
On Use of Coverage Metrics in Assessing Effectiveness of Combinatorial Test Designs

Jacek Czerwonka

Microsoft Research

Redmond, WA USA

jacekcz@microsoft.com

Abstract

Combinatorial test suite design is a test generation technique,

popular in part due to its ability to achieve coverage and defect

finding power approximating that of exhaustive testing while

keeping test suite sizes constrained. In recent years, there have

been numerous advances in combinatorial test design

techniques, in terms of efficiency and usability of methods used

to create them as well as in understanding of their benefits and

limitations when applied to real world software. Numerous case

studies have appeared presenting practical applications of the

combinatorial test suite design techniques, often comparing

them with manually-created, random, or exhaustive suites.

These comparisons are done either in terms of defects found or

by applying some code coverage metric. Since many different

and valid combinatorial test suites of strength t can be created

for a given test domain, the question whether they all have the

same coverage properties is a pertinent one.

In this paper we explore the stability of size and coverage of

combinatorial test suites. We find that in general coverage

levels increase and coverage variability decreases with

increasing order of combinations t; however we also find

exceptions with implications for practitioners. In addition, we

explore cases where coverage achieved by combinatorial test

suites of order t applied to the same program is not different

from test suites of order t-1. Lastly, we discuss these findings

in context of the ongoing practice of applying code coverage

metrics to measure effectiveness of combinatorial test suites.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.5 [Software

Engineering]: Testing and Debugging

General Terms

Verification, Design, Metrics

Keywords

Pairwise testing, combinatorial testing, test case generation, test

case design, coverage metrics, statement and branch coverage

Introduction

A set of possible inputs for any nontrivial piece of software is

often too large to be tested exhaustively. Techniques like

equivalence partitioning [28] and boundary-value analysis [17]

help convert a large number of test levels into a much smaller

set with comparable defect-detection power. Still, if software

under test (SUT) can be influenced by a number of such factors,

exhaustive testing again becomes impractical.

Over the years, a number of combinatorial strategies have been

devised to help engineers choose subsets of input combinations

that would maximize the probability of detecting defects:

random testing [16], each-choice and base choice [2], anti-

random [15] and finally combinatorial testing strategies with

pairwise testing being the most prominent among these.

Pairwise testing strategy is defined as follows:

Given a set of M test factors: f1, f2, ..., fM, with each factor fi

having Li discrete levels: fi = { Li,1, ..., li, Li }, a set of tests R

(matrix) is produced. Each test (row) in R by definition contains

M test levels, one for each test factor fi, and collectively all tests

in R cover all possible pairs of test factor levels. Or more

formally: for each pair of factor levels li,p and lj,q, where 1 ≤ p

≤ Li, 1 ≤ q ≤ Lj , and i ≠ j there exists at least one row in R that

contains both li,p and lj,q.

This concept can easily be extended from covering all possible

pairs to covering all t-way combinations where 1 ≤ t ≤ M. When

t = 1, the strategy is equivalent to each-choice; if t = M, the

resulting test suite is said to be exhaustive.

Covering all pairs of tested factor levels has been extensively

studied. Mandl described using orthogonal arrays in testing of

a compiler [16]. Tatsumi, in his paper on Test Case Design

Support System used in Fujitsu Ltd [22], talks about two

standards for creating test arrays: (1) with all combinations

covered exactly the same number of times (orthogonal arrays)

and (2) with all combinations covered at least once. When

making that crucial distinction, he references an earlier paper

by Shimokawa and Satoh [19].

Over the years, numerous case studies of combinatorial test

designs have shown the technique to be an efficient and

effective strategy of choosing tests [4, 5, 6, 7, 10, 13, 23]. Often

they make use of coverage metrics [4, 6, 7] as a way of

comparing combinatorial testing to other methods including the

aforementioned base-choice, each-choice and exhaustive

testing. Irrespective of the chosen coverage metric, given the

basic property of combinatorial design namely that there are

possibly very many possible test suites meeting the criteria for

covering all t-way combinations derived from the same SUT

description, a question remains: how stable and reliable are

measurements of coverage for a given program and

combinatorial strength t. The same question pertains to defect

finding power as well, which is often used as another measure

of effectiveness of the strategy, however we decided to focus

on the coverage metrics in this paper.

Problem Description

Combinatorial test case generators [1] attempt to create as small

a test suite as possible while still maintaining the property of

covering all allowed t-way combinations of inputs. Multiple

strategies for achieving this result were attempted and

implemented over the years. They range from heuristics [7, 8,

26], through deterministic methods [12, 14] to applying

exhaustive search in an attempt to find the globally optimal

solution [27]. A survey of available methods can be found in

[11] and [29].

The fault model assumed when applying combinatorial test

designs states that defects occur when factors of the software-

under-test interact. The first non-trivial test design of this kind,

the pairwise testing design attempts to test all possible 2-way

interactions of factors for that very reason.

Test suites with t=k+1 subsume all combinations tested by t=k.

It follows therefore, that if we assume the fault model to be

holding for a given SUT, t=k+1 test suite should find at least

the same number of (and possibly more) defects stemming from

factor-interactions. Since we often use code coverage as a

measure of goodness of a test suite (relative to other suites), the

key questions is whether the same assumption of increasing

value of a metric with increasing t, holds for code coverage as

well.

Moreover, the community is often focused on methods for

finding the smallest t-way test suite. We need to understand the

tradeoffs we are making between the test suite size and

coverage especially in light of studies suggesting that

effectiveness of pairwise testing can be approximated by

random testing [3].

We explore this topic with the following questions:

Question 1: For a given SUT, how does the maximum code

coverage change with the interaction strength t?

Question 2: What is the range of coverage achieved by a

sample of test suites generated for each strength t? Does code

coverage variance change with t?

Question 3: Is code coverage achieved by t=k and t=k+1

statistically distinguishable in all (or even most) cases?

Question 4: Are there qualitative and quantitative differences

between non-trivial t-way test designs (t=2 and higher) and

simpler test strategies like each-choice (t=1).

How code coverage behaves with increasing t has implications

on the way we measure and report on t-way test designs in our

case studies. The issue of using coverage metrics as a way to

evaluate quality of any test suite notwithstanding, we would

like to understand whether typical coverage metrics are even

useful as a measurement tool for reliably discriminating

between t=k and t=k+1, therefore we ask:

Question 5: Is increase of coverage attributable to increasing t

or simply to the fact that more unique test cases get run for test

suites with higher t?

Behind all the questions is our desire to understand how to best

report on successes and challenges of combinatorial test design

methods. We will propose revised practices of generating t-way

test suites and measuring their effectiveness using coverage.

Experimental Setup
Four utilities included in the standard Windows 7 operating

system installation were chosen for the experiments: attrib.exe,

which is a tool for setting attributes on files, fc.exe, a file

comparison tool, and two file content search tools: find.exe,

findstr.exe. For each, a description of inputs was created using

PICT’s [26] input modeling format. PICT was chosen as it uses

a greedy heuristic and can be configured to find multiple t-way

covering test suites, each corresponding to some local optimum

of the search space. The choice of a tool is dictated by needs of

the experimental setup; the results apply to combinatorial

designs irrespective of the employed tool.

$ fc.exe /?
Compares two files or sets of files and displays the differences
between them

FC [/A] [/C] [/L] [/LBn] [/N] [/OFF[LINE]] [/T] [/U] [/W] [/nnnn]
 [drive1:][path1]filename1 [drive2:][path2]filename2
FC /B [drive1:][path1]filename1 [drive2:][path2]filename2

 /A Displays only first and last lines for each set of
differences.
 /B Performs a binary comparison.
 /C Disregards the case of letters.
 /L Compares files as ASCII text.
 /LBn Sets the maximum consecutive mismatches to the
specified number of lines.
 /N Displays the line numbers on an ASCII comparison.
 /OFF[LINE] Do not skip files with offline attribute set.
 /T Does not expand tabs to spaces.
 /U Compare files as UNICODE text files.
 /W Compresses white space (tabs and spaces) for
comparison.
 /nnnn Specifies the number of consecutive lines that must
match after a mismatch.
 [drive1:][path1]filename1
 Specifies the first file or set of files to compare.
 [drive2:][path2]filename2
 Specifies the second file or set of files to compare.

Figure 1. Arguments and functionality of fc.exe

The input description in PICT-compatible format for fc.exe is

depicted in Figure 2. Each row of the input model corresponds

to a parameter that influences the functionality of fc.exe. The

model covers all possible arguments that a user of this utility

can provide (which are shown in Figure 1) and contains seven

factors with two possible values each, one factor with three

possible values, one with five and two factors with nine values.

To summarize this model complexity, we will use the following

notation: 27 31 51 92.

BOUNDARIES: <empty>, /A
COMPARISON: <empty>, /B, /L
CASE_INSENSITIVE: <empty>, /C
MAX_MISMATCH: <empty>, /LB0, /LB1, /LB2, /LB10
LINE_NUMBERS: <empty>, /N
OFFLINE: <empty>, /OFF
TABS_TO_SPACES: <empty>, /T
COMPARE_AS_UNICODE: <empty>, /U
COMPRESS_WHITE: <empty>, /W
FILE1: 1.txt,2.txt,3.txt,4.txt,5.txt,6.txt,7.txt,8.txt,9.txt
FILE2: 1.txt,2.txt,3.txt,4.txt,5.txt,6.txt,7.txt,8.txt,9.txt

Figure 2. Input definition (model) for fc.exe

Functionalities of the other three utilities were similarly

examined and modelled.

For each program and its input model 100 possible test suites of

combinatorial order t were generated, using a PICT feature

allowing the user to initialize (seed) the greedy heuristic used

for test suite generation. At each iteration, a different seed value

was provided. There was no attempt to ensure that chosen seeds

resulted in creating 100 unique test suites. This has an effect of

mimicking the real-life distribution of test suites resulting from

PICT executions.

for each software-under-test P
 for t = 1..5 // order of combinations
 for s = 1..100 // generation seed
 Initialize PICT with seed[s]
 Generate t-way covering test suite of P

Figure 3. Algorithm for generating test suites for a given SUT

Each of the resulting 500 test suites (per program) was then

executed against the software-under-test and statement and

branch coverage collected.

Descriptive statistics for each of the programs are included in

Tables 1-4. These include counts of test cases generated, branch

and statement coverage achieved by test suites for each t=1..5.

Each metric is summarized by providing the Minimum, Q1

(first quartile), Median (second quartile), Q3 (third quartile) and

the Maximum values. In addition, for branch and statement

coverage, these metrics are visualized in box-plots

accompanying Tables 1-4. Measures of variance are also

provided in the tables, including the spread between Min and

Max values and the standard deviation and relative standard

deviation of a metric.

Results

Program attrib.exe was tested with the configuration of factors

and levels: 22 34 41 and the results are provided in Table 1. The

test suites created for t=1 are all of size 4, which corresponds to

the size of the largest factor and a varied number of test cases

for each t>1, which is again expected. Both branch and

statement coverage appear to be achieving higher maximums

with increasing t in line with our intuition. In addition, the

minimum coverage achieved by test suites also rises with

increasing t at what appears to be a faster rate than the

maximum. This results in narrowing of the spread between min

and max coverage as t increases; the relative standard deviation

remains somewhat stable for all t>2 (0.012-0.016 for branch

coverage) and is much lower than the standard deviation of t=1

(0.081).

0.640.600.560.520.480.440.40

120

100

80

60

40

20

0

Branch coverage

F
re

q
u

e
n

c
y 0.5145 0.04259 100

0.5819 0.008717 100

0.6030 0.007395 100

0.6130 0.009406 100

0.6242 0.01017 100

Mean StDev N

t=1

t=2

t=3

t=4

t=5

Variable

attrib.exe

Figure 4. Histogram of branch coverage for attrib.exe

Of note is the fact that even though max coverage for t=4 and

t=5 is the same (63.29% and 73.46% for branch and statement

coverage respectively), in case of t=5 test suites are much more

likely to achieve the maximum coverage.

fc.exe was tested with a 27 31 51 92 configuration of factors. The

results are similar to that of attrib.exe with t=1 having large

coverage variance relative to t>2. Unlike attrib.exe, test suites

created for fc.exe achieve maximum coverage at t=2 (68.09%

and 75.60%) and it doesn’t change with t increasing beyond 2.

The minimum coverage has an overall rising trend with t=4

being an exception with a single test suite achieving 66.61%

branch coverage and the next being in line with the lowest for

t=3 (66.70%). Interestingly, the statement coverage of this

single “outlier” t=4 test suite did not experience the same drop

in coverage.

0.680.660.640.620.600.580.560.54

140

120

100

80

60

40

20

0

Branch coverage

F
re

q
u

e
n

c
y 0.6116 0.02689 100

0.6771 0.004113 100

0.6795 0.002837 100

0.6793 0.004099 100

0.6798 0.003472 100

Mean StDev N

t=1

t=2

t=3

t=4

t=5

Variable

fc.exe

Figure 5. Histogram of branch coverage for fc.exe

find.exe was tested with a 24 41 181 configuration of factors and

exhibits the same general properties as other programs however

one should view the results for find.exe as unusual. We observe

that branch coverage generated by 500 test suites for find.exe

assumes only 6 possible values whereas for attrib.exe there are

98 possible unique coverage percentages, 80 for fc.exe, and 121

for findstr.exe.

0.600.560.520.480.440.400.360.32

300

250

200

150

100

50

0

Branch coverage

F
re

q
u

e
n

c
y 0.5423 0.02399 100

0.5438 0.002777 100

0.5436 0.003708 100

0.5425 0.003945 100

0.5433 0.003142 100

Mean StDev N

t=1

t=2

t=3

t=4

t=5

Variable

find.exe

Figure 6. Histogram of branch coverage for find.exe

In case of find.exe, it is t=2 that exhibits higher minimum

coverage than both t=3 and t=4. Considering the “difficulty” in

which lower than maximum coverage can be achieved for this

program (Q1 is equal to maximum branch and statement

coverage for all values of t), it is likely this is a result of a

specific random draw of the 100 test suites for t=2.

Lastly, findstr.exe was tested with 21 34 41 52 251 configuration

of factors. General trends remain the same however in case of

t=3, the minimum branch and statement coverage are

significantly lower than the same metrics for t=2. Moreover, the

number of t=3 test suites with lower coverage than the

minimum for t=2 is also significant at 24 out 100, contributing

to large variability of coverage for t=3. This result is counter-

intuitive.

0.680.640.600.560.520.480.440.40

400

300

200

100

0

Branch coverage

F
re

q
u

e
n

c
y 0.5426 0.03350 100

0.6049 0.003141 100

0.5890 0.04319 100

0.6082 0.002084 100

* * 100

Mean StDev N

t=1

t=2

t=3

t=4

t=5

Variable

findstr.exe

Figure 7. Histogram of branch coverage for findstr.exe

Discussion

Question 1: For a given SUT, how does code coverage change

with t?

Question 2: What is the range of coverage achieved by test

suites generated for each strength t? Does code coverage

variance change with t?

Our intuition is that test suite sizes, even though growing

significantly with t in absolute terms will also exhibit larger

spreads between minimum and maximum test suite size with

growing t. However they might exhibit at least stable, if not

lower, relative variance of test suites sizes within each set of

100. In addition, for coverage, both the minimum and the

maximum coverage achieved by test suites created for each t

should increase with t. The maximum coverage increases

should become smaller (in absolute as well as relative terms)

with growing t, which is consistent with diminishing returns of

testing with test suites created for larger values of t. Lastly, our

intuition is that both branch and statement coverage achieve at

least the same or, in significantly many cases, higher

maximums with increasing t for all tested programs.

attrib.exe and fc.exe seem to conform best to our intuition and

exhibit the theorized behavior in all aspects. The absolute size

difference between the smallest and the largest test suite for a

given t, increases with t but that is a side-effect of having much

larger test suites as t increases. Compare for example test suites

sizes for t=2 and t=5 for attrib.exe. In t=2 case, the range of

sizes is 15 to 18 (spread of 3) and for t=5 it is 351 to 373 test

cases (spread of 22). However, the relative standard deviations

exhibit a downward trend with the increasing t suggesting

relative tightening of the range of possible test suites sizes as

one attempts to increase t.

In addition to the increases in maximum coverage, the

minimum coverage achieved by test suites for these programs

also rises with increasing t and, at what appears to be a faster

rate than the maximum. This results in narrowing of the spread

between minimum and maximum coverage as t increases; the

relative standard deviation remains somewhat stable for all t>2

(0.012-0.016 for attrib.exe’s branch coverage) and much lower

than the standard deviation for t=1 (0.081).

Of note is the fact that even though the maximum coverage for

t=4 and t=5 is the same (63.29% and 73.46% for branch and

statement coverage respectively), in case of t=5 test suites are

much more likely to achieve the maximum coverage. In other

words, for t=4 achieving the maximum coverage of 73.46% is

still unusual while it is the norm for t=5 suites.

Table 1. Descriptive statistics for attrib.exe

t=5t=4t=3t=2t=1

65.00%

60.00%

55.00%

50.00%

45.00%

40.00%

Branch coverage (attrib.exe)

t=5t=4t=3t=2t=1

75.00%

70.00%

65.00%

60.00%

55.00%

50.00%

Statement coverage (attrib.exe)

Table 2. Descriptive statistics for fc.exe

t=5t=4t=3t=2t=1

70.00%

67.50%

65.00%

62.50%

60.00%

57.50%

55.00%

Branch coverage (fc.exe)

t=5t=4t=3t=2t=1

75.00%

72.50%

70.00%

67.50%

65.00%

Statement coverage (fc.exe)

t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 4 15 51 149 351 40.34% 56.52% 59.06% 60.27% 61.11% 50.55% 67.77% 69.35% 70.30% 71.09%

Q1 4 16 53 152 359 49.61% 57.49% 59.90% 60.63% 61.23% 61.93% 68.68% 70.30% 70.62% 71.09%

Median 4 16 54 154 363 52.05% 58.15% 60.14% 61.05% 63.29% 63.74% 69.35% 70.46% 71.09% 73.46%

Q3 4 16 55 156 365 54.71% 58.94% 60.51% 61.23% 63.29% 66.39% 69.83% 71.09% 71.09% 73.46%

Max 4 18 58 159 373 57.13% 60.14% 62.56% 63.29% 63.29% 68.88% 71.72% 73.46% 73.46% 73.46%

Spread 0 3 7 10 22 0.16787 0.03623 0.03502 0.03019 0.02174 0.18325 0.03949 0.04107 0.03160 0.02370

StdDev 0.0000 0.7410 1.6792 2.5976 4.6027 0.04238 0.00867 0.00736 0.00936 0.01012 0.04548 0.00827 0.00876 0.01044 0.01170

RelStdDev 0.0000 0.0463 0.0311 0.0169 0.0127 0.08142 0.01491 0.01223 0.01533 0.01599 0.07135 0.01192 0.01244 0.01469 0.01592

Statement CoverageBranch CoverageTest Suite Size

t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 9 81 405 1240 3579 53.79% 64.69% 66.70% 66.61% 66.87% 63.41% 73.19% 74.45% 74.45% 74.45%

Q1 9 81 405 1247 3597 59.31% 67.65% 67.92% 68.09% 68.09% 69.19% 75.60% 75.60% 75.60% 75.60%

Median 9 81 405 1250 3607 61.42% 67.83% 68.00% 68.09% 68.09% 70.83% 75.60% 75.60% 75.60% 75.60%

Q3 9 81 405 1254 3613 63.21% 67.92% 68.09% 68.09% 68.09% 72.15% 75.60% 75.60% 75.60% 75.60%

Max 9 81 407 1263 3641 66.52% 68.09% 68.09% 68.09% 68.09% 74.91% 75.60% 75.60% 75.60% 75.60%

Spread 0 0 2 23 62 0.12729 0.03400 0.01395 0.01482 0.01221 0.11507 0.02417 0.01151 0.01151 0.01151

StdDev 0.0000 0.0000 0.4440 4.8384 11.5704 0.02676 0.00409 0.00282 0.00408 0.00345 0.02422 0.00308 0.00273 0.00387 0.00345

RelStdDev 0.0000 0.0000 0.0011 0.0039 0.0032 0.04356 0.00603 0.00415 0.00599 0.00507 0.03420 0.00408 0.00361 0.00512 0.00457

Test Suite Size Branch Coverage Statement Coverage

Table 3. Descriptive statistics for find.exe

t=5t=4t=3t=2t=1

55.00%

50.00%

45.00%

40.00%

35.00%

30.00%

Branch coverage (find.exe)

t=5t=4t=3t=2t=1

65.00%

60.00%

55.00%

50.00%

45.00%

40.00%

D
a

ta

Statement coverage (find.exe)

Table 4. Descriptive statistics for findstr.exe

t=5t=4t=3t=2t=1

60.00%

55.00%

50.00%

45.00%

40.00%

D
a

ta

Branch coverage (findstr.exe)

t=5t=4t=3t=2t=1

70.00%

65.00%

60.00%

55.00%

50.00%

D
a

ta

Statement coverage (findstr.exe)

t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 18 72 161 402 632 30.47% 53.24% 51.66% 52.89% 53.59% 39.02% 62.75% 61.86% 62.53% 62.97%

Q1 18 72 164 408 647 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Median 18 72 166 411 656 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Q3 18 72 169 414 663 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Max 18 72 176 423 682 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Spread 0 0 15 21 50 0.23993 0.01226 0.02802 0.01576 0.00876 0.25277 0.01552 0.02439 0.01774 0.01330

StdDev 0.0000 0.0000 2.8023 3.8059 11.3067 0.02387 0.00276 0.00369 0.00392 0.00313 0.02515 0.00396 0.00445 0.00578 0.00475

RelStdDev 0.0000 0.0000 0.0169 0.0093 0.0172 0.04383 0.00507 0.00677 0.00721 0.00574 0.03911 0.00616 0.00692 0.00898 0.00739

Test Suite Size Branch Coverage Statement Coverage

t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 25 125 643 2851 10630 42.10% 59.52% 40.76% 59.38% 60.86% 50.87% 68.63% 49.46% 68.36% 69.64%

Q1 25 125 652 2868 10660 52.06% 60.30% 59.55% 60.86% 60.86% 60.71% 69.22% 68.73% 69.64% 69.64%

Median 25 126 655 2873 10669 54.88% 60.56% 60.84% 60.86% 60.86% 64.31% 69.44% 69.64% 69.64% 69.64%

Q3 25 126 657 2880 10683 56.93% 60.77% 60.86% 60.86% 60.86% 66.44% 69.57% 69.64% 69.64% 69.64%

Max 25 128 664 2902 10730 59.52% 60.86% 60.86% 60.86% 60.86% 68.90% 69.64% 69.64% 69.64% 69.64%

Spread 0 3 21 51 100 0.17421 0.01340 0.20102 0.01479 0.00000 0.18029 0.01005 0.20174 0.01273 0.00000

StdDev 0.0000 0.7102 3.9354 10.4760 21.0278 0.03334 0.00313 0.04297 0.00207 0.00000 0.03549 0.00245 0.04250 0.00159 0.00000

RelStdDev 0.0000 0.0056 0.0060 0.0036 0.0020 0.06075 0.00516 0.07063 0.00341 0.00000 0.05518 0.00353 0.06102 0.00228 0.00000

Test Suite Size Branch Coverage Statement Coverage

In case of fc.exe, there is one exception to the overall increasing

trend and we observe that both the minimum and median

coverage of t=4 is lower than that of t=3. However, running a

two-tailed t-test on the samples indicates that these metrics are

not statistically different at 95% confidence. The same way, the

difference between medians for t=4 and t=5 are not statistically

significant. Nevertheless, these may not preclude an observer

of a much smaller sample (a single test suite per t for a given

program in the worst case) to conclude otherwise.

As we mentioned before, the results for find.exe are unusual in

general with only a small number of coverage percentages

around which the program execution coalesces. This possibly

indicates that the configuration of factors and levels is not

penetrating the program’s functionality deep enough, stopping

execution too early for any meaningful testing to occur. Such

indications would be very easy to miss when testing with only

one test suite per t as the statement coverage of find.exe could

be considered “good enough” at 64%. This aspect requires

further study.

Low cardinality of a set of achieved total coverage rates may

indicate that the description of factors and levels is not

adequately reflecting the complexity of the program.

With the qualification that we might be performing only

shallow testing on find.exe, the results still conform to majority

of the intuitions regarding changes in test suites sizes and

coverage. Also here, as it is the case for fc.exe, the maximum

coverage achieved by t=3..5 is not different than t=2. However,

increasing frequency of achieving higher-order combinations

with increasing t mean that the coverage minima and coverage

averages are generally higher for higher t. It is likely a side-

effect of increasing test suite size with increasing t.

findstr.exe exhibits an aberration, already mentioned earlier, of

t=3 test suites having a large portion of the resulting test suites

having a significantly lower minimum than any t, including t=1

(!). The case is made stronger when perusing the detailed

coverage data for findstr.exe. For t=3, even with 654 tests on

average, we managed to produce 2 test suites with 40.76%

branch and 49.46% statement coverage which is substantially

lower than the maximum achieved by a t=3 suite of 60.86% and

69.64% branch and statement respectively. Moreover, such low

coverage is well below the minimums achieved by t=2 and

somewhat lower than any of the t=1 suites.

This indicates that there might be cases where a relatively high

strength t of a combinatorial design does not guarantee high

penetration of the functionality of the program. One has to be

aware of this phenomenon and take preventing steps;

practitioners would be well-served by trying several different

test suites of nominally the same strength t as to avoid such

degenerate cases.

If possible, many different test suites should be created from

the same domain description and for the same t to avoid

accidentally stumbling into an artificially low coverage

situation.

Question 3: Is code coverage achieved by t=k and t=k+1

statistically distinguishable in all (or even most) cases?

attrib.exe - branch coverage

t=1 different different different different

 t=2 different different different

 t=3 different different

 t=4 different

 t=5

attrib.exe - statement coverage

t=1 different different different different

 t=2 different different different

 t=3 different different

 t=4 different

 t=5

fc.exe - branch coverage

t=1 different different different different

 t=2 different different different

 t=3 same same

 t=4 same

 t=5

fc.exe - statement coverage

t=1 different different different different

 t=2 same same same

 t=3 same same

 t=4 same

 t=5

findstr.exe - branch coverage

t=1 different different different different

 t=2 different different different

 t=3 different different

 t=4 same

 t=5

findstr.exe - statement coverage

t=1 different different different different

 t=2 different different different

 t=3 different different

 t=4 same

 t=5

Table 5. Results of comparing medians of coverage achieved by t-

way test suites

Comparing medians of coverage for each program and t-way

test suites reveals that in many cases, the median coverage for

t=k is not statistically different than t=k+1 and often even

t=k+2. Since the results for find.exe indicate it is an abnormal

case with likely low quality of testing provided by the chosen

test suite, we are excluding find.exe from this analysis.

The results, which are summarized in Table 5, suggest that

when generating t-way test suites, there’s a clear benefit to

moving from t=1 to t=2 as far as coverage improvement. In

some cases, the same benefit persist as t increases beyond 2

however it seems to have diminishing returns. The exact cut off

point is program specific.

The benefit of extra coverage must be evaluated against the

much increased size of test suites as one attempts higher

values of t. A randomly generated test suite at t=5 may be

indistinguishable in terms of coverage from a suite with t=4

despite significantly higher cost to execute.

Question 4: Are there qualitative and quantitative differences

between non-trivial t-way test designs (t=2 and higher) and

simpler test strategies like each-choice (t=1).

The specific configuration of resulting test cases, even though

nominally covering the same levels of all factors heavily

influences the branch and statement coverage numbers for t=1.

In all studied cases however the “low coverage outliers” are a

smaller proportion of all generated test suites and often the

coverage difference between Min and Q1 is higher than Q1 –

Max indicating a skew: a large concentration of low-coverage

outliers below the 25th percentile of test suites.

The min-max spread of achieved coverage percentages for each

t, exhibits a downward trend. Also, there is a pronounced

difference in variance between t=1 (each-choice) test suites and

t>=2 (pairwise and higher orders) with t>=2 having

substantially lower variance and maintaining relative stability

as t increases above 2.

When test suites with t=1 (each-choice) are used, they must

be varied across executions to prevent low coverage test

suites to be used accidentally.

With one exception (findstr.exe, t=3), starting at t=2 the

variance of coverage from resulting test suites narrows

significantly. The relative standard deviations of coverage for

t>1 is an order of magnitude lower than that of t=1. However,

suites generated for t=2, 3, 4, and 5 have comparable relative

standard deviations.

Test suites with t>1 provide significantly more stable levels

of coverage than t=1. t=2 is the minimum that should be

attempted for all programs.

Question 5: Is increase of coverage attributable to increasing t

or simply to the fact that more test cases get run for test suites

with higher t?

Figure 8 depicts the relationships between test suites sizes and

achieved branch coverage. Omitted here for sake of brevity are

charts depicting the relationship between size and statement

coverage; branch and statement coverage are very highly

correlated and convey the same results.

4003002001000

64.00%

63.00%

62.00%

61.00%

60.00%

59.00%

58.00%

57.00%

56.00%

Test Suite Size (t=2-5)

B
ra

n
c
h

 C
o

v
e

ra
g

e

attrib.exe

120001000080006000400020000

60.00%

55.00%

50.00%

45.00%

40.00%

Test Suite Size (t=2-5)

B
ra

n
c
h

 C
o

v
e

ra
g

e

findstr.exe

40003000200010000

68.50%

68.00%

67.50%

67.00%

66.50%

66.00%

65.50%

65.00%

64.50%

Test Suite Size (t=2-5)

B
ra

n
c
h

 C
o

v
e

ra
g

e

fc.exe

Figure 8. Scatterplots of achieved branch coverage relative to the

test suite size.

In addition, Figure 9 quantitatively summarizes correlations

between test suite size and coverage within each category

determined by t and also overall relationship of coverage with

test suite size when all results for t=2-5 are considered together.

Figure 9. Correlation between the size of generated test suites and

coverage

Within each category determined by the parameter t, we don’t

find a correlation between the size of a test suite and achieved

coverage for any of the programs. In other words, no matter

how varied test suite sizes are for each t, the achieved coverage

has little to do with the size of the resulting suite.

The results of quantifying the same relationship for t=2-5 as a

whole are more mixed. For fc.exe and findstr.exe, there isn’t

any correlation between the size of test suite and achieved

coverage. This is consistent with the results shown in Table 5

in that it supports the claim that there are not statistically

significant differences in branch coverage achieved by fc.exe

for t=3-5 and by findstr.exe for t=4-5; no matter the test suite

size.

For attrib.exe, we find evidence of correlation between the size

of a test suite and coverage when t=2-5 are evaluated together.

This result suggests a possibility that at least for some

programs, it is not the t-wise fault model but rather the

ability of the t-wise methods to generate large and

diversified test suites that enables achieving greater

coverage.

Threads to Validity

This study reflects the results collected when testing four

relatively similar utilities. All are command-line tools with

small to medium size and complexity of code. All models were

developed using black-box approach i.e. by examining the

inputs of the programs and not their implementation neither was

the environment in which they run modelled in any way.

In addition, even though, wherever appropriate, a number of

interactions was excluded from models by using constraints,

there was no attempt to model negative testing scenarios. This

study is focused on two often used code coverage metrics,

namely statement and branch coverage and even though the

input models used reflect real-world test configurations for

each, they are dependent on a skill of the domain modeler.

Conclusions and Future Work
The primary criterion of combinatorial test designs, namely to

cover all t-way combinations, does not preclude from

generating test suites that result in differences in achieved code

coverage. Researchers and practitioners must realize this

fundamental property and adjust expectations accordingly. In

addition, when assessing effectiveness of combinatorial testing

with coverage metrics using methodologies that might result in

creating variable test suite sizes, it would be prudent to generate

many t-way test suites and report the distributions of coverage

as to provide to the reader more precise information about the

stability of achieved coverage.

As a result of this study, we found and described several

properties of the combinatorial test generation technique that

are related to the fact that many different and still conforming

to t-wise criterion test suites, can be generated for the same

description of the SUT. We included general advice for

researchers and practitioners that stem from these findings.

An attempt to quantify if the same effects are exhibited when

using “defects found” as a measure of test suite effectiveness is

left as possible future work. As well as the matter of

understanding the exact relationship between sizes of test suites

generated by t-wise methods and coverage; including

identifying the conditions under which this relationship

supports the claim of t-wise methods of being more efficient

and effective than other techniques like random testing. This

study can also be extended to cover negative testing scenarios

which could help better understand the coverage properties of

testing the error paths in relation to the combinatorial strength

of test suites.

In addition, it will be advantageous to conclusively determine

reasons of the large coverage variance exhibited by some of the

test targets and reasons for sometimes generating low coverage

suites that nominally still cover all t-way combinations.

Lastly, following the finding that achieved levels of coverage

for one of the programs varied very little in comparison to other

programs, a follow up study should explore this attribute as a

more general measure of the input model quality.

References

[1] http://www.pairwise.org/tools.asp.

[2] P. E. Ammann and A. J. Offutt. Using formal methods to

derive test frames in category-partition testing. In Ninth Annual

Conference on Computer Assurance (COMPASS’94),

Gaithersburg MD, pages 69–80, 1994.

[3] J. Bach and P. Shroeder. Pairwise testing - a best practice

that isn’t. In Proceedings of the 22nd Pacific Northwest

Software Quality Conference, pages 180–196, 2004.

[4] K. Burr and W. Young. Combinatorial test techniques:

Table-based automation, test generation,

and test coverage. In Proceedings of the International

Conference on Software Testing, Analysis, and Review

(STAR), San Diego CA, 1998.

[5] K. Burroughs, A. Jain, and R. L. Erickson. Improved quality

of protocol testing through techniques of experimental design.

In Proceedings of the IEEE International Conference on

Communications (Supercomm/ICC’94), May 1-5, New

Orleans, Louisiana, pages 745–752, 1994.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.

The AETG system: An approach to testing based on

combinatorial design. IEEE Transactions On Software

Engineering, 23(7), 1997.

[7] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The

combinatorial design approach to automatic test generation.

IEEE Software, 13(5):83–87, 1996.

[8] C. J. Colbourn, M. B. Cohen, and R. C. Turban. A

deterministic density algorithm for pairwise interaction

coverage. In Proceedings of the IASTED International

Conference on Software Engineering, 2004.

[9] S. R. Dalal, A. J. N. Karunanithi, J. M. L. Leaton, G. C. P.

Patton, and B. M. Horowitz. Model-based testing in practice. In

Proceedings of the International Conference on Software

Engineering (ICSE 99), New York, pages 285–294, 1999.

[10] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,

and A. Iannino. Applying design of experiments to software

testing. In Proceedings of the International Conference on

Software Engineering (ICSE 97), New York, pages 205–215,

1997.

[11] M. Grindal, J. Offutt, and S. F. Andler. Combination

testing strategies - a survey. GMU Technical Report, 2004.

[12] A. Hartman and L. Raskin. Problems and algorithms for

covering arrays. Discrete Mathematics, 284(1-3):149–56, 2004.

[13] R. Kuhn and M. J. Reilly. An investigation of the

applicability of design of experiments to software testing. In

Proceedings of the 27th NASA/IEEE Software Engineering

Workshop, NASA Goddard Space Flight Center, 2002.

[14] Y. Lei and K. C. Tai. In-factor-order: a test generation

strategy for pairwise testing. In Proceedings of the Third IEEE

International High-Assurance Systems Engineering

Symposium, pages 254–261, 1998.

[15] Y. K. Malaiya. Antirandom testing: getting the most out of

black-box testing. In Sixth International Symposium on

Software Reliability Engineering, Oct. 24-27, 1995, pages 86–

95, 1996.

[16] R. Mandl. Orthogonal latin squares: an application of

experiment design to compiler testing. Communications of the

ACM, 28(10):1054–1058, 1985.

[17] G. J. Myers. The Art of Software Testing. John Wiley and

Sons, 1978.

[18] G. Sherwood. Effective testing of factor combinations. In

Proceedings of the Third International Conference on Software

Testing, Analysis and Review, Washington, DC, pages 133–

166, 1994.

[19] H. Shimokawa and S. Satoh. Method of setting software

test cases using the experimental design approach. In

Proceedings of the Fourth Symposium on Quality Control in

Software Production, Federation of Japanese Science and

Technology, pages 1–8, 1984.

[20] B. Smith, M. S. Feather, and N. Muscettola. Challenges

and methods in testing the remote agent planner. In Proceedings

of AIPS, 2000.

[21] K. C. Tai and Y. Lei. A test generation strategy for pairwise

testing. IEEE Transactions of Software Engineering, 28(1),

2002.

[22] K. Tatsumi. Test case design support system. In

Proceedings of the International Conference on Quality Control

(ICQC), Tokyo, 1987, pages 615–620, 1987.

[23] D. R. Wallace and D. R. Kuhn. Failure modes in medical

device software: an analysis of 15 years of recall data

International Journal of Reliability, Quality and Safety

Engineering, 8(4), 2001.

[24] A. W. Williams. Determination of test configurations for

pair-wise interaction coverage. In Proceedings of the 13th

International Conference on Testing Communicating Systems

(Test-Com 2000), pages 59–74, 2000.

[25] A. W. Williams and R. L. Probert. A practical strategy for

testing pair-wise coverage of network interfaces. In

Proceedings of the Seventh International Symposium on

Software Reliability Engineering (ISSRE ’96), page 246, 1996.

[26] J. Czerwonka. Pairwise testing in real world. Practical

extensions to test case generators. Proceedings of 24th Pacific

Northwest Software Quality Conference, 2006.

[27] J. Yan, J. Zhang. Backtracking Algorithms and Search

Heuristics to Generate Test Suites for Combinatorial Testing.

30th Annual International Computer Software and Applications

Conference (COMPSAC'06), 2006.

[28] T. J. Ostrand and M. J. Balcer. The category-partition

method for specifying and generating functional tests.

Communications of the ACM 31, Issue 6. June 1988, pages

676-686.

[29] C. Nie and H. Leung. A survey of combinatorial testing.

ACM Computing Surveys, Volume 43 (2), Article 11, February

2011.

