed in order
to recover any needed output entries that have been gener-
ated. Because result output entries are assumed to be reliably
stored after they are produced, no output entries are needed
for recovery from the result vertices. Given a vertex with a
sequence O of output data entries needed from its down-
stream vertices—those data entries have been computed
because of the reverse topological order of processing—
TimeStream computes the input data entries that the vertex
needs from its upstream vertices as the union of input data
entries in the output dependency of each o ∈ O, with those
in the state dependency of the current state. The process con-
tinues until it reaches the source streams, in which case all
unneeded data entries in the source streams can be safely
garbage collected. Any dependency for unneeded entries or
state can also be garbage collected. For example, in Figure 6,
when o1 is no longer needed, l1, j1, and i2 are unneeded, so
are their dependencies. If o2 is needed, then all its depen-
dency and the source data entries 〈i1, i3, i4〉 remain needed.

5. Implementation
We have implemented TimeStream using C#/.NET. The pro-
totype consists of a client library (7.2 KLoC) that provides
a compatible query language/compiler for writing StreamIn-
sight applications with TimeStream extensions, and a dis-
tributed runtime (8.2 KLoC) that executes a streaming DAG
and supports dynamic reconfiguration.

Distributed runtime. The TimeStream runtime is built on
top of a cluster service we developed for resource allocation,
vertex scheduling, and failure detection. The cluster service
consists of a cluster manager (CM) running on a head node
and a node service (NS) running on each compute node in
the cluster. Figure 7 shows the flow of execution when a job
enters the distributed runtime. A query coordinator (QC) is
created for each job running on the cluster. The QC first talks
to the CM for allocating resources to run the job DAG (Step
1) and then schedules the vertex processes (VP) through the

cluster service onto the compute nodes (Step 2). We main-
tain the meta-data information of the QC in a reliable stor-
age so that its fail-over is straightforward. We use standard
Paxos-like approaches to ensure that there is a single QC at
any time. In the current implementation, we allow each node
to host a fixed number of VPs. Each VP may contain one
or more tasks specified by the QC to carry out the stream
computation and produce output to send to the downstream
tasks running within other VPs (Step 3). During the execu-
tion, VPs track the progress and dependencies, and periodi-
cally write them to the same reliable storage (Step 4); the QC
uses this information to manage any failure recovery and re-
configuration, as well as to coordinate garbage collection.

DAG generation and dependency extraction. When a
query is executed, the client library compiles it into a stream-
ing DAG and submits it to the distributed runtime. Depen-
dency tracking logic is embedded by the compiler when gen-
erating the vertex code. TimeStream automatically tracks
fine-grained dependency for all the built-in operators in-
cluding projection, filters, windowing, and temporal joins.
For stateless computations like projection and filters, depen-
dency tracking is simply done by propagating the input la-
bels to output. For stateful computations like windowing and
temporal joins, we have modified the standard operators to
expose dependent input labels necessary for reconstructing
the current state. TimeStream also allows users to introduce
new operators, but requires that users expose dependencies
for their operators.

Dependency tracking and maintenance. During the exe-
cution, each vertex tracks the meta-data information of de-
pendencies and progress, represented in a compact form us-
ing range sets of entry labels, and saves them to the reliable
storage periodically. The dependencies are kept in a key-
value store with the keys corresponding to the output labels
of a vertex. Persisting the dependencies asynchronously re-
duces the overhead by removing part of the tracking logic
out of the critical path of the computation. Such asynchrony
could lead to the QC having a (slightly) stale view of the exe-
cution. This does not lead to any correctness problems, even
though the QC could under-estimate the current progress
with a stale view and trigger more recomputation than nec-
essary during failure recovery/reconfiguration. Any dupli-
cate output produced in such a case will later be removed
by downstream vertices.

5.1 Optimizations
We highlight some of the important optimizations we have
implemented.

Operator fusion. To reduce unnecessary I/O, we map a seg-
ment of the stream operators in a query onto a same vertex
in the DAG. For example, a Where operator can be merged
with a preceding Select operator; a Window operator can
be merged with the subsequent aggregator. In the current

implementation, such fusion of operators is statically deter-
mined by the type of operators. When fusing two or more op-
erators together, the compiler automatically propagates and
merges the dependencies accordingly.

Dependency batching. The dependencies exposed by the
operators are at the granularity of an event segment in-
cluding only one CTI. Such fine granularity, albeit config-
urable, might incur too much overhead in cases where CTI
events appear frequently for low latency. To address this,
TimeStream automatically batches the dependencies for a
consecutive segment of vertex output within a fixed time pe-
riod and merges them into one coarser-grained dependency.
Such batching effectively reduces the amount of dependen-
cies at the (often acceptable) cost of extra (but bounded) re-
computation during failure recovery/reconfiguration.

Output buffering. TimeStream also supports output buffer-
ing on each vertex as a “caching” mechanism. A vertex
keeps a buffer of recently generated data entries of its out-
put streams, so that they do not need to be recomputed when
requested by the downstream vertices.

State checkpointing. For vertices where the state depen-
dency always includes all the input data entries, as in the
last case of Figure 5, TimeStream supports checkpointing to
avoid replaying a stream computation always from the start.
A checkpoint can be done asynchronously on an individual
vertex, which simply records the current state and the po-
sitions of the input streams that have been consumed up to
this point. TimeStream can always restore the state of the
vertex from a checkpoint and continue from there. Consider,
for example, the resilient substitution on a sub-DAG for re-
partitioning a computation stage as shown in Figure 4. Here,
checkpoints for the vertices being replaced can no longer be
used unless the application knows the semantics of the sub-
stitution and is able to derive checkpoints for the new ver-
tices from those for the old ones.

6. Applications
Complex event processing has a wide range of applications
including areas such as web analytics, financial trading,
and service monitoring. This section illustrates the power
of TimeStream with several real-world applications. While
they are developed for different domains, their logics all
share common patterns. The continuous events are cut into
a train of windows, and within each window the events are
grouped according to domain-specific correlations. The or-
der of windowing and grouping is typically interchangeable.
Following that, analytic logics are applied to the grouped
events in the window. The real-time conditions refer to
the ability to output result immediately after the window
is closed.

Network Monitoring. Network monitoring is a classic ap-
plication of stream processing, and the goal is to inspect net-

work latency as seen from the machines in a data center. The
complete query is shown below:

from c in input.HashPartition(c => c.FromCluster, 40)
group c by new { c.FromMachine, c.ToMachine } into ctmp
from w in ctmp.TumblingWindow(10000)
select new QueryResult() {

FromMachine = ctmp.Key.FromMachine,
ToMachine = ctmp.Key.ToMachine,
Latency = w.Average(a => a.Latency) }

The input is a continuous stream of measurements from
the end machines. The payload of an event contains the la-
tency of a data transfer from FromMachine to ToMachine.
The query groups the latency events by each pair of ma-
chines. For each pair, it computes the average latency in
every tumbling window of 10 seconds.

Audience Insight. This application is designed to provide a
real-time view of the quality of a cloud-based video delivery
service. The input is a continuous stream of monitoring
events, collected from media players at the clients.

from e in inputStream.HashPartition(v => Key(v), 8)
group e by Key(e) into videoGroup
from w in videoGroup.TumblingWindow(10000)
select ComputeQualityStatistics(videoGroup, w)

Similar to the network monitoring application, we first
group the input events by a user-defined key function Key,
and compute the quality of each group for every tumbling
window of 10 seconds. The function Key could be any
interesting attributes of the input events, such as the video
program, the Geo-location of the client, and the type of the
media player, depending on signals included in the event
payload.

TopK and Distinct Count. The queries described earlier
can be seen as a simple pre-processing. Following that ini-
tial step, we will typically want to perform more advanced
filtering, as demonstrated by the TopK and Distinct Count.
These two queries take the observations of different objects
in a moving time window, and report two different statistics
in real time: the top K most frequent and the total number
of distinctive objects, respectively. In the following example
we use URL as the object of the query. The input is a contin-
uous stream of URLs, each of them is attached with a mono-
lithically increasing timestamp. The URL may correspond
to search engine clicks, web site page views, or tweets that
contain it.

// Compute top URLs:
from win in input.HashPartition(u => u, 16)

.Where(u => !IsBot(u))

.HoppingWindow(30000, 2000)

.Select(w => w.TopK(100))

.Union().Scan(new MergeSortOperator(100))

// Compute # unique URLs:
input.HashPartition(u => u, 16)

.Where(u => !IsBot(u))

.HoppingWindow(30000, 2000)

.Select(w => w.DistinctCount())

.Union().Scan(new SumOperator())

The query first partitions the input stream into 16 sub-
streams, each containing a disjoint subset of the URLs. Pat-
tern matching is applied to each sub-stream to detect and re-
move bot-generated queries, followed by a window operator
HoppingWindow. HoppingWindow, also known as slid-
ing window, is similar to TumblingWindow except that
the two adjacent windows may overlap with a distance given
by the second parameter. For example, in the previous query,
a new window is created every 2 seconds and contains events
within the last 30 seconds. A user-defined operator TopK
computes the top 100 URLs of each window, followed by a
union on the sub-streams of partial results, and ended by a
user-defined operator that performs the final merge sort.

Distinct Count is similar, except that it applies a user-
defined aggregator to compute the distinct count in each win-
dow instead of sorting. The last operator simply aggregates
distinct counts from different partitions.

Sentiment Analysis of Tweets. This query explores a dif-
ferent domain, and the logic is much more complex: monitor
a continuous stream of incoming tweets, and detect social
opinion swings over certain user-dictated topics, at a spec-
ified temporal granularity (i.e., wSize). For changes that
are deemed significant, the query reports the change of hot-
words that may suggest the cause of change.

After grouping the tweets by topics, we get to the heart of
the computation:

// Compute sentiment changes:
var scores = from w in topicTweets.TumblingWindow(wSize)

select w.Average(t => Sentiment(t));
var change = from ss in scores.CountWindow(2)

where ss.IsChanged()
select ww.Events.Last();

// Compute top word changes:
var words = from t in topicTweets.TumblingWindow(wSize)

select Aggregate(WordCount(t));
var delta = from ww in words.CountWindow(2)

select Delta(ww);

// Relate sentiment changes to word changes:
from c in change
from r in delta
select ChangeWithReason(c, r)

The query computes the sentiment changes (change)
and top word changes (delta), and then join them to an-
alyze the possible reasons of sentiment changes. To com-
pute change, we first compute the average sentiment of the
tweets in every tumbling windows of wSize, and then de-
tect if the sentiment is changed for every sliding window of
size 2. The computation of delta is similar.

7. Evaluation
In this section, we evaluate TimeStream’s capability of de-
livering reliable low-latency computation for the real-world
applications described in Section 6. We pay special attention
to scalability, fault tolerance, consistency, and adaptability
to load dynamics. We further report the overhead introduced
by dependency tracking for achieving strong semantics.

URLsURLsURLs

DistinctCount

Filter

HoppingWindow

HashPartition HashPartition HashPartition

Counts

Sum

…

DistinctCount

Filter

HoppingWindow

DistinctCount

Filter

HoppingWindow

Figure 8. Streaming DAG for the Distinct Count query.

We perform the experiments on a computer cluster run-
ning Windows Server 2008 R2. Each server has dual Intel
Xeon X3360 2.83GHz CPUs (a total of 4 cores), 8GB mem-
ory, and two 1.0TB SATA disks. All servers are intercon-
nected with 1Gigabit Ethernet switches.

7.1 Scalability

Distinct Count. We evaluate Distinct Count using a URL
stream generated according to the statistics based on sam-
ple logs from the Bing search engine as the input dataset.
The log contains 30,766,355 distinct URLs, each associated
with a frequency. The average URL length is 57 characters.
Figure 8 shows the streaming DAG. The source streams are
partitioned on 4 nodes, which stream the data to the compute
nodes based on their hash code.

For this query, scaling is achieved by changing the num-
ber of compute nodes in the middle tier. Each compute node
first matches the URLs against a list of 100 patterns of do-
main names to filter out likely bot queries and then performs
distinct count in a train of 30-second sliding windows with a
2-second sliding step. These three steps are all fused into one
physical vertex, which is the bottleneck of the pipeline. The
final stage performs a summation and is never the bottleneck.
The application is a simplification of a real-time counting
pipeline for on-line advertising.

We implement the same benchmark in TimeStream and
Storm2, and compare the two systems using the same
dataset. Both systems expose an event-based interface for
expressing the logic. For execution, TimeStream packs the
events into batches according to the special punctuation
events (i.e., CTIs), which are then used as the unit of com-
putation, data transfer, and dependency tracking. Storm does
batched data transfer, but uses events as the granularity for

2 URLs may arrive out of order in Storm. In order to achieve the same se-
mantics of windowing, the applications on Storm must buffer and reorder
the input when necessary; this is not necessary when writing the applica-
tions on TimeStream because the compiler generates such logic automati-
cally from the query.

1,661.5

44.171

0

5

10

15

20

25

30

35

40

45

50

0

2,000

4,000

6,000

8,000

10,000

12,000

T
h
ro

u
gh

p
u
t

(K
/s

)

Batch size (URL)

E
n
d
-t
o-

en
d
 l
a
te

n
cy

 (
m

s)

Latency (ms) Throughput (K/s)

Figure 9. Latency and throughput trade-offs with different
batch sizes for the Distinct Count query. At batch size 512
URLs, the throughput reaches 44.171K/s with a latency of
1,661.5ms.

the rest3. To make the comparison fair, we measure the
throughput of Storm (using the default configuration) and
allows an end-to-end latency of up to 2 seconds (a reason-
able value for many scenarios). We then tune the batch size
in TimeStream to match that latency.

We use a 6-node configuration (including 4 data sources,
1 middle-tier compute node, and 1 final merge node) for the
experiments. Storm can handle 29,824 and 41,374 URLs per
second with fault-tolerance (i.e., ACK) on and off, respec-
tively. We try both cases and pick the maximum through-
put values for the comparison. Figure 9 shows the latency-
throughput correlation in TimeStream by varying batch
sizes. Normally, we would expect to see the latency go up
when the batch size increases because of batching. However,
we notice that the latency also goes up when the batch size
decreases to small values (1-8 URLs). This is primarily due
to the high overhead of enforcing deterministic execution
and tracking when the batch size is that small. With a batch
size of 512 URLs, the latency remains below 2 seconds. We
use this as the configuration for comparison and highlight it
in the figure. The throughput (44,171) is comparable to that
of Storm with ACK off (41,373), which shows that, with
a reasonable batch size, the overhead of deterministic exe-
cution and dependency tracking is acceptable and does not
negatively affect system performance in any significant way.
We use 512 URLs as the default batch size in the following
experiments.

We then repeat the experiment with different numbers of
compute nodes to test the scalability. Figure 10 shows the
throughputs using different batch sizes. We also show the
maximum throughputs from Storm. The corresponding la-
tency is shown in Figure 11. We repeat the runs for 5 times to
get the error bars for both throughput and latency. As shown
in the figures, with a latency up to 2 seconds, TimeStream
scales linearly and performs comparably to Storm.

3 We program against Storm directly and have not used Trident [3] in our
evaluation.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
gh

p
u
t

(K
/s

)

Nodes

16 (Batch size) 64 256 512 1024 Storm

Storm

Figure 10. Scalability of Distinct Count using different
batch sizes, with a comparison against Storm.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

La
te

n
cy

 (
m

s)

Nodes

16 (Batch size) 64 256 512 1024

Figure 11. Latency of Distinct Count using different batch
sizes.

Sentiment Analysis of Tweets. We perform Sentiment
Analysis on real Twitter data collected during August 2010.
The trace contains a total of 1.2 billion tweets, with an aver-
age and a peak rate around 600 and 2,000 tweets/s, respec-
tively. The application selects tweets according to specified
topics, cuts the tweet stream into a train of non-overlapping
windows, computes sentiment score of each window with
a sentiment labeling engine, and monitors the sentiment-
score change across two consecutive windows. In parallel,
the query inspects the hot words of these windows as a clue
of significant sentiment changes.

This is a highly complex query, using 6 different types
of operators. Scaling this application is achieved by adding
partitions to the sentiment-labeling stream. However, at a
high rate, other operators can become overloaded as well
(e.g., the operator that performs a cross-join of the tweet
stream and the stationary topic stream).

In our experiment, we select 14 topics to monitor, ranging
from IT industries to popular political figures. The event
rate after topic filtering is about 2% of the original. A test-
bed of 9 nodes can sustain the rate of 9.6K tweets/s with
an average CPU utilization of 70%; this rate is above the
publicly reported peak rate4. Scaling down the input rate sees
a corresponding drop of cluster utilization: the utilization is

4 http://yearinreview.twitter.com/en/tps.html

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

0 10 20 30 40 50 60 70 80 90 100 110

In
te

rv
a
l
b
et

w
ee

n
 o

u
tp

u
ts

 (
m

s)

nth output

Failure happens

Figure 12. Failure recovery in a Distinct Count run.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

10 20 30 40 50 60

R
ec

ov
er

y
ti
m

e
(m

s)

Window size (s)

Figure 13. Failure recovery time with different window
sizes for a Distinct Count query.

10%, 20%, and 36% for an input rate of 1.2K/s, 2.4K/s, and
4.8K/s, respectively. Note that, because we are feeding the
trace at a much higher rate than the real posting rate, we
need to reduce the window size as well. The window size
we use is 6 minutes. Even at the peak rate of 9.4K/s, we are
able to maintain a low latency at around 2 seconds.

7.2 Fault Tolerance

Distinct Count. We run Distinct Count on 10 nodes with the
input rate controlled at around 20K/s, and inject a failure to
one of the compute nodes in the middle tier. Figure 12 shows
the intervals between the consecutive (windowed) outputs
during such a run with a failure. Note that the delay of the
next new output after the failure is roughly the size of the
window (30 seconds). This is not a coincidence: the recov-
ery time largely depends on the size of the state (i.e., the
window size) in that the state needs to be reconstructed by
recomputing the dependent set of input. We verify the corre-
lation between recovery time and window size by repeating
this experiment using different window sizes (while keeping
the sliding step of 2 seconds). Figure 13 shows the result.

Dependency tracking in TimeStream makes it possible
to recover from a state checkpointing whenever available.
For fast recovery, checkpointing needs to happen frequently.
Fortunately, checkpointing can be performed in the back-

0

5,000

10,000

15,000

20,000

25,000

5 10 15 20 25 30

M
a
xi

m
u
m

 r
ec

ov
er

y
ti
m

e
(m

s)

Checkpointing interval (s)

Figure 14. Maximum failure recovery time with differ-
ent checkpointing intervals for a Distinct Count query. The
black vertical lines show the range of the recovery time from
10 independent runs.

200,000

210,000

220,000

230,000

240,000

250,000

260,000

0 30 60 90 120 150 180 210 240 270 300

W
in

d
ow

ed
 o

u
tp

u
t

co
u
n
ts

nth output

Storm TimeStream

Max error rate: 12.5%

Failure happens

Figure 15. Distinct Count output with failure in
TimeStream and Storm.

ground asynchronously to the main computation. Our mea-
surement shows that on average checkpointing in Distinct
Count takes 73ms to complete for the whole working set
of about 8MB on each node (with 30-second window size).
Figure 14 shows the correlation of checkpointing frequency
versus recovery time. For these experiments, we repeat the
run for 10 times for each checkpointing interval and calcu-
late the maximum recovery time.

Unlike TimeStream’s precise recovery, Storm provides a
weaker guarantee on fault tolerance and may introduce er-
rors due to state loss or duplicate input from replay when
failures happen, or both. We repeat the early fault-tolerance
experiment on Storm (with a single failure) and compare the
output against that from TimeStream. Figure 15 shows the
differences, where the output from TimeStream is exactly
the same as a run without any failure. However, Storm out-
puts 31 incorrect window counts with a maximum error rate
of 12.5% and then restores after about 60 seconds, which is
actually the period of time for the window to slide out of the
incorrect state.

Sentiment Analysis of Tweets. We performed extensive
failure injections to Sentiment Analysis with an input rate of
9.6K/s. The failure patterns include both isolated and mul-

A chain in the DAG

F HP GB ST U W

Vertex Fails Recovery Time (s)

F×1 05.2

ST×1 12.2

W×1 06.9

F×1, ST×1, W×1 12.3 (F: 7.9, ST: 12.3, W: 8.6)

All (×6) 12.3

Figure 16. Recovery time of different failure patterns: sin-
gle failure (first three rows; ×1), multiple concurrent but
isolated failure (the fourth row) and chained failure involv-
ing all operators (the last row; ×6). These six vertices form
a chain in the DAG: F(filter), HP(partition), GB(grouping),
ST(sentiment engine), U(union), W(windowing).

tiple correlated failures. All the operators are either state-
less or bounded stateful. We therefore use dependency track-
ing and output buffering for recovery, without resorting to
checkpointing.

We use a configuration with a 20% over-provisioning:
9 nodes can handle a peak load at around 12K/s. The
over-provisioning is required to mask failures, and is much
cheaper than a hot-standby solution [24] that would require
100% over-provisioning. The impact of failures varies with
respect to operator types and failure patterns. To crash an op-
erator, we kill the operator on the node where it is running.
The failure detection mechanism will kick in and reschedule
the operator to a spare node.

We pick 6 different operators that form a chain in the
DAG (Figure 16; first row). The failure pattern includes
crashing one operator, three operators simultaneously, or the
entire chain. For a contiguous failure segment, the recovery
time is the elapsed time from the time of the crash to the time
when the last operator starts to generate new output.

The average recovery times of filter, sentiment engine,
and aggregation window are 5.2, 12.2, and 6.9 seconds,
respectively. The average fault-detection and rescheduling
time is around 4.7 seconds. Thus, the time to repair the state
is moderate. Filter recovers quickly even though it is a state-
ful operator (a cross-join), because the topic stream is small
and stationary. The window operator takes slightly longer
to recover, because it has to rebuild a larger state. Although
sentiment engine is stateless, its initialization takes several
seconds. Note that, because the recoveries of multiple op-
erators occur concurrently, the total recovery time is always
close to the most expensive one (i.e., the sentiment engine).

In all these experiments, we do not observe any visi-
ble change of the real-time behavior due to failures: the la-
tency stays around 2 seconds for all these failure patterns.
This is because the result is produced at the closing of each
non-overlapping 6-minute window while the failure recov-

ery usually happens within that window, and there is enough
resource over-provisioning to mask the failure(s). Unlike in
the experiment on Distinct Count, the recovery time is much
shorter than the duration of the window, because in this case
the bottleneck is the computation-intensive sentiment label-
ing engine: the state is small and can be reloaded quickly
from upstream vertices (e.g., buffered output) instead of a
rate-controlled data source as in the experiments on Distinct
Count. In the worst case where the failure and recovery hap-
pen near the closing of a 6-minute window, we could see
the full effect of failure recovery of up to 12.3-second delay,
although the chances of that happening are low.

7.3 Dynamic Reconfigurability
We use Audience Insight to test TimeStream’s ability to re-
configure and adapt to the load fluctuation. This application
implements a monitoring service on the quality of a cloud-
based video delivery service. The quality statistics are gath-
ered and streamed in from the client media players. The de-
mographic as well as geographic distributions of the viewing
crowd can change dynamically according to the video pro-
gram, causing the load to the monitoring service to fluctuate
as well. In addition, the monitoring service needs to be as
real-time as possible, because it guides the dynamic resource
provisioning of the video service.

The quality-of-service (QoS) requirement is that the mon-
itoring service must itself be able to handle 4 times the reg-
ular load, on-demand. Our goal is to let the amount of re-
sources to “ride the tide” automatically. Also, because video
playback time is typically fairly short and that the video
popularity is unpredictable, adaptation should happen fairly
frequently and do so without compromising data integrity.
In contrast, a static worst-case configuration without using
TimeStream would require an over-provisioning of 8 times
the capacity, including the hot-standbys.

In our implementation, scaling is achieved by using dif-
ferent numbers of partitions (Section 3), a common practice.
The configuration has a front-end server handling the input
and partitioning, followed by one server per partition. For
1, 2, 4, and 8 partitions, the near-saturation throughputs are
28K/s, 54K/s, 110K/s, and 200K/s, respectively. Latency be-
fore the saturation point is not sensitive to the number of
partitions and stays around 5 seconds.

As shown in Section 3, the named hash-partition gives
the handle to adjust resources dynamically to cope with load
fluctuations. We implement a simple policy to perform the
adjustment on the fly. To be conservative, we choose the
safe operating rate to be half of the saturation input rate. A
5% difference from the current safe operating rate triggers
reconfiguration.

In Figure 17, the input rate is initially 10K events/s, han-
dled by one partition. Between minute 1 and minute 6, we el-
evate the rate to 40K/s, and then return to 10K/s afterwards.
During the high load period, the system reconfigures to use
4 partitions and continues to maintain real-time and low la-

0

5

10

15

20

25

30

35

40

45

0:00 1:35 3:10 4:45 6:20 7:55

In
p
u
t

ra
te

 (
K

/s
)

&
 L

a
te

n
cy

 (
s)

Time (m:ss)

Latency(s) Rate(K/s)

Figure 17. Dynamic reconfiguration in response to load
changes: load is elevated 4 times from minute 1 to minute
6.

0

100

200

300

400

500

600

700

800

1 2 4 8 16

T
h
ro

u
gh

p
u
t

(K
/s

)

Nodes

Tracking on Tracking off

Figure 18. Distinct Count performance with and without
dependency tracking.

tency, except for a brief latency spike at the edge of the ad-
justment. Similarly, the system reconfigures back to use one
partition after the rate drops back, causing the second brief
latency spike.

7.4 Overhead of Dependency Tracking
Tracking dependencies is not free; there is both computa-
tional and network overhead. It turns out that computing de-
pendency incurs negligible overhead: stateless operator (e.g.,
projection) has nothing to track, and the semantics of stateful
operators (e.g., windowing and cross-join) are typically clear
enough that their dependencies can be computed efficiently.
Communicating the dependency to the reliable storage in-
curs CPU overhead for serialization and consumes network
bandwidth. We amortize the overhead by batching.

To understand the overall impact, we compare two sets of
runs of Distinct Count on different numbers of nodes, with
and without dependency tracking, with a default batch size
of 512 URLs. As shown in Figure 18, dependency tracking
is lightweight and does not incur much overhead.

We also measure the overhead of a complete run of Sen-
timent Analysis at 9.6K/s input rate running on 9 nodes.
The CPU and network overhead is 1.55% and 2.23%, re-
spectively. Most of the operators have negligible CPU over-
head, except the window operator which currently has an

inefficient implementation. For the network overhead, the
filter operator—a fused operator including cross-join, fil-
ter and projection—incurs the highest network overhead, or
14.82%.

8. Conclusion
We are witnessing the emergence of a new class of appli-
cations that involve continuous complex data processing on
huge volumes of streaming data. In this paper, we present a
system, TimeStream, that takes on the challenge of building
a distributed-system infrastructure for reliable low-latency
continuous processing of big streaming data. TimeStream
manages to combine the best of both MapReduce-style batch
processing and streaming database systems in one carefully
designed coherent framework, while at the same time it of-
fers a powerful abstraction called resilient substitution that
serves as a uniform foundation for handling failure recovery
and dynamic reconfiguration correctly and efficiently. We
believe this new class of applications will drive the design
of next-generation distributed systems and demand new ab-
stractions to be developed to meet the new challenges.

Acknowledgments
We thank Furu Wei and Ming Zhou for the Sentiment Anal-
ysis application, Jie Tong, Jun Qian, Kang Ji and Mao Yang
for the on-line advertising scenario, and Tong Jin for the
Storm deployment. We are indebted to our reviewers for
their insightful comments on the paper, and particularly to
our shepherd Ymir Vigfusson for his feedback and help in
writing the final version of this paper.

References
[1] Hadoop. http://hadoop.apache.org/.
[2] Storm. https://github.com/nathanmarz/storm/wiki.
[3] Trident. https://github.com/nathanmarz/storm/wiki/Trident-

tutorial.
[4] Streambase systems. http://streambase.com/.
[5] MEIJER, E., BECKMAN, B., AND BIERMAN, G. LINQ:

Reconciling object, relations and xml in the .NET framework.
In SIGMOD, 2006.

[6] ALI, M. H., GEREA, C., RAMAN, B. S., SEZGIN, B.,
TARNAVSKI, T., VERONA, T., WANG, P., ZABBACK, P.,
ANANTHANARAYAN, A., KIRILOV, A., LU, M., RAIZMAN,
A., KRISHNAN, R., SCHINDLAUER, R., GRABS, T.,
BJELETICH, S., CHANDRAMOULI, B., GOLDSTEIN, J.,
BHAT, S., LI, Y., DI NICOLA, V., WANG, X., MAIER, D.,
GRELL, S., NANO, O., AND SANTOS, I. Microsoft CEP
server and online behavioral targeting. In VLDB, 2009.

[7] ANDRADE, H., GEDIK, B., WU, K. L., AND YU, P. S.
Processing high data rate streams in system S. J. Parallel
Distrib. Comput. 71, 2 (2011), 145–156.

[8] BALAZINSKA, M., BALAKRISHNAN, H., MADDEN, S.,
AND STONEBRAKER, M. Fault-tolerance in the Borealis
distributed stream processing system. In SIGMOD 2005.

[9] BARGA, R., GOLDSTEIN, J., ALI, M., AND HONG, M.
Consistent streaming through time: A vision for event stream
processing. In CIDR, 2007.

[10] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[11] BHATOTIA, P., WIEDER, A., RODRIGUES, R., ACAR,
U. A., AND PASQUIN, R. Incoop: MapReduce for incre-
mental computations. In SOCC, 2011.

[12] BIEM, A., BOUILLET, E., FENG, H., RANGANATHAN, A.,
RIABOV, A., VERSCHEURE, O., KOUTSOPOULOS, H., AND
MORAN, C. IBM InfoSphere Streams for scalable, real-time,
intelligent transportation services. In SIGMOD, 2010.

[13] CHAIKEN, R., JENKINS, B., LARSON, P., RAMSEY, B.,
SHAKIB, D., WEAVER, S., AND ZHOU, J. Scope: Easy and
efficient parallel processing of massive data sets. In VLDB,
2008.

[14] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S.,
HENRY, R. R., BRADSHAW, R., AND WEIZENBAUM, N.
FlumeJava: Easy, efficient data-parallel pipelines. In PLDI,
2010.

[15] GUNDA, P. K., RAVINDRANATH, L., THEKKATH, C. A.,
YU, Y., AND ZHUANG, L. Nectar: Automatic management
of data and computation in datacenters. In OSDI, 2010.

[16] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
Zookeeper: Wait-free coordination for internet-scale systems.
In USENIXATC, 2010.

[17] HWANG, J. H., BALAZINSKA, M., RASIN, A.,
CETINTEMEL, U., STONEBRAKER, M., AND ZDONIK, S.
High-availability algorithms for distributed stream process-
ing. In ICDE, 2005.

[18] LAMPORT, L. Paxos made simple, fast, and byzantine. In
OPODIS, 2002.

[19] LIU, C., CORREA, R., GILL, H., GILL, T., LI, X.,
MUTHUKUMAR, S., SAEED, T., LOO, B. T., AND BASU, P.
Puma: Policy-based unified multi-radio architecture for agile
mesh networking. In COMSNETS, 2012).

[20] NEUMEYER, L., ROBBINS, B., NAIR, A., AND KESARI,
A. S4: Distributed stream computing platform. In ICDM
Workshops, 2010.

[21] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R.,
AND TOMKINS, A. Pig Latin: A not-so-foreign language for
data processing. In SIGMOD, 2008.

[22] POPA, L., BUDIU, M., YU, Y., AND ISARD, M. DryadInc:
Reusing work in large-scale computations. In HotCloud,
2009.

[23] QIAN, Z., CHEN, X., KANG, N., CHEN, M., YU, Y.,
MOSCIBRODA, T., AND ZHANG, Z. MadLINQ: Large-scale
distributed matrix computation for the cloud. In EuroSys,
2012.

[24] SHAH, M. A., HELLERSTEIN, J. M., AND BREWER,
E. Highly available, fault-tolerant, parallel dataflows. In
SIGMOD, 2004.

[25] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA,
P., ANTHONY, S., LIU, H., WYCKOFF, P., AND MURTHY,
R. Hive: A warehousing solution over a MapReduce
framework. In VLDB, 2009.

[26] XING, Y., ZDONIK, S., AND HWANG, J. H. Dynamic load
distribution in the Borealis stream processor. In ICDE, 2005.

[27] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGS-
SON, U., GUNDA, P. K., AND CURREY, J. DryadLINQ: A
system for general-purpose distributed data-parallel comput-
ing using a high-level language. In OSDI, 2008.

[28] ZAHARIA, M., DAS, T., LI, H., SHENKER, S., AND
STOICA, I. Discretized Streams: An efficient and fault-
tolerant model for stream processing on large clusters. In
HotCloud, 2012.

