
Optimus: A Dynamic Rewriting Framework
for Data-Parallel Execution Plans

Qifa Ke
Microsoft Research Silicon Valley

qke@microsoft.com

Michael Isard
Microsoft Research Silicon Valley

misard@microsoft.com

Yuan Yu
Microsoft Research Silicon Valley

yuanbyu@microsoft.com

Abstract
In distributed data-parallel computing, a user program is
compiled into an execution plan graph (EPG), typically a
directed acyclic graph. This EPG is the core data structure
used by modern distributed execution engines for task dis-
tribution, job management, and fault tolerance. Once sub-
mitted for execution, the EPG remains largely unchanged at
runtime except for some limited modifications. This makes
it difficult to employ dynamic optimization techniques that
could substantially improve the distributed execution based
on runtime information.

This paper presents Optimus, a framework for dynam-
ically rewriting an EPG at runtime. Optimus extends dy-
namic rewrite mechanisms present in systems such as Dryad
and CIEL by integrating rewrite policy with a high-level
data-parallel language, in this case DryadLINQ. This inte-
gration enables optimizations that require knowledge of the
semantics of the computation, such as language customiza-
tions for domain-specific computations including matrix al-
gebra. We describe the design and implementation of Opti-
mus, outline its interfaces, and detail a number of rewriting
techniques that address problems arising in distributed ex-
ecution including data skew, dynamic data re-partitioning,
handling unbounded iterative computations, and protecting
important intermediate data for fault tolerance. We evaluate
Optimus with real applications and data and show significant
performance gains compared to manual optimization or cus-
tomized systems. We demonstrate the versatility of dynamic
EPG rewriting for data-parallel computing, and argue that
it is an essential feature of any general-purpose distributed
dataflow execution engine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

1. Introduction
Recent advances in high-level programming language sup-
port [9, 33, 37, 40, 41] over distributed execution en-
gines [13, 19, 22] have greatly eased the development of
large-scale, distributed data-intensive applications. In these
systems, a high-level data-parallel program is compiled into
an execution plan graph (EPG), representing both the com-
putation and the data flow in a directed acyclic graph (DAG).
This EPG is used by a distributed execution engine for task
distribution, job management, and fault tolerance.

One major problem with current systems is that the EPG
typically remains unchanged during job execution, making
it difficult to employ dynamic optimization techniques such
as detecting and handling data skews, data dependent re-
partitioning, and runtime query plan optimization. These
optimizations could substantially improve performance, and
in some cases are necessary for job completion, but cannot
be done as compile-time optimizations. Even for programs
constructed from a small set of predefined operators with
known semantics at compilation time, it is often difficult or
impossible to obtain in advance the statistics of the input data
to each stage of an EPG. This difficulty is compounded by
the presence of user-defined functions (UDFs), which are an
essential part of many modern “Big Data” computations. As
a result, execution plans based on compile-time information
are often inefficient [2, 14]. In addition, some computations
cannot even be represented by a static DAG. One example is
iterative computation where the stopping condition is needed
to construct the EPG, but is available only at runtime. In such
a case the EPG has to be dynamically constructed.

This paper has two main contributions. First, we built Op-
timus, a framework for dynamically rewriting an EPG at run-
time. Optimus extends dynamic rewrite mechanisms present
in systems such as Dryad [22] and CIEL [31] by integrat-
ing rewrite policies with a high-level data-parallel language
and runtime, in this case DryadLINQ [40]. The high-level
rewriting API is simple and flexible, allowing programmers
to build specialized domain-specific computations that are
difficult, if not impossible, to achieve with the current sys-
tems.

15

Second, we demonstrated the effectiveness of Optimus by
building a number of dynamic rewriters, which successfully
addressed several hard problems arising in the distributed
execution of data-parallel programs:

• We implemented fine-grained dynamic partitioning to
handle data and computation skew, including a new co-
range partitioning scheme.

• We used the example of matrix computation to show that
Optimus allows domain-specific computations to be eas-
ily plugged into a general-purpose computational frame-
work. This specialization is much simpler than building
a custom matrix algebra system such as MadLINQ [36].

• We demonstrated how to handle iterative computation by
dynamically extending an EPG with new iterations until
a stopping condition is met.

• We implemented a reliability enhancer that selectively
replicates intermediate data on expensive critical paths in
an EPG, and hence improves recovery time in the event
of failures while minimizing unnecessary data transfers.

The most popular distributed data-parallel languages
have been layered over Hadoop [19], an open-source im-
plementation of MapReduce [13], and have consequently
been constrained to compile their EPGs into a sequence of
MapReduce steps. The constraint of building an EPG using
only Map and Reduce operations has hindered the use of
some performance optimizations, so Hadoop has recently
been rewritten with an updated cluster runtime [20] that will
give language frameworks more freedom in their choice of
execution graphs. We expect a number of new execution en-
gines to be developed to take advantage of this new Hadoop
design, as well as other open-source multi-framework plat-
forms such as Mesos [21], so it is an opportune time to
consider what features are most useful to include in a dis-
tributed execution engine. We demonstrate in this paper that
language-integrated dynamic EPG modification is a versa-
tile addition to an execution framework that enables many
optimizations and specializations.

2. Optimus
The goal of Optimus is to enable application-specific run-
time rewrites of a distributed execution plan, based on statis-
tics of the data computed during the program execution. In
this section we describe the system architecture and some
details of the main components.

2.1 Background: Dryad and DryadLINQ
We chose to build Optimus by extending Dryad (the dis-
tributed execution engine) and DryadLINQ (the query com-
piler), which we briefly review in this section. Dryad is a
general-purpose execution engine for data-parallel dataflow
computations. A Dryad job runs as a set of processes in a
shared-nothing compute cluster. The job is coordinated by a
root process called the job manager (JM) which maintains

C
lie

n
t

 c
o

m
p

u
te

r User Program
High-level
Statistics

High-level
Rewrite Logic

Messaging

Worker
Vertex Code

Low-level
Statistics

Dryad Worker Vertex

Worker Vertex
Harness

EPG
Worker

Vertex Code
Low-level
Statistics

Low-level
Rewrite Logic

C
lu

st
e

r

Dryad Job Manager (JM)

Core Execution
Engine

Rewriter
Module

Low-level
Rewrite Logic

DryadLINQ Compiler
with Optimus Extensions

Figure 1. The Optimus system architecture.

the job’s EPG and makes requests to the cluster resource
manager to schedule worker processes. Each worker process
executes a fragment of the distributed computation and com-
municates progress statistics back to the JM.

DryadLINQ is implemented as a layer on top of Dryad
and provides a high-level abstraction of both computation
and data. More specifically, DryadLINQ compiles a data-
parallel user program, expressed as a LINQ query, into an
EPG and a set of worker code fragments containing the
application-specific code. The EPG and code fragments are
submitted to the cluster for execution.

2.2 Optimus system architecture
While the EPG is the core data structure in Dryad, the se-
mantics of the worker code in each graph node, and the data
model in each graph edge, are transparent to Dryad. This
design choice decouples the control plane and data plane,
and makes Dryad a general execution engine that is inde-
pendent of the languages and data models of upper layers.
However, such a design leads to a semantic gap for dynamic
rewriting—Dryad owns and can modify the EPG, but it is
unaware of the semantics of code and data that are required
for many useful runtime transformations.

Optimus bridges the semantic gap between Dryad’s
rewrite logic and a data-parallel program. When an Optimus-
enabled data-parallel query is being executed in the cluster,
Optimus collects data statistics at various vertices, creates a
graph rewriting message, and sends this message to a graph
rewriter in the control plane. Upon receiving the message,
the graph rewriter rewrites the EPG based on the statistics
contained in the message.

16

Optimus introduces several interacting components shown
as black boxes in Figure 1:

• A graph rewriting module within the Dryad JM exposes
primitives to query and modify the EPG.

• A messaging module within Dryad’s worker vertex com-
municates application-specific statistics from the vertex
to the JM, bridging the data and control planes.

• The DryadLINQ compiler is extended to allow applica-
tions to specify operator statistics that should be col-
lected, and graph rewriting logic dependent on those
statistics.

EPG notation. For the rest of the paper, an EPG may be
presented in either expanded or unexpanded form. In an un-
expanded EPG, each node is an operator to be applied to a
dataset of N partitions. An edge connecting two nodes is
either point-wise (1-to-1 connection) or cross-product (all-
to-all connection). A node can be expanded into N iden-
tical vertices, applying the operator to each partition inde-
pendently. The expanded EPG is the full expansion of every
node in its unexpanded EPG.

2.2.1 Estimating and collecting data statistics
The major advantage of rewriting a graph at runtime is
that there is accurate information available about the state
of the execution. Graph rewriting often relies on collecting
and estimating data statistics to optimize an EPG. An extra
pass over a large dataset just to collect statistics could incur
substantial overhead. DryadLINQ streams intermediate data
through worker vertices, so we piggy-back statistics collec-
tion into the existing execution by pipelining application-
specific statistics estimators into the processes containing the
original vertices, eliminating any additional I/O overhead.

The collected statistics are aggregated and sent to the
graph rewriter to perform data-dependent graph rewriting. In
order to make the graph rewriter as lightweight as possible,
and minimize the danger of overwhelming the JM with large
amounts of state, Optimus performs as much computation as
possible in the data plane. Statistics are aggregated outside
of the graph rewriter by vertices inserted in the EPG. The
output of this aggregation is a succinct message (often just a
few bytes) that is then sent to the JM.

Optimus provides a system module (shown as “Low-level
Statistics” in Figure 1) that implements collectors for a num-
ber of standard statistics using streaming-based algorithms,
including data down-sampling, approximate histogram from
downsampled data [11], count (cardinality), number of dis-
tinct keys [7], and frequent items [1, 12]. Algorithms pro-
posed for centralized or streaming scenarios are modified
for a distributed setting by collecting statistics at each vertex
and then merging them into a single summary [1, 7, 12]. Op-
timus also allows users to define new statistics collectors to
extend the standard module (see Section 2.4). User-defined
statistics are shown as “High-level Statistics” in Figure 1.

2.2.2 Messaging module
The messaging module, shown as “Messaging” in Figure 1,
is used to send information from vertices to the JM. Opti-
mus uses two types of messages—vertex status messages
and graph rewriting messages. Vertex status messages are
part of the Dryad framework: periodically while each worker
is running, and when it completes, the process sends a sta-
tus message to the JM indicating the size of data read and
written on each dataflow edge, execution timings, etc. These
status updates are independent of the semantics of the vertex
code or data model. Optimus provides an additional high-
level messaging API that can be used by DryadLINQ and
user applications to send graph rewriting messages in opaque
data blobs from vertices to the JM. Such rewriting messages
will only be interpreted and consumed by graph rewriters;
Dryad simply ignores them.

2.2.3 Graph rewriting module
We implement a graph rewriting module (shown as “Rewriter
Module” in Figure 1) to provide a set of simple primitives to
query and modify the EPG. A dynamic graph rewriter uses
these primitives to modify the EPG based on the rewriting
messages it receives from the data plane.

The EPG data structure is shared by several modules
in Dryad, including job management, task distribution, and
fault tolerance. The graph rewriter and the other JM modules
coordinate access to the EPG using a lock. Every time the
Dryad JM receives a message from a worker process (e.g.,
a progress report), it locks the EPG and invokes a callback
registered by Optimus.1 Inside this callback, the Optimus
rewriter has a comprehensive view of the job state, including
statistics collection and rewriting messages, and is at liberty
to make arbitrary changes to the EPG using the graph rewrit-
ing primitives. Together with application logic and operator
semantics, the Optimus rewriter then decides whether and
how to rewrite the EPG. Since status messages are sent while
a vertex process is running, graph rewriters can detect prob-
lems such as data skew in a running vertex without waiting
for the process to complete.

A vertex is in one of three distinct states (WAITING,
RUNNING, or COMPLETED) when it is being modified by
Optimus. For each vertex state, the condition determining
whether the vertex can be involved in a rewrite is as follows:

• WAITING. The vertex has not produced its output, and is
not running; it is waiting for inputs to be ready, or to be
scheduled. All graph rewriting primitives can be applied
to it.

• RUNNING. Optimus can kill the running vertex and hence
put it into the WAITING state, discarding its partial results.

1 The Optimus graph rewriter works on the EPG concurrently with other
modules in the Dryad core—unaffected vertices of the current job proceed
as normal while the lock is held by the rewriter.

17

• COMPLETED. Optimus can redirect the I/O of a completed
vertex by disconnecting and reconnecting its I/O edges.
Changing the input edges allows the vertex to use differ-
ent inputs if it is re-executed due to a cluster fault (See
Section 3.6).

2.2.4 DryadLINQ extensions
Optimus extends the DryadLINQ compiler to take high-
level user implementations of statistics-gathering methods
and emit code that, when executed on the cluster, calls into
the Optimus APIs in the Dryad layer. These APIs then com-
municate statistics messages to the Dryad JM, where more
emitted code rewrites the graph based on high-level user
functions operating on the incoming messages. This emitted
code is labeled “Low-level Rewrite Logic” and “Low-level
Statistics” in Figure 1.

2.3 System-level graph rewriting
Many of the Optimus graph rewriters described in this paper
are “system-level” transformations, implemented as exten-
sions to the DryadLINQ compiler to provide performance
optimizations to user code, while being transparent to users.
These rewriters have the ability to statically insert additional
statistics-collection vertices in the EPG, and make modifi-
cations to the EPG at runtime based on those statistics. The
interface used for EPG modification is general, allowing ar-
bitrary insertion and deletion of nodes and edges, and there
is no checking that the resulting EPG is valid (e.g. cycle-
free), so the extension writer must exercise care to ensure
correctness. Optimus maintains the DAG property and oper-
ator semantics for the pre-defined operators in DryadLINQ.

By integrating with DryadLINQ, Optimus is able to im-
plement a set of graph rewriters to perform dynamic opti-
mizations for predefined LINQ operators and patterns such
as Join and MapReduce, perform dynamic data partitioning,
handle data/computation skews at runtime, and enable com-
putations such as iteration that require data-dependent con-
trol flow (details of these rewriters are in Section 3).

2.4 High-level rewrite logic
In addition to the system-level rewriters which are hard-
coded into the DryadLINQ compiler, and are thus transpar-
ent to application programmers, Optimus exposes a dynamic
rewrite API to application-level programmers. This is most
useful for user-defined operators and computation patterns
where the program’s semantics are known only to the user.
In this case the user must have control over what statistics
to collect and how the computation should be optimized ac-
cordingly.

To make the API simple to use and to avoid any potential
abuses such as constructing illegal graphs, we have limited
the interface to support only substitutions of LINQ subex-
pressions that have identical input and output dataset types.
The user supplies several subexpressions, each of which im-
plements the same sub-computation. Optimus compiles each

subquery into a form compatible with the EPG, and inserts
the optimal alternative for execution at runtime based on
user-defined statistics and policies. By restricting users to
the high-level API, we ensure that the resulting EPG is valid.
We have found the interface expressive enough for complex
applications such as specializing matrix computations.

Optimus defines a base type GraphRewriter, from which
all user-defined graph rewriters must derive. GraphRewriter
contains two APIs, one implemented by Optimus and the
other for users to implement, as shown below (with simpli-
fied signatures):

public class GraphRewriter {

// API for users to implement

virtual ProcessMessage(message)=0;

// API implemented by Optimus

RegisterAlternatives(stats, default,

alternatives[]);

Substitute(default_subquery, replacement);

};

The high-level dynamic rewriters are implemented as part
of the user application logic. Optimus registers these rewrit-
ers into the dryad runtime. The advantage of doing so is:

• The runtime doesn’t have to communicate with the user
program for every rewriting decision, keeping overheads
low.

• The (client-side) user program does not have to keep
running during the entire cluster execution of the job.

We use matrix multiplication as an example to explain the
above APIs:

public static MatrixMultiply(A, B) {

var m1 = MatrixMultiply1(A, B); // algorithm 1

var m2 = MatrixMultiply2(A, B); // algorithm 2

var s1 = A.CollectStats();

var s2 = B.CollectStats();

var s = CombineStats(s1, s2);

var rewriter = new MatrixRewriter();

return rewriter.RegisterAlternatives(s, m1,m2);

}

In the above code, the user supplies two alternative matrix
multiplication algorithms m1 and m2. The user also imple-
ments a CollectStats method, an arbitrary LINQ expres-
sion which is run on each input matrix and collects some
desired statistics. The statistics for the two matrices are com-
bined using another user-supplied method CombineStats,
another LINQ expression but one that is constrained to re-
turn a single object rather than a collection; the object is typ-
ically the result of an aggregation.

MatrixRewriter is a user-defined rewriter derived from
GraphRewriter. The call to RegisterAlternatives supplies
Optimus with: the subquery s which computes the statistics;

18

S

B

S2

A

S1

Graph
rewriter

Rewrite
message

Matrix
Subgraph

S

B

S2

A

S1

Graph
rewriter

Rewrite
message

Matrix
Subgraph

B

S2

A

S1

S

D D

MG MG

Mat

Graph
rewriter

Rewrite
message

A × B

B

S2

A

S1

S

Graph
rewriter

Rewrite
message

A × B

C

S3

(AB)×C

D D

MG MG

D

MG

Figure 2. Unexpanded EPG for matrix multiplication. The
edge between D and MG is a cross-product edge. The subgraph
with a shaded background is rewritten at runtime.

a default subquery m1; and a list of alternative subqueries,
in this case the singleton m2. The Optimus-extended query
compiler then: (1) constructs an EPG using the default al-
gorithm m1; (2) records the alternative matrix multiplication
algorithm; (3) adds appropriate statistics collecting/combin-
ing nodes (S1, S2, and S) to the EPG; and (4) appends code to
the vertex where S will run, to send the serialized output of S
as a graph rewriter message to the JM. At runtime, the Ma-
trixRewriter’s ProcessMessage method will be called with
this serialized output, before m1 is executed, and applies the
user-defined policy to decide between the alternative imple-
mentations. If, given the runtime statistics, m2 is determined
to be a better implementation than m1, ProcessMessage will
call the Substitute method to insert m2 into the running
EPG.

The resulting EPG with graph rewriter is shown in Fig-
ure 2. The subgraph of the default algorithm m1 is shown
in the greyed box; details of A×B and the alternative mul-
tiplication implementations are given in Section 3.5. When
multiplying three or more matrices, the aggregated statistics
from all matrices can be used to inform complex rewrites
including multiplication order, i.e., (A×B)×C or A×(B×C).

3. Graph Rewriters
This section presents several sample dynamic graph rewrit-
ers we have implemented to illustrate the range of transfor-
mations that can be supported by a runtime graph modifica-
tion system such as Optimus.

3.1 Dynamic data partitioning
Data partitioning subdivides a large dataset into multiple
parts that can be independently processed in parallel. For
many operators there is a requirement that the partitioned
data be grouped by key, so records with a common key are
assigned to the same data partition. Examples include the
data shuffling stage in a MapReduce program, and input pre-
partitioning for Join.

There are two popular data partitioning methods: hash
partitioning and range partitioning. It can be difficult to ac-

I

SH

D

MG

H

I

SH

D

MG

K

I

SH

D

MG

I

SH

D

MG

I

SH

D

MG

I

SH

D

MG

H

I

SH

D

MG

K

MGMG MG

Graph
rewriter

Rewrite
message

I

SH

D

MG

H

I

SH

D

K

I

SH

D

I

SH

D

I

SH

D

MG

Graph
rewriter

Rewrite
message

I

SH

D

MG

H

I

SH

D

MG

K

I

SH

D

MG

I

SH

D

MG

I

SH

D

MGMGMG MG

Graph
rewriter

Rewrite
message

Figure 3. Runtime EPG for co-partitioning two datasets.

curately set the partitioning parameters (number of partitions
and/or range keys) when data statistics are not available, for
example when partitioning is performed after several stages
of processing that include user-defined functions [25, 42].
Matters become even more complicated when it is neces-
sary to use a common parameter set to partition multiple data
sets for multi-source operators such as Join. Sub-optimal pa-
rameters may lead to partitions being too fine or too coarse
grained, as well as to data and computation skew where the
data sizes or computational costs are not balanced among
partitions of the resulting dataset(s).

The Optimus framework supports the determination of
partitioning parameters, and the construction of the corre-
sponding EPG, at runtime. In the following we introduce
co-partitioning for two or more datasets. Partitioning one
dataset is a special case. Figure 3 shows the runtime EPG
for co-partitioning two data sets. (Extending the method to
co-partition more than two data sets is straightforward.) We
use co-range partitioning as an example to illustrate how Op-
timus can dynamically compute a set of range keys for par-
titioning two data sets. Such co-range partitioned data sets
are subsequently used by multi-source operators, including
Join, Union, and other set operators.

In Figure 3, there are two input datasets, the first one com-
prised of two partitions and the second one three partitions.
The SH node down-samples the data set and computes h(k),
the histogram of the down-sampled data [11]. Here h(k) is
an approximation to the frequency of data records with key
k. These histograms are merged into a final histogram by
node H. The K node computes the number of partitions N
and the range keys that will balance the final partitions. In
this example, K estimates that the sets should be split into
four partitions. It sends the number of partitions N to the
graph rewriter module in the JM, which splits the MG node
into four nodes for both data sets. The range keys from K
are broadcast, via the data plane, to every distributor node
D, which distributes each record to its target node MG ac-
cording to the range keys. Each dataset is partitioned using
the same range keys, so for example any key k assigned to
the first part of the left-hand output will also be assigned

19

M

D

MG

G

R

X

H

M

D

MG

G

R

X

MG

H

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH
MG

K

R

X

R

X

G

R

X
(a) (b)

(c)

H

M

D

MG

MG

H

M

D

MG

G

R

X

H

M

D

MG

G

R

X

MG

H

(a) (b)

Graph
rewriter

Rewrite
message

M

D

MG

G

R

X

M

D

M

D

MG

G

R

X

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH

MG

G

R

X

Graph
rewriter

Rewrite
message

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

MG

K

R

X

R

X

G

R

X

GH

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH

MG

G

R

X

Graph
rewriter

Rewrite
message

M

D

MG

G

R

X

M

D

M

D

MG

G

R

X

MG

G

R

X

H

M

D

H

M

D

H

M

D MG

GH

Graph
rewriter

Rewrite
message

MG

G

R

X

MG

G

R

X

MG

G

R

X

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

MG

K

R

X

R

X

G

R

X

GH

M

D

MG

G

R

X

H

M

D

MG

G

R

X

MG

H

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH
MG

K

R

X

R

X

G

R

X
(a) (b)

(c)

H

M

D

MG

MG

H

M

D

MG

G

R

X

H

M

D

MG

G

R

X

MG

H

(a) (b)

Graph
rewriter

Rewrite
message

M

D

MG

G

R

X

M

D

M

D

MG

G

R

X

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH

MG

G

R

X

Graph
rewriter

Rewrite
message

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

MG

K

R

X

R

X

G

R

X

GH

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH

MG

G

R

X

Graph
rewriter

Rewrite
message

M

D

MG

G

R

X

M

D

M

D

MG

G

R

X

MG

G

R

X

H

M

D

H

M

D

H

M

D MG

GH

Graph
rewriter

Rewrite
message

MG

G

R

X

MG

G

R

X

MG

G

R

X

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

MG

K

R

X

R

X

G

R

X

GH

M

D

MG

G

R

X

H

M

D

MG

G

R

X

MG

H

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH
MG

K

R

X

R

X

G

R

X
(a) (b)

(c)

H

M

D

MG

MG

H

M

D

MG

G

R

X

H

M

D

MG

G

R

X

MG

H

(a) (b)

Graph
rewriter

Rewrite
message

M

D

MG

G

R

X

M

D

M

D

MG

G

R

X

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH

MG

G

R

X

Graph
rewriter

Rewrite
message

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

MG

K

R

X

R

X

G

R

X

GH

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

GH

MG

G

R

X

Graph
rewriter

Rewrite
message

M

D

MG

G

R

X

M

D

M

D

MG

G

R

X

MG

G

R

X

H

M

D

H

M

D

H

M

D MG

GH

Graph
rewriter

Rewrite
message

MG

G

R

X

MG

G

R

X

MG

G

R

X

H

M

D

H

M

D

H

M

D

MG

G

R

X

MG

MG

K

R

X

R

X

G

R

X

GH

(a) (b) (c)

Figure 4. Expanded EPG of (a) Original MapReduce plan,
(b) MapReduce with graph rewriter, and (c) Runtime EPG
with popular keys isolated and small partitions combined.

to the first part of the right-hand output—a requirement for
many multi-source operators.

Estimating range keys. Let h1(k) and h2(k) be the his-
tograms of down-sampled data from two data sets. We can
compute a composed histogram h(k) as:

h(k) = h1(k)⊕ h2(k),

where ⊕ is a composition function. The choice of compo-
sition depends on the operation that will consume the co-
partitioned data sets. Addition is a suitable choice if the in-
tention is to balance the sizes of the partitions. For opera-
tors like Join, a product may be more appropriate. The final
histogram h(k) should estimate the overall cost for the con-
sumer to process the data with key k. To produce range keys
for N partitions, we divide the ranges of h(k) equally intoN
parts. If the key type is not ordered we use a hash function to
compute a 64-bit integer hash value of each key, and use the
histogram to estimate ranges of hash values that will balance
the downstream computation.

3.2 MapReduce
The compiler extension to optimize MapReduce patterns is
shown in Figure 4. The original EPG contains Map vertices
(M), Distribute vertices (D) to repartition the outputs of the
Mappers to the correct downstream computer, Merge ver-
tices (MG) to merge the downstream inputs, Group vertices
(G) to group together inputs with the same key prior to re-
duction, Reduce vertices (R), and tail vertices (X) to pipeline
local processing on the reducer outputs prior to the next stage
of computation. Rectangular boxes indicate vertices that are
pipelined into a single process.

After the Map stage of MapReduce, the data must be
repartitioned by key before performing the reduction. A cru-
cial parameter at this point is the number of partitions in
the reduce stage, which decides the number of reducers and
thus the degree of parallelism, and is usually statically set
to a large number so that scheduler can balance the work-
load [13, 19]. However, when the volume of data output
by mappers is small, it is better to use a smaller number of

partitions in the reduce stage, lowering scheduling overhead
and disk I/O cost [13, 34]). For non-decomposable reduce
functions [39], the entire reduction must be performed after
records have been re-partitioned. This can lead to severe data
and computation skew among partitions when some keys are
very common.

For the above reasons it is best to determine the re-
partitioning parameters at runtime, when statistics are avail-
able. The Optimus MapReduce extension, shown in Fig-
ure 4(b), causes DryadLINQ to insert additional Statistics
vertices (H) in a streaming pipeline between the Map and
Distribute vertices, and an additional process containing a
Merge vertex and a Global Statistics vertex (GH) to aggre-
gate and summarize the global statistics. This summary is
sent to the JM, where a graph rewriter modified the part of
the EPG corresponding to the reduce phase in accordance
with the collected statistics.

In DryadLINQ’s MapReduce implementation a reducer
does not start until all of its inputs have been produced. The
graph rewrites occur after D has run, but before the Reduce
phase (MG) has started. At this point, the total input size to
every reducer is known. This information is used by Optimus
to change the degree of parallelism of the reduce phase—
reducers with small inputs are combined by rewiring the
edges between D’s and MG’s. Figure 4(c) gives an example.
The first two output partitions of D are small and hence are
combined and processed by the first reducer.

Popular keys can lead to large groups, and thus severe
data and computation skew among reducers. Figure 4(c)
shows our solution to this problem. Optimus finds these
popular keys without much overhead at runtime by pipelin-
ing a streaming algorithm to detect frequent items [1, 12]
into the H node in the Map process, before data is shuffled.
The GH node merges the per-partition detections to find the
most common keys across the whole input data set. Optimus
knows the mapping from keys to reducers, and can there-
fore ensure that no reducer partition contains too many com-
mon keys. In the case of a very popular key we assign it to a
“private” partition containing no other keys. Isolating these
large groups in their own vertices has two important bene-
fits. First, when a partition contains only one key, the stan-
dard MapReduce grouping stage (GroupBy) can be skipped
for that partition. Second, by breaking those otherwise ex-
tremely large partitions into smaller ones running on multi-
ple machines, we reduce the data skew among vertices and
increase the parallelism of the computation.

In the example shown in Figure 4(c), two popular keys
are detected in the input to the second reducer. The GH node
sends the popular keys to the key isolation node K of their
corresponding partitions. Node K divides that partition into
three sub-partitions, the first two each containing a single
key and the third containing all the remaining records. Note
that the GroupBy node (G) is eliminated for the two popular-
key partitions.

20

I

SH

D

MG

H

I

SH

D

MG

K

I

SH

D

MG

I

SH

D

MG

I

SH

D

MGMG0MG MG1

J J J

D1

JJ

J J

Figure 5. Hybrid Join with two runtime rewritings: (1) Two
input data sets are co-range partitioned to prepare data for
Join; (2) A skew co-partition MG0 and MG1, detected after
co-partitioning, is split into multiple partitions. A broadcast
Join is applied to this skew partition, while the other three
Join vertices proceed using the original partition-wise Joins.

3.3 Join
Join combines records from two different datasets based on
some common information. It is widely used and extensively
studied in the database community [30]. A variety of algo-
rithms exist for parallelizing Join:

• Partition-wise Join: the two input datasets are re-partitioned
using the co-partition scheme discussed in Section 3.1.
The Join is then broken up into smaller Joins to be ex-
ecuted in parallel, each of which joins a pair of corre-
sponding partitions from the two input datasets.

• Broadcast Join: the smaller input dataset I is broadcast
to every partition pi of the larger dataset, and Joins are
performed in parallel for every pair of (pi, I).

The most suitable choice of Join depends on the statistics
of the input data. Partition-wise Join is typically used when
both datasets are large. If one of the input datasets is small a
broadcast Join is preferred since broadcasting a small dataset
and leaving a large set in place is more efficient than re-
partitioning the large input set. As for other DryadLINQ
operators, estimating the sizes of the two input datasets for
Join is non-trivial at compile time. At runtime however the
statistics of the input data are readily available. Optimus
therefore dynamically selects an appropriate algorithm and
execution plan for Join based on runtime data sizes.

Hybrid join. Since Join generates output for a key propor-
tional to the product of the number of occurrences of the key
in its two inputs, Join is particularly susceptible to skews
in cases where a single key occurs with even moderate fre-
quency in both inputs (c.f. [15, 27, 32]). Detecting all such
cases is difficult using lightweight sampling methods [10],
so to handle data and computation skews we adopt a hybrid
Join algorithm. The two input datasets are first co-range par-
titioned by Optimus to prepare for partition-wise Join. Co-

range partitioning approximately balances the data, however
as observed above in some cases skew can be still present.

If a pair of corresponding partitions W1 and W2 (one
from each input dataset) for a Join vertex is determined to
contain skew, the Optimus rewriter is invoked to split this
pair of partitions into multiple subparts. At this point, split-
ting W1 and W2 into finer co-partitions via range or hash
partitioning may still lead to skewed work if they contain
popular keys. To avoid this problem, we use round-robin to
divide the larger partition, say W2, into multiple parts, each
of which in general contains a subset of the instances of each
popular key, and then broadcast W1 and perform broadcast
Join on the skewed partitions, while other Join vertices pro-
ceed as usual using partition-wise Joins. There is a tradeoff
between increasing network traffic by broadcasting a par-
tition and balancing computation, however the broadcast is
localized to only the sub-partitions that contain popular keys.

Figure 5 illustrates a hybrid Join using dynamic graph
rewriting. The graph rewriter setup is similar to Figure 3 and
is omitted here. Two runtime graph rewritings happen here.
The first is a dynamic co-range partitioning to prepare the
data for Join. The second rewriting happens after the data
distribution phase D, but before Join vertices are started. In
this example, Optimus detects data skew in the fourth co-
partition MG0 and MG1, and it inserts Node D1 to split (us-
ing round-robin) MG1 into two sub-partitions, and replace
the fourth Join vertex with a broadcast Join consisting of
two Join vertices.

3.4 Iterative computation
Many data analysis applications require iteration. Exam-
ples include graph computations such as PageRank and con-
nected components, and machine learning algorithms such
as k-means clustering. In these examples the application
specifies a stopping condition which the system can only
check at runtime. A common solution is to choose a fixed
number of iterations at plan compilation time and construct
an EPG for this sub-job [40]. When the sub-job finishes, the
client computes and checks the stopping condition, and sub-
mits another job if not. The general Optimus mechanism
enables iterated execution of an arbitrary sub-computation
within a single job, which simplifies job monitoring and
fault-tolerance, and reduces job submission overhead. The
stopping condition is computed by a vertex and sent to the
graph rewriter, and if the condition is not met the rewriter
dynamically extends the EPG with another copy of the loop
body subgraph, and performs another step of iteration.

Optimus inherits from Dryad the DAG property for the
EPG. A DAG-based design is particularly suitable for data-
intensive applications and is adopted by many data-parallel
systems. Its advantages include simple job scheduling/man-
agement, and a simple yet effective fault-tolerance model (an
important factor in distributed data-parallel computing). We
added a While operator to DryadLINQ to conveniently ex-
press iterative computations:

21

public While(source, initial, step, condition);

Here step is the expression that performs one iterative step,
and condition is the expression, computing a Boolean re-
sult, that evaluates the stopping condition. For k-means, for
example, step computes new cluster centers from the input
and the previous centers, and condition takes the centers
from current step and previous step to determine the stop-
ping condition.

Figure 6 shows the EPG for k-means. The highlighted
region is the loop body subgraph, which has three exter-
nal input edges and two external output edges. To perform
a new iteration, a new subgraph is constructed at runtime,
where the output from previous iteration becomes the input
of current node A and C. The input from node In is reused
since the input data does not change between the iterations,
and Dryad’s ability to schedule tasks based on data affinity
avoids transferring the invariant input data across the net-
work at each iteration.

K-means

S

G

D

MG

G

R

C

MG

R

CtrIn

Out

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

M

G

D

MG

G

R

A

R

B

(a) (b)

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

G

D

MG

G

R

A

R

B

(a) (b)

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

A

B

C

MG

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

G

D

MG

G

R

R

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

A

B

C

MG

A

B

C

Graph
rewriter

R
ew

ri
te

m

es
sa

ge

In Ctr

Out

A

B

C

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

It
er

 1

It
er

 2

It
er

 1

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

It
er

 1

K-means

S

G

D

MG

G

R

C

MG

R

CtrIn

Out

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

M

G

D

MG

G

R

A

R

B

(a) (b)

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

G

D

MG

G

R

A

R

B

(a) (b)

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

A

B

C

MG

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

G

D

MG

G

R

R

A

B

C

MG

Graph
rewriter

Rewrite
message

In Ctr

Out

A

B

C

MG

A

B

C

Graph
rewriter

R
ew

ri
te

m

es
sa

ge

In Ctr

Out

A

B

C

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

It
er

 1

It
er

 2

It
er

 1

G

D

MG

G

R

A

R

B

G

D

MG

G

R

R

It
er

 1

(a) (b)

Figure 6. Iterative computation. (a): Unexpanded EPG for
k-means algorithm (PageRank has a similar EPG), showing
two iterations. Node C checks for termination. (b): Detailed
expanded subgraph for pipelined nodes A and B in (a). A

assigns each data point to its nearest center and recomputes
centers locally for each partition. B merges and groups all
centers to compute new centers.

3.5 Matrix multiplication
Due to the specialized nature of distributed matrix computa-
tion optimizations, and the wide applicability of linear alge-
bra, customized systems such as MadLINQ [36] have been
built dedicated to distributed matrix computation. In this
subsection, using matrix multiplication as an example, we
show that with dynamic graph rewriting it is possible to build
an efficient matrix computation engine on top of an exist-
ing general distributed execution engine such as Dryad, and
thereby integrate matrix computation with general-purpose
DryadLINQ computations within an application.

In addition to choosing between execution plans, oppor-
tunities for special-purpose matrix optimization arise be-

cause the appropriate data representation can be chosen at
runtime. The data models for sparse and dense matrices are
different and for efficiency it is important to select the correct
data model to match the density of each matrix in the com-
putation. The appropriate implementation for parallel matrix
multiplication depends on the matrix dimensions, input and
output representation (data model), and sparsity (data statis-
tics). Input matrices can be intermediate results from pre-
vious stages, when matrix computation is part of a general
computation, or when there is a chain of matrix operations.
This indicates an opportunity to choose the data model and
the implementation dynamically at run time.

Suppose we want to compute the product of two large
matrices P = U× V. We can use co-range partitioning to di-
vide both matrices into smaller sub-matrices to achieve data-
parallelism. The most important criteria for the partitioning
are balance between computations, and the requirement that
the partitions be small enough that the output of the sub-
computation will fit in the memory of a single computer.
Suppose based on data statistics the co-partitioner decides
to divide each input matrix into 4 partitions. The following
are the three most common partitioning schemes:

[
A B

C D

] [
E F

G H

]
=

[
AE+ BG AF+ BH

CE+ DF CG+ DH

]
(a)

[
A B C D

] 
E

F

G

H

 =
[
AE+ BF+ CG+ DH

]
(b)


A

B

C

D

 [E F G H
]
=


AE AF AG AH

BE BF BG BH

CE CF CG CH

DE DF DG DH

 (c)

Each of these schemes corresponds to a different dis-
tributed execution plan: Figures 7(a), (b), and (c) show the
EPGs for Equations a, b, and c, respectively.

The different execution plans have different trade-offs be-
tween network traffic, intermediate result sizes, and the num-
ber of stages/vertices. Case (b) generates the least traffic, but
the matrix dimensions of the intermediate result at each ver-
tex are as large as those of the final output matrix. (c) has the
most traffic, but the matrix computed at each vertex is only
one sixteenth the size of the final output matrix. (a) strikes
a balance between (b) and (c), with half of the traffic of (c),
and a matrix size at each output one quarter that of (b). Case
(d) is a special case of (c). When the data size of V is small
enough (e.g. V is a sparse matrix) we can broadcast the whole
matrix to each partition in U without subdividing V.

Case (b) is suitable when the data size of the output
matrix P is small, either because the dimension of P is small
or because P is sufficiently sparse. (c) is good when P is
dense and the inputs are sparse, so that network traffic is not
overwhelming. When both inputs and outputs are dense and

22

A B C D E F G H

AE BG AF BH CE CF DHDG

AE+BG AF+BH CE+DG CF+DH

A B C D E F G H

AE BF CG DH

AE+BF+CG+DH

A B C D E F G H

AG BG CG DG

AE BE CE DE

AF BF CF GF

AH BH CH DH

A B C D V

AV BV CV DV

A B C D E F G H

AE BG AF BH CE CF DHDG

AE+BG AF+BH CE+DG CF+DH

A B C D E F G H

AE BF CG DH

AE+BF+CG+DH

A B C D E F G H

AG BG CG DG

AE BE CE DE

AF BF CF GF

AH BH CH DH

A B C D V

AV BV CV DV

A B C D E F G H

AE BG AF BH CE CF DHDG

AE+BG AF+BH CE+DG CF+DH

A B C D E F G H

AE BF CG DH

AE+BF+CG+DH

A B C D E F G H

AG BG CG DG

AE BE CE DE

AF BF CF GF

AH BH CH DH

A B C D V

AV BV CV DV

A B C D E F G H

AE BG AF BH CE CF DHDG

AE+BG AF+BH CE+DG CF+DH

A B C D E F G H

AE BF CG DH

AE+BF+CG+DH

A B C D E F G H

AG BG CG DG

AE BE CE DE

AF BF CF GF

AH BH CH DH

A B C D V

AV BV CV DV

(a) (b) (c) (d)

Figure 7. Matrix multiplication: expanded subgraph for different matrix partitioning schemes. Each can substitute node A×B

in Figure 2.

large, (a) should be used. If one of the inputs is small (low-
dimensional or very sparse) then (d) is the most efficient.
Matrix data sizes are often best inferred at runtime, at which
point Optimus can generate the appropriate execution plan.

A matrix can be represented by a stream of triplets
{i, j, v}. Here v could be a single value (for a sparse matrix)
or a rectangular sub-matrix tile. In real applications large
matrices are often sparse, and the sparse representation is a
good choice. If the result of the multiplication of two sparse
matrices is a dense matrix we should switch to use the dense
data representation. In other words, we dynamically change
v from a single value to a sub-matrix.

We have built a full matrix algebra package using Opti-
mus that allows users to specify matrices using a high-level
Matrix type, and dynamically infers the appropriate execu-
tion plan and data model for each operation.

3.6 Reliability enhancer
In data-parallel compute frameworks such as Dryad the in-
termediate data of a job are not replicated, since replication
would generate unnecessary I/O and the results can be re-
computed on failure by backtracking in the EPG. In some
cases, however, it is desirable to protect a subset of impor-
tant intermediate data by replication, for example the results
from compute-intensive vertices that would take a long time
to regenerate, and those that would cause a chain of vertices
to re-run if lost, as explained below.

In typical data-intensive compute frameworks each clus-
ter node provides both computing cycles and storage, and
the cluster scheduler attempts to schedule a worker process
close to its input data. Such data locality is a key advantage
in MapReduce and Dryad, as it significantly reduces net-
work traffic. However, such a scheduling strategy can lead
a chain of vertices in the EPG to be scheduled on a single
computer, as each downstream vertex is scheduled on the
computer that generated its input. We denote such a chain of
vertices a critical chain. The existence of long critical chains
makes fault tolerance less effective—if the computer they all
ran on fails, the whole chain of vertices has to be re-executed
to reproduce the result [22, 26, 41], leading to a large delay.
In a long-running iterative computation, it is common to en-
counter critical chains.

While one could change the scheduler to avoid critical
chains, cluster schedulers are typically ignorant of the se-

mantics and EPGs of the jobs that are running on the cluster,
in order to simplify their design and preserve the general-
ity of the cluster computing framework. We therefore im-
plemented an Optimus extension to detect and mitigate long
critical chains. This can be done at runtime by periodically
walking the EPG graph of completed vertices (efficiently, us-
ing dynamic programming): since the running time of each
completed vertex is known it is possible to accurately esti-
mate the amount of work that would be required to regen-
erate the lost data if any given computer were to fail. If any
computer is found to host a critical chain, the outputs at the
tail of that chain are copied to another computer by extend-
ing the EPG as shown in Figure 8. Here the output of vertex
A is to be protected, and the necessary replication subgraph
is inserted, including a copy vertex C and an “Or” vertex O

which is able to choose any one of its available inputs in the
case of re-run due to failure.

A

B

A

B

Cp

Or

A

B

C

O

Tee

M M M M

R

M

R

M

R

M

R

M

R R R R

A

B

A

B

C

O

Figure 8. Reliability enhancer: replication subgraph to pro-
tect vertex A’s output.

Critical chains are not generated by MapReduce jobs
because all data are replicated in the file system after each
Reduce step. Replicating only the output of critical chains
can lead to a substantial reduction in disk and network I/O,
especially in the common case where workers in a complex
multi-stage job are each fairly quick to re-execute, so critical
chains may grow to a substantial depth before needing to be
protected.

In Mantri [3] the JM replicated the outputs of tasks
deemed important based on a cost-based analysis. The relia-
bility enhancer in Optimus detects and breaks critical chains
by inserting replication subgraphs, which avoids copying all
outputs of a stage or task and enables optimizations such as
choosing the best place along the chain to insert the repli-
cation subgraph. The replicating tasks are delegated to copy
vertices, which run in parallel in the cluster and minimize
impact on the JM.

23

4. Evaluation
We evaluate Optimus using several real-world applications
and datasets. The results show that by rewriting the EPG
at runtime, Optimus substantially improves the performance
of these applications over their existing implementations.
It also simplifies the implementations since many of them
contain manual optimizations that are either unnecessary or
automated by Optimus.

Unless otherwise noted, the evaluations were performed
on a cluster of 61 computers running Microsoft Windows
Server 2008 64-bit operating system and connected by 1Gb
Ethernet switches. Each computer had two Quad-core AMD
Opteron 2373 EE CPU with a clock speed of 2.1 GHz, 32 GB
DDR2 RAM, and four 1.0 TB SATA disks. The running
times for all the measurements reported in this section were
averaged over 10 runs, and the standard deviations were less
than 3% of the average.

4.1 MapReduce for online-service security
In this experiment, we evaluate the effectiveness of Optimus
using a typical MapReduce application that has severe data
and computation skew. The application computes IP proper-
ties using anonymized user-login events from Hotmail [38].
The input data size is 278 GB compressed, stored in 1000
partitions. It contains 26 billion login events from 314 mil-
lion IP addresses. The task is to group these login events by
IP address, then apply a function to each group to compute
certain properties for the IP addresses in the group.

The data is heavily skewed in IP group sizes. On average
each IP group has about 83 login events, but the top 10 IP
groups contain 3.75 billion events. As a result, there were
six vertices in the reduce stage that took more than 8 hours to
complete while the rest of the vertices completed in less than
60 minutes. Using the techniques described in Section 3.2,
Optimus identified 12 large groups, processed each of them
in a separate vertex, and completed the job in less than 150
minutes.

Graph rewriting overheads. We measured the overheads
introduced by Optimus in all the experiments. This exper-
iment incurred by far the largest overhead so we report it
here. The overhead of Optimus mainly consists of runtime
statistics collection and communication between the ver-
tices and the graph rewriter. The statistics collection was
pipelined in-process with data processing logic and pro-
cessed 2-3 million records per second, including the detec-
tion of high-frequency keys. So its impact on the overall
job performance was negligible. Merging and aggregating
the statistics (160 KB compressed in total) from 1000 parti-
tions and sending the resulting rewriting message (120 bytes
compressed) to the graph rewriter took less than 20 seconds,
which was also negligible compared to the total job running
time (150 minutes). The total time spent on rewriting the
graph (constructing the new subgraph and replacing the re-
duce pipelines for large IP groups) was less than a second.

4.2 Product-offer matching using Join
A key computation in a commerce search engine is to match
unstructured offers from thousands of merchants to a pre-
defined structured product catalog containing millions of
product items [24]. This product-offer matching can be eas-
ily expressed by the GroupJoin operator:

offers.GroupJoin(products,

o=>o.category,

p=>p.category,

(o, c) => Match(o, c));

Here GroupJoin combines records of same category from
offers and products, and groups the joined results based
on product category. Match(o,c) is a matching function that
takes an offer o and the grouped products of the matching
category c and returns the matching products. This compu-
tation is challenging when some categories contain a large
number of products, due to data and computational skew.

We use this computation to evaluate the hybrid join tech-
nique presented in Section 3.3. We compared Optimus with
three existing implementations, using real datasets from a
popular search engine.

• Baseline: standard partition-wise GroupJoin.
• Broadcast-Join: the offers are round-robin partitioned

and the products are broadcast to each offer partition
to perform GroupJoin.

• CoGroup [16, 33]: the product and offer datasets are
merged into one stream of co-groups of common cate-
gories, and matching is performed within each co-group.
A co-group (O,C) with computational cost higher than
a certain threshold is further split into k sub-groups
(O1,C),...,(Ok,C) by splitting O and duplicating C. The
final co-group stream is round-robin partitioned into N
parts for a more balanced computation.

Figure 9(a) shows the job completion times for a dataset
with 4 million offers and 5 million products. The Base-
line approach performed worst as it could not handle skew
properly—its job running time was dominated by a few par-
titions containing popular categories. When the data were
hash-partitioned into 60 parts, CoGroup and Broadcast-Join
have similar performance—both handled the skew well and
were significantly better than Baseline, and Broadcast-Join
was about 10% better than CoGroup. Optimus further re-
duced the running time by about 30%.

Increasing the number of partitions only slightly im-
proved the performance for Baseline and CoGroup. For
Baseline the job completion times were dominated by a few
popular categories, which could not be split by further parti-
tioning on the hash of category keys. CoGroup achieved its
best performance using 180 partitions. Optimus adaptively
split a skewed data partition and used the broadcast join for
those split partitions, thus it was less sensitive to the num-
ber of input data partitions. Broadcast-Join performed worse

24

60 120 180 240
0

500

1000

1500

2000

2500

Number of partitions

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

baseline
co−group
broadcast
Optimus

4M 8M 12M
0

2000

4000

6000

8000

10000

12000

Dataset sizes (number of products)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

baseline
co−group
broadcast
Optimus

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (s)

C
lu

st
er

 u
til

iz
at

io
n

Baseline
CoGroup
Broadcast
Optimus

(a) (b) (c)

Figure 9. Performance comparisons. (a): Job completion time for a dataset of 4 million offers and 5 million products; (b) Job
completion times for different dataset sizes; (c) Cluster utilizations for the 8M dataset in (b).

when the number of partitions was larger than the number of
computers. The reason is that the whole product dataset was
broadcast to every vertex in the GroupJoin stage. Increasing
the number of vertices led to a larger network I/O overhead.

To evaluate scalability we measured performance using
different dataset sizes. Fig. 9(b) shows the total running time
for each approach. The 8M dataset for example means that
it contains 8 million offers and 8 million products. Optimus
clearly has the best scaling performance.

To further understand the performance differences, we
analyzed both cluster and CPU utilization. The cluster uti-
lization is the fraction of computers utilized by the job over
time. Figure 9(c) shows the cluster utilization for the 8M
dataset. Baseline had poor cluster utilization due to data
and computation skew. CoGroup required several rounds of
global data shuffling, and the final partitioning stage, to dis-
tribute the co-groups, introduced another global barrier (at
t ≈ 300), waiting for a small number of machines to dis-
tribute sub-groups of popular categories. In contrast, except
for data co-partitioning required by GroupJoin (at t ≈ 50),
all other data splitting in Optimus was localized to vertices
containing popular categories and did not introduce any new
global barriers.

Broadcast-Join had the highest cluster utilization in the
final matching stage. However, as Table 1 shows, its ag-
gregated CPU utilization for those vertices in the match-
ing stage was only 55%, due to threads blocked on network
I/O during broadcast. Optimus’s CPU utilization was about
10% better than CoGroup. The difference comes from the
fact that the work items assigned to the threads in a vertex
process were different. In CoGroup a work item was a co-
group while in Optimus it was a single offer item, which was
smaller (in terms of size and variance) than a co-group, lead-
ing to better thread-level parallelism within a vertex process.

4.3 Matrix multiplication
We now evaluate the performance of our matrix computa-
tion engine described in Section 3.5. The application is col-

Baseline CoGroup Broadcast Optimus
0.82 0.72 0.55 0.81

Table 1. Aggregated CPU utilization of vertices in match-
ing stage.

laborative filtering for movie recommendation. In order to
compare with MadLINQ [36], we use the same baseline al-
gorithm as MadLINQ running on a comparable 48-computer
cluster2. The input is a dataset from the Netflix challenge [6],
also the same one used by MadLINQ. It is a 20K × 500K
matrix R with a sparsity of 1.19%, where a non-zero element
R(i, j) represents the rating for movie i by user j.

The predicted ratings on all movies from all users can be
computed by C = R× R> × R, which has two multiplications:
A = R × R> and C = A × R. Optimus automatically chose
the plan (d) in Figure 7 for both multiplications because R

was sparse and small in size. Optimus also automatically
switched the data model to use a dense representation for A,
as A is a dense matrix. We denote this execution plan as S-D-
D (Sparse-Dense-Dense for the data models of the matrices
R, A, and C). For comparison purpose, we also include the
results of plan (d) using only the sparse data model (denoted
by S-S-S).

Table 2 shows the job completion times using Ma-
hout [28] on Hadoop, MadLINQ, S-S-S, and S-D-D. The
times shown for Mahout and MadLINQ are from the MadLINQ
paper. Optimus substantially outperformed both MadLINQ
and Mahout. The poor performance of Mahout is because
its (static) execution plan generates a full-size dense inter-
mediate matrix at each vertex and is not able to adapt to
the change of matrix densities. As a result, one stage of the
computation generates very large intermediate data (about
20 TB) that could be avoided given a better EPG. Of the Op-
timus variants, the automatically-chosen S-D-D performed
better than S-S-S, mostly because the dense data model in
S-D-D results in significantly less intermediate data.

2 Each computer in this cluster has two quad-core CPUs with a clock speed
of 2.1GHZ, 16GB RAM, and four 1TB disks.

25

Mahout MadLINQ Optimus
S-S-S S-D-D

A = R× R> 630 347 255 254
C = A× R 780m 570 254 170

Table 2. Job completion time (in seconds, except for 780m
in minutes) for the two matrix multiplications in C =
R× R> × R.

Runtime rewriting policies can capture sophisticated
domain-specific knowledge. Optimus, by providing a pro-
grammable interface for runtime rewriting, lets us extend a
general distributed execution platform with domain-specific
execution plans, and expose them as high-level user libraries.
We have validated this approach by integrating a high per-
formance matrix library with DryadLINQ, purely using the
API exposed by Optimus.

4.4 Reliability Enhancer
This experiment uses the iterative PageRank computation
(Section 3.4) to evaluate the effectiveness of the reliability
enhancer to detect and mitigate critical chains. The input
dataset is a collection of about 120M web pages that was pre-
partitioned into 60 partitions based on the page URLs. As
expected, due to data locality many long critical chains were
formed during the execution. This means that any computer
failure would very likely cause the whole computation to
be back-tracked to the very beginning and then re-executed
from there.

Our reliability enhancer identified all the critical chains
in this experiment, and split each chain by inserting the
data-protection subgraph when the chain length (in terms of
accumulated running time) was greater than a threshold θ,
set here to 10 minutes. Figure 10(a) shows the histograms
of the length (in seconds) of all critical chains for two runs,
one with the reliability enhancer and the other without. The
reliability enhancer effectively broke all critical chains into
chains less than 10 minutes.

The formation of long critical chains could be affected
by the number of partitions used by the computation. Fig-
ure 10(b) shows the critical chains when the input was re-
partitioned into 120 partitions. A large number of long crit-
ical chains were still formed during the execution, but the
reliability enhancer was again able to detect and break them
to be shorter than 10 minutes.

The reliability enhancer incurred little overhead—in the
example in Figure 10(a), 336 additional copy vertices were
created, copying about 4.1 GB of data in total. On average
each copy vertex took 1.75 seconds to copy about 12 MB
bytes of data. Since the replication subgraph can be inserted
anywhere on the critical chain, as a heuristic we back-track
20% (in seconds) of the chain to choose the vertex with
smallest output data size to copy. Multiple copy vertices
were usually started in batch and run in parallel. The impact
on job completion time is negligible: the reliability enhancer

0 500 1000 1500 2000 2500 3000
10

0

10
1

10
2

10
3

Critical chain length (s)

with reliability enhancer
w/o reliability enhancer

0 500 1000 1500
10

0

10
1

10
2

10
3

10
4

Critical chain length (s)

with reliability enhancer
w/o reliability enhancer

(a) (b)

Figure 10. Histograms of critical chains with and without
reliability enhancer from running PageRank on web pages
in (a) 60 partitions and (b) 120 partitions.

incurred on average around 1% overhead, adding 66 seconds
to the total running time of 101.4 minutes.

We simulated a computer failure by removing one com-
puter from the cluster in the middle of the computation. Only
the vertex chain between the “failure” point to the last pro-
tection point was re-executed. This significantly improves
the recovery time in the event of machine failures.

5. Related Work
Dryad [22] provides basic graph rewriting mechanisms for
runtime optimization, including local data aggregation and
dynamic data partitioning, but it has several limitations.
First, it is not extensible: the user has to modify the Dryad
core to implement a rewriter. Second, Dryad doesn’t know
the semantics of the worker code and data model. The op-
timizations we report here (with the exception of the relia-
bility enhancer) require semantic information, such as key
statistics, cardinality, or loop convergence, that can only be
inferred by integrating the language layer with the graph
rewriter and thus cannot be implemented on top of an un-
modified Dryad system. Optimus re-architected Dryad and
DryadLINQ with a design that addressed both problems.
In particular, the user-level rewriting API allows runtime
optimization for user-defined operators. Most of the opti-
mizations enabled by Optimus are either new by themselves
or new in the context of data-parallel computing.

CIEL [31] takes a different approach to Dryad to repre-
sent the EPG: instead of holding it in a central job man-
ager, CIEL programs dynamically build the computation
graph using a custom scripting language that executes at
each worker and optionally expands its output graph based
on its local computation. CIEL is better suited to techniques
such as recursion and functional programming where it is
natural to dynamically subdivide a computation as it pro-
ceeds. We believe Optimus enables a more natural way for
programmers to express declarative computations, such as
expression trees of LINQ operators, where the modifications
to the graph are “global” rewrites of the expression. Further-
more, Optimus enables optimizations not possible in the cur-

26

rent CIEL system: asynchronous changes to the graph (e.g.,
canceling an existing task and replacing it with a subgraph),
and non-local graph changes (e.g., the reliability enhancer of
Section 3.6). On the other hand an Optimus-like component
could be added to CIEL to support dynamic optimizations
like those reported in this paper; the concepts of Optimus
are general and not limited only to Dryad/DryadLINQ.

FlumeJava [9] transforms its high-level parallel operators
into MapReduces. The key optimizations described in the
FlumeJava paper are all static, compile-time optimizations
rather than the dynamic optimizations provided by Optimus.

HaLoop [8] specializes Hadoop for iterative MapReduce
computations. Piccolo [35] and Spark [41] use persistent in-
memory datasets to efficiently execute iterative steps. These
systems do not support general dynamic graph rewriting.

Adaptive query optimization for a single database ser-
ver has been studied in the database community [4, 5, 14,
17, 23, 29]. Compared to Eddies [4] that does finer-grained
(record-level) optimization in a single server environment,
Optimus does coarser-grained (vertex-level) optimization
in a distributed data-parallel compute cluster. Combining
the two is an interesting direction for future work. In the
data-parallel setting, Nectar [18] caches the results of sub-
queries to avoid recurring computations; and RoPE [2] col-
lects statistics of previously-executed queries to generate
better execution plans for new jobs using the same query.
Optimus complements these previous approaches by pro-
viding a general framework to rewrite arbitrary subgraphs
in the EPG (including already-executed subgraphs) to opti-
mize previously-unseen queries at runtime. It also supplies
system-level and user-level interfaces to specify new runtime
optimization policies. RoPE can make limited changes to
the un-executed parts of the plan, such as altering the degree
of parallelism of non-reduce stages, but cannot switch be-
tween alternative plans at runtime using observed statistics.
It also composes statistics using the control plane, which
could overwhelm the JM in the case of a complex compo-
sition, whereas Optimus exposes statistics collection as an
extension of the data-plane and only sends a small number of
succinct messages to the JM. Optimus provides opportuni-
ties to translate query optimization techniques designed for
single database servers to a distributed setting. For example,
A-Greedy (c.f. [14]) can be adapted to re-order operators
inside a pipelined vertex. However, re-ordering multi-way
Join is tricky, as it may require a dataset to be partitioned in
multiple ways.

Sampling approaches [25, 33] downsample the inputs
to a job, and first run the job on those samples to gather
statistics to optimize the EPG before running on the full
data. Besides adding the overhead of running an additional
job, this requires an additional pass over the entire input
dataset. Moreover, sampling does not work well to estimate
statistics for operators at later stages of large EPGs, since
the input-stage sampling is no longer representative once it

has passed through a complex dataflow. Finally, some of the
rewrites described here can not be performed by sampling
approaches; these include the reliability enhancer, iterative
computation, and the second rewrite to handle task-level
skews in the Join example.

6. Conclusion
Optimus provides a flexible framework to modify a dis-
tributed execution plan at runtime. The main improvement
over previous mechanisms is the ability to integrate statis-
tics collection over application data, programmed in a high-
level language, with a rich application-defined rewrite logic.
We demonstrated the wide utility of dynamic EPG rewrit-
ing by evaluating a rich set of applications and showing in
each case a substantial performance benefit compared to a
statically generated plan. We believe Optimus is a versatile
addition to a data-parallel execution framework to enable a
variety of runtime optimizations and specializations that are
hard or impossible to achieve in existing systems.

Acknowledgements
We would like to thank Chandu Thekkath, Derek Murray,
and Mihai Budiu, as well as the reviewers of our paper, for
their many helpful comments and constructive feedback.

References
[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei,

and K. Yi. Mergeable summaries. In PODS, 2012.
[2] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and

J. Zhou. Re-optimizing data parallel computing. In NSDI ’12,
April 2012.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
mapreduce clusters using mantri. In OSDI’10.

[4] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive
query processing. In ACM SIGMOD, 2000.

[5] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization
with Rio. In ACM SIGMOD, 2005.

[6] J. Bennett and S. Lanning. The Netflix prize. In ACM
SIGKDD 2007.

[7] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation under
multiset operations. In SIGMOD 2007.

[8] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. Haloop:
Efficient iterative data processing on large clusters. In VLDB,
2010.

[9] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry,
R. Bradshaw, and N. Weizenbaum. FlumeJava: easy, efficient
data-parallel pipelines. In PLDI’10.

[10] S. Chaudhuri, R. Motwani, and V. Narasayya. On random
sampling over joins. In SIGMOD 1999.

[11] S. Chaudhuri, R. Motwani, and V. R. Narasayya. Random
sampling for histogram construction: How much is enough?
In SIGMOD 1998.

27

[12] G. Cormode and M. Hadjieleftheriou. Finding frequent items
in data streams. In VLDB 2008.

[13] J. Dean and S. Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113,
2008.

[14] A. Deshpande, Z. Ives, and V. Raman. Adaptive query pro-
cessing. Foundations and Trends in Databases, 1(1):1–140,
2007.

[15] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri.
Practical skew handling in parallel joins. In VLDB 1992.

[16] E. Gonina, A. Kannan, J. Shafer, and M. Budiu. Parallelizing
large-scale data processing applications with data skew: a
case study in product-offer matching. In Intl. Workshop on
MapReduce and its Applications (MAPREDUCE), 2011.

[17] G. Graefe. Volcano - an extensible and parallel query evalu-
ation system. IEEE Trans. Knowl. Data Eng., 6(1):120–135,
1994.

[18] P. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang. Nectar: Automatic Management of Data and Com-
putation in Datacenters. In OSDI’10.

[19] The Hadoop project. http://hadoop.apache.org/.
[20] Hadoop NextGen MapReduce (YARN).

http://hadoop.apache.org/common/docs/r0.23.0/

hadoop-yarn/hadoop-yarn-site/YARN.html.
[21] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,

A. Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A plat-
form for fine-grained resource sharing in the data center. In
NSDI ’11, March 2011.

[22] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys 2007.

[23] N. Kabra and D. J. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In ACM
SIGMOD, 1998.

[24] A. Kannan, I. E. Givoni, R. Agrawal, and A. Fuxman. Match-
ing unstructured product offers to structured product specifi-
cations. In ACM SIGKDD 2011.

[25] Q. Ke, V. Prabhakaran, Y. Xie, Y. Yu, J. Wu, and J. Yang.
Optimizing data partitioning for data-parallel computing. In
HotOS ’11, 2011.

[26] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. On availability of
intermediate data in cloud computations. In HotOS ’09, 2009.

[27] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune:
Mitigating skew in MapReduce applications. In ACM SIG-
MOD, 2012.

[28] Mahout project. http://mahout.apache.org/.
[29] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and

H. Pirahesh. Robust query processing through progressive
optimization. In ACM SIGMOD, pages 659–670, 2004.

[30] P. Mishra and M. H. Eich. Join processing in relational
databases. ACM Comput. Surv., 24(1):63–113, 1992.

[31] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. Ciel: a universal execution
engine for distributed data-flow computing. In NSDI 2011.

[32] A. Okcan and M. Riedewald. Processing theta-joins using
mapreduce. In ACM SIGMOD, pages 949–960, 2011.

[33] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: a not-so-foreign language for data processing. In
SIGMOD 2008.

[34] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A comparison of approaches
to large-scale data analysis. In ACM SIGMOD, 2009.

[35] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In OSDI, 2010.

[36] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda,
and Z. Zhang. MadLINQ: Large-scale distributed matrix
computation for the cloud. In EuroSys 2012.

[37] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. An-
thony, H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehous-
ing solution over a Map-Reduce framework. Proc. VLDB En-
dow., 2(2), 2009.

[38] Y. Xie, F. Yu, and M. Abadi. De-anonymizing the internet
using unreliable IDs. In SIGCOMM 2009, August 2009.

[39] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In
SOSP, 2009.

[40] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In OSDI, 2008.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI 2012.

[42] J. Zhang, R. C. Hucheng Zhou, X. Fan, Z. Guo, H. Lin, J. Y.Li,
W. Lin, J. Zhou, and L. Zhou. Optimizing data shuffling
in data-parallel computation by understanding user-defined
functions. In NSDI, 2012.

28

