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Abstract

Thompson Sampling is one of the old-
est heuristics for multi-armed bandit prob-
lems. It is a randomized algorithm based
on Bayesian ideas, and has recently gener-
ated significant interest after several stud-
ies demonstrated it to have comparable or
better empirical performance compared to
the state of the art methods. In this pa-
per, we provide a novel regret analysis for
Thompson Sampling that proves the first
near-optimal problem-independent bound
of O(WNTInT) on the expected regret
of this algorithm. Our novel martingale-
based analysis techniques are conceptu-
ally simple, and easily extend to distribu-
tions other than the Beta distribution. For
the version of Thompson Sampling that
uses Gaussian priors, we prove a problem-
independent bound of O(vVNTInN) on
the expected regret, and demonstrate the
optimality of this bound by providing a
matching lower bound. This lower bound
of Q(VNTInN) is the first lower bound
on the performance of a natural version
of Thompson Sampling that is away from
the optimal bound (O(v/NT)) achievable
for the multi-armed bandit problem by
another algorithm [4]. Our near-optimal
problem-independent bounds for Thomp-
son Sampling solve a COLT 2012 open
problem of Chapelle and Li. Addition-
ally, our techniques simultaneously provide
the optimal problem-dependent bound of
(14€) >, d(:Z?;l) +O(£) on the expected
regret. The optimal problem-dependent
regret bound for this problem was first
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proven recently by Kaufmann et al. [15].

1 Introduction

Multi-armed bandit problem models the explo-
ration/exploitation trade-off inherent in sequential
decision problems. Many versions and generaliza-
tions of the multi-armed bandit problem have been
studied in the literature; in this paper we will con-
sider a basic and well-studied version of this prob-
lem: the stochastic multi-armed bandit problem.
Among many algorithms available for the stochas-
tic bandit problem, some popular ones include Up-
per Confidence Bound (UCB) family of algorithms,
(e.g., [I6, B], and more recently [4, O 17, [I4]),
which have good theoretical guarantees, and the al-
gorithm by [10], which gives optimal strategy un-
der Bayesian setting with known priors and geomet-
ric time-discounted rewards. In one of the earliest
works on stochastic bandit problems, [23] proposed
a natural randomized Bayesian algorithm to mini-
mize regret. The basic idea is to assume a simple
prior distribution on the parameters of the reward
distribution of every arm, and at any time step, play
an arm according to its posterior probability of being
the best arm. This algorithm is known as Thompson
Sampling (TS), and it is a member of the family of
randomized probability matching algorithms. TS is a
very natural algorithm and the same idea has been
rediscovered many times independently in the con-
text of reinforcement learning, e.g., in [24] 20, 22].

Recently, TS has attracted considerable attention.
Several studies (e.g., [12 2] 11} [7, 19 15]) have
empirically demonstrated the efficacy of TS. De-
spite being easy to implement, competitive to the
state of the art methods, and being used in prac-
tice, TS lacked a strong theoretical analysis, un-
til very recently. [12| [I8] provide weak guarantees,
namely, a bound of o(T) on expected regret in time
T. Significant progress was made in more recent
work [2, I5]. In [2], the first logarithmic bound
on expected regret of TS algorithm were proven.



[15] provided a bound that matches the asymptotic
lower bound of [16] for this problem. However, both
these bounds were problem dependent, i.e. the re-
gret bounds are logarithmic in 7" when the problem
parameters, namely the mean rewards for each arm,
and their differences, are assumed to be constants.
The problem-independent bounds implied by these
existing works were far from optimal. Obtaining
a problem-independent bound that is close to the
lower bound of (v NT') was also posed as an open
problem by Chapaelle and Li [g].

In this paper, we give a regret analysis for TS that
provides both optimal problem-dependent and near-
optimal problem-independent regret bounds. Our
novel martingale-based analysis technique is concep-
tually simple (arguably simpler than the previous
work). Our technique easily extends to distributions
other than Beta distribution, and it also extends
to the more general contextual bandits setting [3].
While one of the basic ideas for the analysis in the
contextual bandits setting of [3] is similar to an idea
in this paper, the details are substantially different.

Before stating our results, we describe the MAB
problem and the TS algorithm formally.

1.1 The multi-armed bandit problem

We consider the stochastic multi-armed bandit
(MAB) problem: We are given a slot machine with
N arms; at each time step t = 1,2, 3, ..., one of the
N arms must be chosen to be played. Each arm 4,
when played, yields a random real-valued reward ac-
cording to some fixed (unknown) distribution asso-
ciated with arm ¢ with support in [0, 1]. The random
reward obtained from playing an arm repeatedly are
i.i.d. and independent of the plays of the other arms.
The reward is observed immediately after playing
the arm.

An algorithm for the MAB problem must decide
which arm to play at each time step ¢, based on
the outcomes of the previous ¢ — 1 plays. Let u; de-
note the (unknown) expected reward for arm i. A
popular goal is to maximize the expected total re-
ward in time T, i.e., ]E[Zz;l ti(t)], where i(t) is the
arm played in step ¢, and the expectation is over the
random choices of i(t) made by the algorithm. It is
more convenient to work with the equivalent mea-
sure of expected total regret: the amount we lose
because of not playing optimal arm in each step. To
formally define regret, let us introduce some nota-
tion. Let p* := max; u;, and A; := u* — p;. Also,
let k;(t) denote the number of times arm i has been
played up to step ¢t — 1. Then the expected total
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regret in time T is given by

E[R(T)] = E [S7 (4 — )| = 54 Ai-E[ks(T + 1))

Other performance measures include PAC-style
guarantees; we do not consider those measures here.

1.2 Thompson Sampling

The basic idea is to assume a simple prior distri-
bution on the underlying parameters of the reward
distribution of every arm, and at every time step,
play an arm according to its posterior probability of
being the best arm. While Thompson Sampling is
a specific algorithm due to Thompson, in this pa-
per we will use Thompson Sampling (TS) to refer to
a class of algorithms that have a similar structure.
The general structure of TS for the contextual ban-
dits problem involves the following elements (this
description of TS follows closely that of [7]):

1. a set © of parameters [i;

2. an assumed prior distribution P(f) on these pa-
rameters;

3. past observations D consisting of (reward r) for
the past time steps;

4. an assumed likelihood function P(r|f), which
gives the probability of reward given a context
b and a parameter ji;

5. a posterior distribution P(i|D) « P(D|ix)P(&),
where P(D|f) is the likelihood function.

In each round, TS plays an arm according to its
posterior probability of maximizing the expected re-
ward. A simple way to achieve that is to produce a
sample of reward for each arm, using the posterior
distributions, and play the arm that produces the
largest sample. Below we describe two versions of
TS, using Beta priors and Bernoulli likelihood func-
tion, and using Gaussian priors and Gaussian likeli-
hood respectively.

Thompson Sampling using Beta priors Con-
sider the Bernoulli bandit problem, i.e., when the
rewards are either 0 or 1, and the likelihood of re-
ward 1 for arm 4 the probability of success (reward
=1) is u,;. Beta priors is useful for Bernoulli rewards
because if the prior is a Beta(a, 8) distribution, then
after observing a Bernoulli trial, the posterior dis-
tribution is simply Beta(a + 1, 8) or Beta(a, 8+ 1),
depending on whether the trial resulted in a success
or failure, respectively.

TS initially assumes arm 7 to have prior Beta(1,1)
on fi;, which is natural because Beta(1,1) is the uni-



form distribution on (0,1). At time ¢, having ob-
served S;(t) successes (reward = 1) and F;(t) failures
(reward = 0) in k;(t) = S;(¢t) + Fi(t) plays of arm
i, the algorithm updates the distribution on u; as
Beta(S;(t) + 1, F;(t) + 1). The algorithm then sam-
ples from these posterior distributions of the p;’s,
and plays an arm according to the probability of its
mean being the largest.

Algorithm 1: Thompson Sampling using Beta pri
ors
IFor each armi=1,...,N set S; =0, F; = 0.
foreach t =1,2,..., do
For each arm ¢ = 1,..., N, sample 6;(¢) from
the Beta(S; + 1, F; 4+ 1) distribution.
Play arm i(t) := argmax; 6;(t) and observe
reward 7;.
If ry = 1, then S;y) = Si) + 1, else
Fz(t) = Fz(t) + 1.
end

We have provided the details of TS with Beta pri-
ors for the Bernoulli bandit problem.A simple exten-
sion of this algorithm to general reward distributions
with support [0, 1] is described in [2], which seam-
lessly extends results for Bernoulli bandits to general
stochastic bandit problem.

Thompson Sampling using Gaussian priors
As before, let k;(t) denote the number of plays of
arm ¢ until time ¢t — 1, i(t) denote the arm played at
time ¢. Let r;(t) denote the reward of arm ¢ at time
t, and define [i;(t) as:

qu;ll:i(w):i ri(t)
ki(t) +1

fui(t) =

Note that fi;(1) = 0. To derive TS algorithm with
Gaussian priors, assume that the likelihood of re-
ward r;(t) at time ¢, given parameter p;, is given
by the pdf of Gaussian distribution A (p;,1). Then,
assuming that the prior for p at time ¢ is given by
N (f(¢), Wl)ﬂ), and arm ¢ is played at time ¢ with
reward r, it is easy to compute the posterior dis-
tribution

Pr(fii|ri(t)) oc Pr(ri(t)] ;) Pr(is)
as Gaussian distribution N (f;(t+1), Wll)ﬂ) In
TS with Gaussian priors, for each arm i, we will
generate an independent sample 6;(t) from the dis-
tribution N (f;(t), W) at time ¢. The arm with
maximum value of 6;(t) will be played.
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Algorithm 2: Thompson Sampling using Gaussian
priors

[For each arm ¢ =1,...,N set k; =0, i; = 0.
foreach ¢t =1,2,..., do

For each arm i = 1,..., N, sample 0,(t)

independently from the A (f;, ﬁ)

distribution.

Play arm () := arg max; 6;(t) and observe

reward r;. X

Set fii(r) = LR k) = ki) + 1.
end

1.3 Our results

In this article, we bound the finite time expected
regret of TS. From now on we will assume that the
first arm is the unique optimal arm, i.e., u* = p; >
argmax;«i p;. Assuming that the first arm is an
optimal arm is a matter of convenience for stating
the results and for the analysis and of course the
algorithm does not use this assumption. The as-
sumption of unique optimal arm is also without loss
of generality, since adding more arms with u; = p*
can only decrease the expected regret; details of this
argument were provided in [2].

Upper bounds

Theorem 1. For the N-armed stochastic bandit
problem, TS algorithm, using Beta priors has ex-
pected regret

N

BIR(T)) < (1463 oA+ 0(5)

=2

in time T, where d(u;,p1) = ,uilog% + (1 -
i) log 8:5;)) The big-Oh notation assumes
Wi, N;,i=1,..., N to be constants.

Theorem 2. For the N-armed stochastic bandit
problem, TS using Beta priors, has expected regret

E[R(T)) < O(VNTInT)

in time T', where the big-Oh notation hides only the
absolute constants.

Theorem 3. For the N-armed stochastic bandit
problem, TS using Gaussian priors, has expected re-
gret

E[R(T)] < O(VNTIn N)

in time T > N, where the big-Oh notation hides only
the absolute constants.



Lower bound

Theorem 4. There exists an instance of N-armed
stochastic bandit problem, for which TS, using Gaus-
sian priors, has expected regret

E[R(T)] > Q(VNTInN)

m time T > N.

1.4 Related work

Let us contrast our bounds with the previous work.
Let us first consider the problem-dependent re-
gret bounds, i.e., regret bounds that depend on
problem parameters pu;,A;i = 1,...,N. Lai
and Robbins [I6] essentially proved the following
lower bound on the regret of any bandit algo-
rithm (see [16] for a precise statement): E[R(T)] >
2 i
rithms asymptotically achieving this guarantee,
though unfortunately their algorithms are not ef-
ficient.  Auer et al. [5] gave the UCB1 algo-
rithm, which is efficient and achieves the fol-
lowing bound: E[R(T)] < [825\;2 A%] InT +

+0(1)] InT. They also gave algo-

(1+72/3) (Zf\;Q Ai) . More recently, Kaufmann et

al. [I4] gave Bayes-UCB algorithm which achieves
the lower bound of [16] for Bernoulli rewards. Bayes-
UCB is a UCB-like algorithm, where the upper con-
fidence bounds are based on the quantiles of Beta
posterior distributions. Interestingly, these upper
confidence bounds turn out to be similar to those
used by algorithms in [9] and [I7]; these latter papers
also achieve the lower bound of [I6] using UCB-like
algorithms. Our bounds in Theorem [1| achieve the
asymptotic lower bounds of [I6], and match those
provided by [I5] for TS.

Theorem [2land Blshows that TS with Beta and Gaus-
sian distribution achieve a problem independent
regret bound of O(VNTInT) and O(VNTInN)
respectively.  This is the first analyis for TS
that matches the Q(v/NT) problem-inpdependent
lower bound (see Section 3.3 of [6]) for the multi-
armed bandit problem within logarithmic factors.
The problem-dependent bounds in the existing
work implied only suboptimal problem-independent
bounds: [2] implied a problem independent bound
of O(NY/>T4/5). In [15], the additive problem de-
pendent term was not explicitly calculated, which
makes it difficult to derive the corresponding prob-
lem independent bound, but on a preliminary ex-
amination, it appears that it would involve an even
higher power of T. To compare with other exist-
ing algorithms for this problem, note that the best

4

known problem-independent bound for the expected
regret of UCB1 is O(VNT InT) (see [6]). More re-
cently, Audibert and Bubeck [4] gave an algorithm
MOSS, inspired by UCB1, with regret O(v/ NT') that
matches the Q(v/ NT') problem-inpdependent lower
bound for the multi-armed bandit problem. Interest-
ingly, Theorem [4] shows that this is unachievable for
TS with Gaussian priors, as there is a lower bound
of Q(V NTIn N) on expected regret. This is the first
lower bound for TS that differs from the general
lower bound for the problem, and demonstrates a
slight limitation of TS, although for only a specifi-
cally designed problem instance.

2 Proofs of upper bounds

In this section, we prove Theorems [I] 2] and [3] The
proofs of the three theorems follow similar steps, and
diverge only towards the end of the analysis.

Proof Owutline: Our proof uses a martingale
based analysis. Essentially, we prove that condi-
tioned on any history of execution in the preceding
steps, the probability of playing any suboptimal
arm ¢ at the current step can be bounded by a linear
function of the probability of playing the optimal
arm at the current step. This is proven in Lemma
which forms the core of our analysis. Further,
we show that the coeflicient in this linear function
decreases exponentially fast with the increase in
the number of plays of the optimal arm (Lemma
7 this allows us to bound the total number of
plays of every suboptimal arm, to bound the regret
as desired. The difference between the analysis
for obtaining the logarithmic problem-dependent
bound of Theorem (1}, and the problem-independent
bound of Theorem [2] is technical, and occurs only
towards the end of the proof.

We recall some of the definitions introduced
earlier, and introduce some new notations used
in the proof. FJP (-) denotes the cdf and f2 (-)
denotes the probability mass function of the bi-
nomial distribution with parameters n,p. Let
FYe4e(-) denote the cdf of the beta distribution with
parameters «, 3.

Definition 1. k;(t) is defined as the number of plays
of arm i until time t — 1, and S;(t) as the number of
successes among the plays of arm i until time t — 1.
Also, i(t) denotes the arm played at time t.

Definition 2. For each arm i, we will choose two
thresholds z; and y; such that p; < x; < y; < 1.
The specific choice of these thresholds will depend



on whether we are proving problem-dependent bound
or problem-independent bound, and will be described
at the approporiate points in the proof. Define
L,(T) = %, and f1;(t) = S;(t)/(ki(t) + 1) (note
that fi;(t) = 0 when k;(t) = 0). Define E!(t) as the
event that fi;(t) < ;. Define EY(t) as the event that
0:(t) < yi.

Intuitively, E!(t), E?(t) are the events that i;(t)
and 0;(t), respectively, are not too far from the mean
;. As we show later, these events will hold with high
probability for most time steps.

Definition 3. Define filtration Fi_1 as the history
of plays until time t — 1, i.e.

-Ft—l = {z(w),rl(w)(w),z = 1, ey

where i(t) denotes the arm played at time t, and r;(t)
denotes the reward observed for arm i at time t.

Now=1,...,t—1},

Definition 4. Define, p;; as the probability
Dit = Pr(@l(t) > yi‘ft71)~
Note that p;; is determined by Fy_1.
We prove the following lemma for Thompson Sam-

pling, irrespective of the type of priors (e.g., Beta or
Gaussian) used.

Lemma 1. For allt € [1,T], and i # 1,
Pr (i(t) =i, B (t), EY (1)) | Fie1)

< U=pid)yp, (i(t) = 1, B(t), E?
Dit

where p; ¢ = Pr(01(t) > yi| Fi—1).

t)‘ft—l)a

Proof. Note that whether E¥ () is true or not is de-
termined by F;_;. Assume that filtration F;_ is
such that E!(t) is true (otherwise the probability
on the left hand side is 0 and the inequality is triv-
ially true). It then suffices to prove that

Pr(i(t) =i | E{(t), Fio1)
(1 pz,t)
Pit

Pr (z(t) =1 ‘ Ef(t),]:t—l) (1)

Let M;(t) denote the event that arm ¢ exceeds all
the suboptimal arms at time ¢. That is,

We will prove the following two inequalities which
immediately give (|1).

Pr(i(t) =1 ‘ EY (1), Fio1)

> pig- Pr(Mi(t) | Ee (t), Fi-1) (2)
Pr ( =1 ‘ E‘g ftfl)

< (1 =pig) - Pr(M( ‘ Ef(t)v]:t—l) .

We have

(Z(t =1 ‘ E ]:tfl)
> Pr(i(t) =1, M;(t) | El(t), Fio1)
Pr (M;(t) | EL(t), Femr) - Pr(i(t) = 1| M;(t)

Now, given M;(t), E?(t), it holds that for all j #
ihJ# 1,
0;(t) < 0:(t) <wi,

and so
Pr(i(t) = 1| M;(t), EY (t), Fi_1)
> Pr(0:(t) >y¢‘M (t), B9 (t), Fi_1)
= Pr(01(t) > y; | Fr-1)

= Digt-

The second last equality follows because the events
M;(t) and E?(t),¥i # 1 involve conditions on
only 6;(t) for j # 1, and given F;_; (and hence
f;(t), k;(t),Vj), 61(t) is independent of all the other
0;(t),j # 1, and hence independent of these events.
This together with gives ([2)).

Since E?(t) is the event that 6;(t) < y;, therefore,
given EY(t), i(t) = i only if 0;(t) < y;. This gives
(3):

Pr(i(t) =i ‘ E(t), Fi_

1)
Pr (61(t) < yi, z() 0;(t),
ei

< (t)’ft—l)
= Pr(61(t) <y;| Fio1)- (9 (t) >
= (1 =piy) - Pr(M;(t) | E](t), Fia).

2.1 Proof of Theorem I

We can bound the expected number of plays of a
suboptimal arm i as follows:

T
E[k(T)] = Y Pr(i(t) =)
t=1
= S Pr(i(t) = i, B (1), B (t)

¢ t) = ’L,Eﬁ(t),%)

T
+ Z Pr <i(t)

Let 74, denote the time step at which arm 1 is played

= 17W) (5)

(3) 5 for the k' time for k > 1, and let 75 = 0. Then,

9-( ), Vi # 1| EL(t)

E?(t),]-t71> .

(4)

7~/—_'t71)



using Lemma [I} we can bound the first term above
as:

Pr(i(t) =1, Eiu(t)’ Ef(t))

[M]=

o~
Il
—

I
-
=

[“p’”f( (1) = 1B (1), Ef(t))}

pl,t

)ﬂ
L

1-— ey =
0 < Se[tran) $ o)
k=0 Pimt1 2200
T—1 1
- E —1. (6)
k=0 pi,TkJrl

The inequality marked () uses the observation that
pix = Pr(61(t) > y;|Fi—1) changes only when the
distribution of 6;(t) changes, that is, only on the
time step after each play of first arm. Thus, p;; is
same at all time steps t € {7, + 1,...,7k11}, for
every k. We prove the following lemma to bound
the sum of

Di,rp+1°
Lemma 2. Let 7; denote the time step at which j**
trial of first arm happens, then

1
E[ | <
Pire+1

1+ %7 for k < §7

i ' . i

1+@(e‘Ai k/2 + We—mk

1 ‘ 8
+6A;2k/471)7 = A
1y

where Ay = p1—y;, Di = y;log 2+ (1—y;)log =

Proof. The proof of this inequality involves some
careful algebraic manipulations using tight estimates
for partial Binomial sums provided by [I3]. Refer to
Appendix B3] for details. O

For the remaining two terms in Equation (5), we

prove the following lemmas.

Lemma 3.
T
3 Pr (i(t)
t=1

Proof. This follows from the Chernoff-Hoeffding

— 1
= i,Eg‘(t)) < e + 1

bounds for concentration of fi;(t). Appendix
has details. O

Lemma 4.

zT: Pr (i(t)

=i, BY(), B (1)) < Li(T) + 1.

Proof. This follows from the observation that 6;(t)
is well-concentrated around its mean when k;(t) is
large, that is, larger than L;(T). Appendix has
details. O

For obtaining the problem-dependent bound of The-
orem [I] for some 0 < € < 1, we set z; € (1, 11)
such that d(x;,u1) = d(pi,p1)/(1 + €), and set
yi € (x4, p1) such that d(z;,y;) = d(zi, 1)/ (1+€) =
d(piypn)/(L+¢€)? (). This gives

InT InT
— = (14—,
d(zi,y:) ( ) d(pei, 1)

Also, by some simple algebraic manipulations of the
equality d(z;, p1) = d(ps, p1)/(1 + €), we can obtain

Liy(T) =

Ti — g Z ¢ : d(:u’lvﬂl) 9
(1+e 1y (m(l*m))
wi(1=pr)
giving
1 2 1
< = 0()

d(wi, i) = (@5 — p)? 2"

Here order notation is hiding functions of u;s and
Ays, since they are assumed to be constants. Sub-
stituing in Equation , and Equation @, we get,

E[ki(T)]
2, 1 —D;j
,2+Z@< il oA

1
A/ZJ/4 o 1

IN

1
+L,(T)+14+ —-+-+1
) ( ) d(xm,ui)

24 1 1 1
a0 (art arptantan
InT 1
74,0 i
d(pis 1) (62)
InT 1

= O+ U+ oG

IN

+(1+¢)?

The order notation above hides dependence on p;s
and A;s. This gives expected regret bound

Z AiE[kz (T)]

E[R(T)] =

< Z(l—ke)zmA +O(5 Ny
< Z(l—l—e')d(i’il)Ai—FO(Z%

i

'This way of choosing thresholds, in order to obtain

bounds in terms of KL-divergences d(u;, 11) rather than
Ays, is inspired by [9] 17, [14].



where ¢ = 3¢, and the order notation in above hides
;s and A;s in addition to the absolute constants.

2.2 Proof of Theorem 2

The proof of O(VNTInT) problem-independent
bound of Theorem [2 is basically the same as the
proof of Theorem |1} except for the choice of x; and
yi. Here, we pick z; = p; + &,y; = p1 — 3¢, so
that A = (uy — y;)? and using Pinsker’s in-

2
i
9

. A2
equality, d(z;, ;) > 2(z; — p)? = 25+, d(zi,y:) >
A? n n
20ys — @)? = 255 Then, Ly(T) = gt < 9L,

1 9
and d(@i,pi) < 2407

substituting in Equation , and Equation @, we
get,

Then, as in previous subsection,

E[ki(T)]
, 1 .
< A23/2 = =D
1
1 4
< J/2
= ZG( e )
InT
0 ( Az)
1 InT InT InT
- o(sp i) o () -0 (&)
Therefore, for every arm i with A; > w,

expected regret is bounded by A;E[k;(T)]

O(y/ L), For arms with A; < /22T total ex-

pected regret is bounded by v NT InT. This gives a
total regret bound of O(VNT InT). O

2.3 Proof of Theorem [3]

The regret analysis of TS with Gaussian priors fol-
lows essentially the same steps as in the analysis of
the version with Beta priors. Here, we choose x; =

pit 5,y = p— 4, Li(T) = 2(;1(_73;2) = ISIHA(TgA?)-
Lemma [I] is indepndent of the type of priors ﬁsed,
and the proof of Lemma [3| can be easily adapted to
Gaussian priors. So, both these lemmas hold as it
is for this case. Corresponding to Lemma [ and
Lemma [2, we prove the following for the Gaussian

distribution case.
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Lemma 5.
ZPr (i(t) =i, EY(t), E;‘(t)) < Li(T) + %

Proof. The proof of this lemma follows from the con-
centration of the Gaussian distribution (Fact ; see

Appendix O
Lemma 6. Let 7; denote the time of the j** play of
the first arm. Then
1 44 < Li(T)
E -1 < T
|:pi,'rj+1 ] - { TlAf J > Li(T)
Proof. See Appendix O

Now, substituting in Equation , and using Equa-

tion @,

Elk;(T)]

T-1
< YR 1|+ Li(T) + —
e R

L

d(xm,ui)
2

< (e 45)+ 1 18In(TA7) 1 9

Az A, Az Taar

This gives a bound on expected regret due to arm 4
as

13
27,

181n(TA?)
A

Above is decreasing in A; for A; > ﬁ Therefore,

for every arm ¢ with A; > ey/ NIT“N, expected regret
is bounded by

T T
M4 5)4+18In(NIn N 39
(e +5) +18I(NInN)f 5 o + 39 g

TIn N
N

For arms with A; < e‘/w, total regret is
bounded by ev/ NT In N. This bounds the total re-

gret by O(N++VNTInN), or O(VNT In N) assum-
ing T > N.

< (e’ +5)+75




3 Proof of the lower lound

In this section, we prove Theorem [4, We construct
a problem instance such that the TS algorithm has
regret of Q(vVNTInN) in time 7. Let each arm
i when played produces a reward of u;. That, is
the reward distribution for every arm is a one point

distribution. Set u; = A = Nl;N, and pg = --- =
UN = 0.

Note that f1;(t),7 # 1, will always be 0, as fi;(1) = 0,
and these arms will always produce reward 0 when
played. For arm 1, fi;(t) = :;((:))ill
an arm other than arm 1 is played, there is a regret
of A. Let F;_1 represent the history until time ¢,
which consists of k;(t), i;(t),s = 1,..., N. We say
that Fy 1 € Ay 1 if 3,4 kit) < RN for a
fixed constant ¢ (to be specified later), i.e. A;_1 is
the set of histories which satisfy the given condition.

< p1. Every time

Note that if F;—1 ¢ A; 1 then the regret until
time ¢t is at least v NT In N. Using this observation
we show that for any ¢ < T, we can assume that
Pr(Fi—1 € Ay—1) > % This is because otherwise the
expected regret until time ¢

1
2

1
> §cx/NTlnN =Q(WNTInN),

E[R(H)] =

E[R(#)[Fi-1 ¢ Ar-a] -

which would mean E[R(T) >
Q(VNTIN).

Now, given any history F;_1, 61(t) is a Gaussian

r.v. with mean fi(t) = k1 ()

ER@®)] =

< 1, therefore, by

k1 (t)+1
symmetry of Gaussian distribution,
1
Pr (91(15) < 1 ‘.Ft,1 € Atfl) > 5 (7)

Also, given any F;_1, 6;(t)s for ¢ # 1 are in-
dependent Gaussian distributed random variables
with mean 0 and variance W, therefore, using
anti-concentration inequality provided by Fact [4] for
Gaussian random variables,

Pr (HZ 7& 1,9i(t) > U1 ‘]:t—l)

VNI for all i # 1. Then, substituting A =
Ll}‘N and choosing the constant ¢ appropriately,

we get

Y

vV

Pr(3i,0,(t) > 1 | Foor € Api)

vV NTlog N

Pr | 3, 05(t) > o | Ki(t), Vi, D hat) < S

i#1

[

%

1 N—-1
1-(1-=
(%)

To summarize, for any t,

(AVARAYS

>

>

Pr(3i £ 1,i(t) = i)

Pr(01(t) < p1, 3i,0i(t) > )

Pr(01(t) < py, 34, 0;(t) > p1 | Fee1 € A1)
Pr(Fio1 € A1)

Pr(6:(t) < pai | Fio1 € Ain)

‘Pr(3i,0;(t) > pa | Feeq € Aymq) - Pr(Feor € Aq)

{-0-3)7)5

" o=

for some constant p € (0,1). Therefore regret in
time T is at least TpA = Q(vV NT In N).
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Some results used in the proofs

' Xn

be independent 0 — 1 r.v.s with E[X;] = p; (not nec-

essarily equal). Let X = 13 = X;, p = E[X]

LS i pi- Then, for any 0 <X <1—p,

Pr(X > p+A) <exp{—nd(u+ A p)},

and, for any 0 < A < p,

Pr(X < p—A) <exp{—nd(pn— X, pn)},

where d(a,b) = aln§ + (1 —a)ln (1=a)

Fact 2 (Chernoff-Hoeffding bound). Let X7, ..

(1=5)"
5 Xn

be random variables with common range [0,1] and



such that B[ X | X1,..., X¢—1] = p. Let S, = X1 +
..+ X,. Then for all a > 0,

Pr(S, >npu+a) < 6_2“2/",

Pr(S, <nu—a) < e=2a%/n

Fact 3.

Fbeta( ) =1- FBJrBfl,y(a - 1)v

[e3%

for all positive integers a, 3.

Formula 7.1.13 from [I] can be used to derive the fol-
lowing concentration for Gaussian distributed ran-
dom variables.

Fact 4. [1] For a Gaussian distributed random vari-
able Z with mean m and variance o2, for any z,

1 . e—7z2/2

4y

1
<Pr(|Z —m| > z0) < ge_ZQ/Z.

B Thompson Sampling with Beta
Distribution

B.1 Proof of Lemma [3]

Let 71, denote the time at which k** trial of arm &
happens. Let 79 = 0; Then,

T
ZPr(i(t) =1, B (1))

Ts+1

E > M(E] (1))
Lk=1t=7r+1
Thk+1 I ‘|

IN
=

MT—1
= E ZIE“ T+ 1))

k=0 t=7r+1
[MT—1
= E I(E (1 + 1))
L k=0
[T—1
< E I(E! (1, + 1))
Lk=0
T—1
< 1+4+E ZI (EF(m, + 1))
k=1
T7
< 1+ Z exp(—kd(zi, pi))
k=1
< 14 L
- d(i, i)

The second last inequality follows from the observa-

Si(Tr+1)
k+1 —

, where latter is simply the average of the
outcomes observed from k i.i.d. plays of arm i,
each of which is a Bernoulli trial with mean p;. Us-
ing Chernoff-Hoeffding bounds (Fact , we obtain
that Pr(fis(r, + 1) > 2;) < Pr(Zmt » ) <
e~ kd(@i i) O

At time 7, + 1 for k > 1, j;(mx + 1) =
Si(Tk+1)
k

B.2 Proof of Lemma [

< Pr(6 >y | fu(t) < @y, Fee1)
Pr (Beta( i(O)(ki(t) +1) + 1,(1 — @i (8) (ki(t) + 1)) > ys
| fi(t) < ;)

)
Flfg(t)-u i (@i(ki(t) + 1))
7(]“ (t)+1)d(z;, yl)

IN

where the second last equality follows from (Fact ,
and the last inequality follows from Chernoff-
Hoeffding bounds (refer to Fact . In above, we
slightly abused the notation for readability — the no-
tation Pr(Beta(a, 8) > y;) represented the probabil-
ity that a random variable distributed as Beta(c, 3)
takes a value greater than y;.

This implies that for ¢ such that k;(t) > L;(T),

1

Pr(z()—z E9(t) ‘E’ Fi 1)§T.

tion that the event E(t) was defined as j;(¢) > x;, 10 Let 7 be the largest time step until k;(t) < L;(T),



then,
3 Pr (z’(t) =i, EY(1), E-“(t))
< E zT:Pr (i(t) - z,Ef(t),Ef(t))
t=1
+ 3 Pr (z(t) - Z,Ef(t),Ey(t))
t=7+1
< E | Pr(i(t) =1)
+ 3 Pr (i(t) =i, B9 (1) \ E;‘(t))
T - T 1
< E ;Pr“(“:”ﬂ;ﬁ
< E i](i(t):i) +1
< Li(;_)+1-

B.3 Proof of Lemma [2]

Let k1(t) = 7,51 (t) = s. Let y = y;. Then, p;; =
Pr(6:(t) > y) = F2, ,(s). Let 75+1 denote the time
step after the (j)™" play of arm 1. Then, ki (7;+1) =
7, and

1 ] _ fj’#l (s)

E| .
= Fit1y(s)

Piri+1

Let A/ =y —y.
€ H1—Y 11

pi(l-y)

Forjf%: Let R = v(i= Hl),D*ylogﬂ%+(1f
y)log =2
Z f];m
s=0 ]+1y
oL N )
LyJJ j
1 fi 1
< Z m ) — > 2 (s)
=0 I s=[yj]
Lyd] . j
1 (L —pn)? 1
= — N'ps — + Z 2f;. ()
1-— 1 — ) 1— ;
Y=o (1-9) g
1 RLyJJ+1 1\ (1— pp)d
T 1y ( ) y)i Z 2fj (8
s=[yjl
1 1-—
< R ( ,Ul)‘ (9)
L=y \R- (1—y) A’
_ /Ll 7D] 2
= A/ _|_ A
3
< A (10)
For j > &: We will divide the sum Sum(0,7) =
i 0 If :;1 ((z) into four partial sums and prove that
12
Sunlh gl = 0] 10
Sum(lyj), Lyi]) < 3P,
Sum([yj], lmj— 57 < O 7/2),
Sum([pnj - 7]1 J) < 1+

Together, the above estimates will prove the required
bound.

We use the following bounds on the cdf of Binomial
distribution [13, Prop. A.4].

For s<y(G+1)—+({+ 1y —y),

<j 48- 1) (1 — y)j+1—s> .

U+ Dyl —y),

y(i+1-s)

Fit1,4(s)=© (Z/(J*‘l)—s

For s > y(j+1) —

Fip1y(s) = ©(1).



Bounding Sum(0, |yj| — 1). Using the bounds Substituting, we get
just given, for any s,

i Lwdl
i (5) (1- Ml}i (1 __8 ) R
Fjy1.y(s) 1=yt = y(j +1)
—pj 1 (=)
i (5) < e Pi— :
< Ol w T, +O(1) fu (5) (G+1) (p1—y)?
1—s s i11—s sH1
YIS (T )y (1 — )it

o(1-2g) & o) e, i B

y(j+1) 1—y)J
Sum(ov LyJJ - 1) < © (e_Dj ( ! 1) A1/2)

This gives J+
) lyj] -1
Sum(0, -1
Ol =b HO() Y Sy (o)
(1—p)’ < s ) 5=0
< ol—5H > (1-——) R~
< — . 11 Yy
((1 Yt = y(j+1) < e (e DJ( — A’Q) + O(e2m y)QJ)_
lyil-1
1) f', 11 (S) . . . i s
; o Bounding Sum(|yj],|yj]). We use Ié”ﬁl;(s)) <
Fing (9) _ o (1)’
We now bound the first expression on the RHS. Ffit1,u(s) ( J‘H) R iy to get
oy lwil—t o f u (Lyg
(-m)y > (i 55) ® sum(ljl. lyi)) = LD
(1—y)itt y(j+1) Firay(lyil)
—1 (=)
1 _ RLyJJ ] < (1-¥% > RYI 4
Miﬂ ( B ( j+1 (1 —y)itt
2 .
lyj] —1) RL@/JJ Rl _ R < A-y+ jﬁ)Ryj (1- Ml)lj
y+1 ( (R—1)2)> ! ooy
—Dj
1 — ) ( RLyJJ < 3em T (11)
<
< Y \y(G+1) (R—1)2 The last inequality uses j > = > ﬁ
(y(J +1) — [y +1) R )
(J +1) (R-1) Bounding Sum([yj], [pnj — 4 j]). Now, if j >
. (A-m)y 3 R anthen /(G + Dy(1 —y) > /g >y, s0 y(j + 1) —
T A =yty(+1) (R-1)2 (+ Dyl —y) < yj < [yjl. Therefore, for s >
_Dpj 3 R (Y71, Fj+1,4(s) = ©(1). Using this observation, we
s e y1—y)(G+1) (R—1)? derive the following.

The last inequality uses

, Ligi— 45
— ) , : . A TN
A=) pis) < LB oy o, Sum([yj1, lmi — —-4]) = L (5).
(1—y) (1—y) 2 e Fit1,y(s)
s=[yj]
Now, R—1=l=ul | = st And, £ = Li1j— 4]
% Therefore, = O Z Jiua(8)
s=[yj]
1 R
. A 2.
y(1—y)(i+1) (R-1)* < @(6—2(/“]—[#1]—7]]) /9y
_ 1 -y y(d—pm) = O(e27i/2), (12)
yA-9)G+1) m-y -y
1 (1 —pq) where the inequality follows wusing Chernoff-

G+1) (1 —y)? " 12 Hoeffding bounds (refer to Fact .



Bounding Sum([u1j — %/j],j). For s > [p1j —

%’ﬂ = [yj + %/ﬂ, again using Chernoff-Hoeffding T
bounds from Fact Z Pr (Z(t) =i, B} (t), Ef@))
’ t=1
Fiigy(s) > 1- e 2Wi+ 5 i—y(+1)%/(G+1) -
S 1 2 A2 < E|>Pr(i() =i BN(0), B®))
S 1 eAR/-AR))2 t:Tl
= 1A%, + Y Pr (z’(t) = i,Ef(t),Ef‘(t))
t=7+1
The last inequality uses j > %. r
; < E<¢) Pr(i(t) =)
A Fiua () t=1
Sum([p1j — ?ﬂ’]) = Z Fjuil(s) T
NS J+1ly . .
sl j— 441 + 3 Pr(i) =i, B0 | Ef(t))}
< 1 t=7+1
= 1 . e*A/zj/Zl r T 1
< ED Pr(it) =i+ Y =
= 1+ AT (13) po N TA
~ 1
Combining, we get for j > %, < E ZI(Z(t) =14)| + A2
t=1 i
1
E < LiT)+
[pi,-rj+1] ( ) A?
-A%52 Y  -Dj 1
< 1-‘1-@(6 +(j+1)A'26 +6A,2j/4—1) O

O C.2 Proof of Lemma

Let ©; denote a N (ji1(7; + 1), m) distributed
Gaussian random variable. Let G; be a geomertic

random variable denoting the number of consecutive

C Thompson Sampling with
Gaussian Distribution

C.1 Proof of Lemma [5 independent trials until ©; > y;. Then, observe that
1 o0
Proof. —1:IEG:§ Pr(G,; > r
Pirj+1 1G] —y SR

. o 0 ILL
Pr (Z(t) =4, B (t) ‘ & (t)’]:t_l) We will bound the expected value of G; by a con-

< Pr(6:(t) > yi | pu(t) < @i, Fie1) stant for all j. Consider any integer » > 1. Let
R 1 A z = VInr, let random variable M AX, denote the
= Pr (N(ui(t)a W) >y | u(t) < xz> maximum of r independent samples of ©;. We ab-
1 breviate fi1(7; +1) as i1 and ki(7; + 1) as k; in the
< P P — , following. Then
— r<N(mZ)kl(t)+1)>yz> g
< 1 i+ wi—ay)? Pr(Gj <r) = Pr(MAX, > y;)
= 5 € 2 ’
2 > Pr(MAXT>/i1+Z ﬂ1+229i>
where the last inequality follows from the concen- Vi1 Vi
tration of Gaussian distribution (refer to Fact H4]). . z ‘
21n(TAZ) P i+ = Yi
Therefore, for ¢ such that k;(¢t) > L;(T) = ot Vi
1 The following anti-concentration bound can be de-
Pr (z(t) =i, B9(1) ‘ Ezf‘(t),]-'t,1> <—=. rived for the Gaussian r.v. Z with mean g and std
TA; deviation o, using Formula 7.1.13 from [I]
Let 7 be the largest time step until k;(t) < L;(T), 1 z 2
Pr(Z > = /2
then, 13 I‘( > H + ZO') — o 22 + 16



This gives

Y

>

Pr(MAXT>,&1+
1<1
1(1

r
1—¢e Varrinr,

1 z .2 "
T /2
Vor (22 +1)

1

z

Vk1

z
i)
Ky

V2r (Inr + 1) /r

Vinr 1>T

Also, using Chernoff-Hoeffding bounds (refer to Fact

2),

Pr(ﬂ1+\/%2/t1)2176’2z2:1——

1

1

r2’

Therefore, substituting,

Pr(G; <r)

>

>

IA

<

<

Y s 1
(1—6 47r1nr). (1_ ﬁ)
1_i_e*\/ﬁ.

r2

> (1 -Pr(G; <))

r>1
Z 1 +e Vamtar
2
r>1
DT
e >
T

611 + 4’

The second last inequality in above uses the fact that

— —_r
for r > ell, e Vammr < %2
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