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Abstract 

Combinatorial test suite design is a test generation technique, 

popular in part due to its ability to achieve coverage and defect 

finding power approximating that of exhaustive testing while 

keeping test suite sizes constrained. In recent years, there have 

been numerous advances in combinatorial test design 

techniques, in terms of efficiency and usability of methods used 

to create them as well as in understanding of their benefits and 

limitations when applied to real world software. Numerous case 

studies have appeared presenting practical applications of the 

combinatorial test suite design techniques, often comparing 

them with manually-created, random, or exhaustive suites. 

These comparisons are done either in terms of defects found or 

by applying some code coverage metric. Since many different 

and valid combinatorial test suites of strength t can be created 

for a given test domain, the question whether they all have the 

same coverage properties is a pertinent one. 

 

In this paper we explore the stability of size and coverage of 

combinatorial test suites. We find that in general coverage 

levels increase and coverage variability decreases with 

increasing order of combinations t; however we also find 

exceptions with implications for practitioners. In addition, we 

explore cases where coverage achieved by combinatorial test 

suites of order t applied to the same program is not different 

from test suites of order t-1. Lastly, we discuss these findings 

in context of the ongoing practice of applying code coverage 

metrics to measure effectiveness of combinatorial test suites. 
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D.2 [Software]: Software Engineering; D.2.5 [Software 

Engineering]: Testing and Debugging 
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Verification, Design, Metrics  
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Introduction 

A set of possible inputs for any nontrivial piece of software is 

often too large to be tested exhaustively. Techniques like 

equivalence partitioning [28] and boundary-value analysis [17] 

help convert a large number of test levels into a much smaller 

set with comparable defect-detection power. Still, if software 

under test (SUT) can be influenced by a number of such factors, 

exhaustive testing again becomes impractical.  

 

Over the years, a number of combinatorial strategies have been 

devised to help engineers choose subsets of input combinations 

that would maximize the probability of detecting defects: 

random testing [16], each-choice and base choice [2], anti-

random [15] and finally combinatorial testing strategies with 

pairwise testing being the most prominent among these. 

 

Pairwise testing strategy is defined as follows: 

 

Given a set of M test factors: f1, f2, ..., fM, with each factor fi 

having Li discrete levels: fi = { Li,1, ..., li, Li }, a set of tests R 

(matrix) is produced. Each test (row) in R by definition contains 

M test levels, one for each test factor fi, and collectively all tests 

in R cover all possible pairs of test factor levels. Or more 

formally: for each pair of factor levels li,p and lj,q, where 1 ≤ p 

≤ Li, 1 ≤ q ≤ Lj , and i ≠ j there exists at least one row in R that 

contains both li,p and lj,q. 

 

This concept can easily be extended from covering all possible 

pairs to covering all t-way combinations where 1 ≤ t ≤ M. When 

t = 1, the strategy is equivalent to each-choice; if t = M, the 

resulting test suite is said to be exhaustive. 

 

Covering all pairs of tested factor levels has been extensively 

studied. Mandl described using orthogonal arrays in testing of 

a compiler [16]. Tatsumi, in his paper on Test Case Design 

Support System used in Fujitsu Ltd [22], talks about two 

standards for creating test arrays: (1) with all combinations 

covered exactly the same number of times (orthogonal arrays) 

and (2) with all combinations covered at least once. When 

making that crucial distinction, he references an earlier paper 

by Shimokawa and Satoh [19]. 

 

Over the years, numerous case studies of combinatorial test 

designs have shown the technique to be an efficient and 

effective strategy of choosing tests [4, 5, 6, 7, 10, 13, 23]. Often 

they make use of coverage metrics [4, 6, 7] as a way of 

comparing combinatorial testing to other methods including the 

aforementioned base-choice, each-choice and exhaustive 

testing. Irrespective of the chosen coverage metric, given the 

basic property of combinatorial design namely that there are 

possibly very many possible test suites meeting the criteria for 

covering all t-way combinations derived from the same SUT 

description, a question remains: how stable and reliable are 

measurements of coverage for a given program and 

combinatorial strength t. The same question pertains to defect 

finding power as well, which is often used as another measure 



of effectiveness of the strategy, however we decided to focus 

on the coverage metrics in this paper. 

 

Problem Description 

Combinatorial test case generators [1] attempt to create as small 

a test suite as possible while still maintaining the property of 

covering all allowed t-way combinations of inputs. Multiple 

strategies for achieving this result were attempted and 

implemented over the years. They range from heuristics [7, 8, 

26], through deterministic methods [12, 14] to applying 

exhaustive search in an attempt to find the globally optimal 

solution [27]. A survey of available methods can be found in 

[11] and [29]. 

 

The fault model assumed when applying combinatorial test 

designs states that defects occur when factors of the software-

under-test interact. The first non-trivial test design of this kind, 

the pairwise testing design attempts to test all possible 2-way 

interactions of factors for that very reason. 

 

Test suites with t=k+1 subsume all combinations tested by t=k. 

It follows therefore, that if we assume the fault model to be 

holding for a given SUT, t=k+1 test suite should find at least 

the same number of (and possibly more) defects stemming from 

factor-interactions. Since we often use code coverage as a 

measure of goodness of a test suite (relative to other suites), the 

key questions is whether the same assumption of increasing 

value of a metric with increasing t, holds for code coverage as 

well. 

 

Moreover, the community is often focused on methods for 

finding the smallest t-way test suite. We need to understand the 

tradeoffs we are making between the test suite size and 

coverage especially in light of studies suggesting that 

effectiveness of pairwise testing can be approximated by 

random testing [3]. 

 

We explore this topic with the following questions: 

 

Question 1: For a given SUT, how does the maximum code 

coverage change with the interaction strength t? 

 

Question 2: What is the range of coverage achieved by a 

sample of test suites generated for each strength t? Does code 

coverage variance change with t? 

 

Question 3: Is code coverage achieved by t=k and t=k+1 

statistically distinguishable in all (or even most) cases? 

 

Question 4: Are there qualitative and quantitative differences 

between non-trivial t-way test designs (t=2 and higher) and 

simpler test strategies like each-choice (t=1). 

 

How code coverage behaves with increasing t has implications 

on the way we measure and report on t-way test designs in our 

case studies. The issue of using coverage metrics as a way to 

evaluate quality of any test suite notwithstanding, we would 

like to understand whether typical coverage metrics are even 

useful as a measurement tool for reliably discriminating 

between t=k and t=k+1, therefore we ask: 

 

Question 5: Is increase of coverage attributable to increasing t 

or simply to the fact that more unique test cases get run for test 

suites with higher t? 

 

Behind all the questions is our desire to understand how to best 

report on successes and challenges of combinatorial test design 

methods. We will propose revised practices of generating t-way 

test suites and measuring their effectiveness using coverage. 

 

Experimental Setup 
Four utilities included in the standard Windows 7 operating 

system installation were chosen for the experiments: attrib.exe, 

which is a tool for setting attributes on files, fc.exe, a file 

comparison tool, and two file content search tools: find.exe, 

findstr.exe. For each, a description of inputs was created using 

PICT’s [26] input modeling format. PICT was chosen as it uses 

a greedy heuristic and can be configured to find multiple t-way 

covering test suites, each corresponding to some local optimum 

of the search space. The choice of a tool is dictated by needs of 

the experimental setup; the results apply to combinatorial 

designs irrespective of the employed tool. 

 
$ fc.exe /? 
Compares two files or sets of files and displays the differences 
between them 
 
FC [/A] [/C] [/L] [/LBn] [/N] [/OFF[LINE]] [/T] [/U] [/W] [/nnnn] 
   [drive1:][path1]filename1 [drive2:][path2]filename2 
FC /B [drive1:][path1]filename1 [drive2:][path2]filename2 
 
  /A       Displays only first and last lines for each set of 
differences. 
  /B         Performs a binary comparison. 
  /C         Disregards the case of letters. 
  /L         Compares files as ASCII text. 
  /LBn    Sets the maximum consecutive mismatches to the 
specified number of lines. 
  /N         Displays the line numbers on an ASCII comparison. 
  /OFF[LINE] Do not skip files with offline attribute set. 
  /T         Does not expand tabs to spaces. 
  /U         Compare files as UNICODE text files. 
  /W         Compresses white space (tabs and spaces) for 
comparison. 
  /nnnn      Specifies the number of consecutive lines that must 
match after a mismatch. 
  [drive1:][path1]filename1 
      Specifies the first file or set of files to compare. 
  [drive2:][path2]filename2 
      Specifies the second file or set of files to compare. 

Figure 1. Arguments and functionality of fc.exe 

 

The input description in PICT-compatible format for fc.exe is 

depicted in Figure 2. Each row of the input model corresponds 

to a parameter that influences the functionality of fc.exe. The 

model covers all possible arguments that a user of this utility 

can provide (which are shown in Figure 1) and contains seven 

factors with two possible values each, one factor with three 

possible values, one with five and two factors with nine values. 



To summarize this model complexity, we will use the following 

notation: 27 31 51 92. 

 
BOUNDARIES: <empty>, /A 
COMPARISON: <empty>, /B, /L 
CASE_INSENSITIVE: <empty>, /C 
MAX_MISMATCH: <empty>, /LB0, /LB1, /LB2, /LB10 
LINE_NUMBERS: <empty>, /N 
OFFLINE: <empty>, /OFF 
TABS_TO_SPACES: <empty>, /T 
COMPARE_AS_UNICODE: <empty>, /U 
COMPRESS_WHITE: <empty>, /W 
FILE1: 1.txt,2.txt,3.txt,4.txt,5.txt,6.txt,7.txt,8.txt,9.txt 
FILE2: 1.txt,2.txt,3.txt,4.txt,5.txt,6.txt,7.txt,8.txt,9.txt 

Figure 2. Input definition (model) for fc.exe 

 

Functionalities of the other three utilities were similarly 

examined and modelled. 

 

For each program and its input model 100 possible test suites of 

combinatorial order t were generated, using a PICT feature 

allowing the user to initialize (seed) the greedy heuristic used 

for test suite generation. At each iteration, a different seed value 

was provided. There was no attempt to ensure that chosen seeds 

resulted in creating 100 unique test suites. This has an effect of 

mimicking the real-life distribution of test suites resulting from 

PICT executions. 

 
for each software-under-test P 
   for t = 1..5       // order of combinations   
      for s = 1..100  // generation seed 
         Initialize PICT with seed[s] 
         Generate t-way covering test suite of P 

Figure 3. Algorithm for generating test suites for a given SUT 

 

Each of the resulting 500 test suites (per program) was then 

executed against the software-under-test and statement and 

branch coverage collected. 

 

Descriptive statistics for each of the programs are included in 

Tables 1-4. These include counts of test cases generated, branch 

and statement coverage achieved by test suites for each t=1..5. 

Each metric is summarized by providing the Minimum, Q1 

(first quartile), Median (second quartile), Q3 (third quartile) and 

the Maximum values. In addition, for branch and statement 

coverage, these metrics are visualized in box-plots 

accompanying Tables 1-4. Measures of variance are also 

provided in the tables, including the spread between Min and 

Max values and the standard deviation and relative standard 

deviation of a metric. 

 

Results 

Program attrib.exe was tested with the configuration of factors 

and levels: 22 34 41 and the results are provided in Table 1. The 

test suites created for t=1 are all of size 4, which corresponds to 

the size of the largest factor and a varied number of test cases 

for each t>1, which is again expected. Both branch and 

statement coverage appear to be achieving higher maximums 

with increasing t in line with our intuition. In addition, the 

minimum coverage achieved by test suites also rises with 

increasing t at what appears to be a faster rate than the 

maximum. This results in narrowing of the spread between min 

and max coverage as t increases; the relative standard deviation 

remains somewhat stable for all t>2 (0.012-0.016 for branch 

coverage) and is much lower than the standard deviation of t=1 

(0.081). 
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Figure 4. Histogram of branch coverage for attrib.exe 
 

Of note is the fact that even though max coverage for t=4 and 

t=5 is the same (63.29% and 73.46% for branch and statement 

coverage respectively), in case of t=5 test suites are much more 

likely to achieve the maximum coverage. 

 

fc.exe was tested with a 27 31 51 92 configuration of factors. The 

results are similar to that of attrib.exe with t=1 having large 

coverage variance relative to t>2. Unlike attrib.exe, test suites 

created for fc.exe achieve maximum coverage at t=2 (68.09% 

and 75.60%) and it doesn’t change with t increasing beyond 2. 

The minimum coverage has an overall rising trend with t=4 

being an exception with a single test suite achieving 66.61% 

branch coverage and the next being in line with the lowest for 

t=3 (66.70%). Interestingly, the statement coverage of this 

single “outlier” t=4 test suite did not experience the same drop 

in coverage. 
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Figure 5. Histogram of branch coverage for fc.exe 



find.exe was tested with a 24 41 181 configuration of factors and 

exhibits the same general properties as other programs however 

one should view the results for find.exe as unusual. We observe 

that branch coverage generated by 500 test suites for find.exe 

assumes only 6 possible values whereas for attrib.exe there are 

98 possible unique coverage percentages, 80 for fc.exe, and 121 

for findstr.exe. 
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Figure 6. Histogram of branch coverage for find.exe 

 

In case of find.exe, it is t=2 that exhibits higher minimum 

coverage than both t=3 and t=4. Considering the “difficulty” in 

which lower than maximum coverage can be achieved for this 

program (Q1 is equal to maximum branch and statement 

coverage for all values of t), it is likely this is a result of a 

specific random draw of the 100 test suites for t=2.  

 

Lastly, findstr.exe was tested with 21 34 41 52 251 configuration 

of factors. General trends remain the same however in case of 

t=3, the minimum branch and statement coverage are 

significantly lower than the same metrics for t=2. Moreover, the 

number of t=3 test suites with lower coverage than the 

minimum for t=2 is also significant at 24 out 100, contributing 

to large variability of coverage for t=3. This result is counter-

intuitive. 
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Figure 7. Histogram of branch coverage for findstr.exe 

Discussion 

Question 1: For a given SUT, how does code coverage change 

with t? 

 

Question 2: What is the range of coverage achieved by test 

suites generated for each strength t? Does code coverage 

variance change with t? 

 

Our intuition is that test suite sizes, even though growing 

significantly with t in absolute terms will also exhibit larger 

spreads between minimum and maximum test suite size with 

growing t. However they might exhibit at least stable, if not 

lower, relative variance of test suites sizes within each set of 

100. In addition, for coverage, both the minimum and the 

maximum coverage achieved by test suites created for each t 

should increase with t. The maximum coverage increases 

should become smaller (in absolute as well as relative terms) 

with growing t, which is consistent with diminishing returns of 

testing with test suites created for larger values of t. Lastly, our 

intuition is that both branch and statement coverage achieve at 

least the same or, in significantly many cases, higher 

maximums with increasing t for all tested programs. 

 

attrib.exe and fc.exe seem to conform best to our intuition and 

exhibit the theorized behavior in all aspects. The absolute size 

difference between the smallest and the largest test suite for a 

given t, increases with t but that is a side-effect of having much 

larger test suites as t increases. Compare for example test suites 

sizes for t=2 and t=5 for attrib.exe. In t=2 case, the range of 

sizes is 15 to 18 (spread of 3) and for t=5 it is 351 to 373 test 

cases (spread of 22). However, the relative standard deviations 

exhibit a downward trend with the increasing t suggesting 

relative tightening of the range of possible test suites sizes as 

one attempts to increase t. 

 

In addition to the increases in maximum coverage, the 

minimum coverage achieved by test suites for these programs 

also rises with increasing t and, at what appears to be a faster 

rate than the maximum. This results in narrowing of the spread 

between minimum and maximum coverage as t increases; the 

relative standard deviation remains somewhat stable for all t>2 

(0.012-0.016 for attrib.exe’s branch coverage) and much lower 

than the standard deviation for t=1 (0.081). 

 

Of note is the fact that even though the maximum coverage for 

t=4 and t=5 is the same (63.29% and 73.46% for branch and 

statement coverage respectively), in case of t=5 test suites are 

much more likely to achieve the maximum coverage. In other 

words, for t=4 achieving the maximum coverage of 73.46% is 

still unusual while it is the norm for t=5 suites. 

 

 

 



Table 1. Descriptive statistics for attrib.exe 
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Table 2. Descriptive statistics for fc.exe 

 
 

t=5t=4t=3t=2t=1

70.00%

67.50%

65.00%

62.50%

60.00%

57.50%

55.00%

Branch coverage (fc.exe)

       
t=5t=4t=3t=2t=1

75.00%

72.50%

70.00%

67.50%

65.00%

Statement coverage (fc.exe)

 

t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 4 15 51 149 351 40.34% 56.52% 59.06% 60.27% 61.11% 50.55% 67.77% 69.35% 70.30% 71.09%

Q1 4 16 53 152 359 49.61% 57.49% 59.90% 60.63% 61.23% 61.93% 68.68% 70.30% 70.62% 71.09%

Median 4 16 54 154 363 52.05% 58.15% 60.14% 61.05% 63.29% 63.74% 69.35% 70.46% 71.09% 73.46%

Q3 4 16 55 156 365 54.71% 58.94% 60.51% 61.23% 63.29% 66.39% 69.83% 71.09% 71.09% 73.46%

Max 4 18 58 159 373 57.13% 60.14% 62.56% 63.29% 63.29% 68.88% 71.72% 73.46% 73.46% 73.46%

Spread 0 3 7 10 22 0.16787 0.03623 0.03502 0.03019 0.02174 0.18325 0.03949 0.04107 0.03160 0.02370

StdDev 0.0000 0.7410 1.6792 2.5976 4.6027 0.04238 0.00867 0.00736 0.00936 0.01012 0.04548 0.00827 0.00876 0.01044 0.01170

RelStdDev 0.0000 0.0463 0.0311 0.0169 0.0127 0.08142 0.01491 0.01223 0.01533 0.01599 0.07135 0.01192 0.01244 0.01469 0.01592

Statement CoverageBranch CoverageTest Suite Size

t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 9 81 405 1240 3579 53.79% 64.69% 66.70% 66.61% 66.87% 63.41% 73.19% 74.45% 74.45% 74.45%

Q1 9 81 405 1247 3597 59.31% 67.65% 67.92% 68.09% 68.09% 69.19% 75.60% 75.60% 75.60% 75.60%

Median 9 81 405 1250 3607 61.42% 67.83% 68.00% 68.09% 68.09% 70.83% 75.60% 75.60% 75.60% 75.60%

Q3 9 81 405 1254 3613 63.21% 67.92% 68.09% 68.09% 68.09% 72.15% 75.60% 75.60% 75.60% 75.60%

Max 9 81 407 1263 3641 66.52% 68.09% 68.09% 68.09% 68.09% 74.91% 75.60% 75.60% 75.60% 75.60%

Spread 0 0 2 23 62 0.12729 0.03400 0.01395 0.01482 0.01221 0.11507 0.02417 0.01151 0.01151 0.01151

StdDev 0.0000 0.0000 0.4440 4.8384 11.5704 0.02676 0.00409 0.00282 0.00408 0.00345 0.02422 0.00308 0.00273 0.00387 0.00345

RelStdDev 0.0000 0.0000 0.0011 0.0039 0.0032 0.04356 0.00603 0.00415 0.00599 0.00507 0.03420 0.00408 0.00361 0.00512 0.00457

Test Suite Size Branch Coverage Statement Coverage



Table 3. Descriptive statistics for find.exe 
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Table 4. Descriptive statistics for findstr.exe 
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t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 18 72 161 402 632 30.47% 53.24% 51.66% 52.89% 53.59% 39.02% 62.75% 61.86% 62.53% 62.97%

Q1 18 72 164 408 647 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Median 18 72 166 411 656 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Q3 18 72 169 414 663 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Max 18 72 176 423 682 54.47% 54.47% 54.47% 54.47% 54.47% 64.30% 64.30% 64.30% 64.30% 64.30%

Spread 0 0 15 21 50 0.23993 0.01226 0.02802 0.01576 0.00876 0.25277 0.01552 0.02439 0.01774 0.01330

StdDev 0.0000 0.0000 2.8023 3.8059 11.3067 0.02387 0.00276 0.00369 0.00392 0.00313 0.02515 0.00396 0.00445 0.00578 0.00475

RelStdDev 0.0000 0.0000 0.0169 0.0093 0.0172 0.04383 0.00507 0.00677 0.00721 0.00574 0.03911 0.00616 0.00692 0.00898 0.00739

Test Suite Size Branch Coverage Statement Coverage

t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5 t=1 t=2 t=3 t=4 t=5

Min 25 125 643 2851 10630 42.10% 59.52% 40.76% 59.38% 60.86% 50.87% 68.63% 49.46% 68.36% 69.64%

Q1 25 125 652 2868 10660 52.06% 60.30% 59.55% 60.86% 60.86% 60.71% 69.22% 68.73% 69.64% 69.64%

Median 25 126 655 2873 10669 54.88% 60.56% 60.84% 60.86% 60.86% 64.31% 69.44% 69.64% 69.64% 69.64%

Q3 25 126 657 2880 10683 56.93% 60.77% 60.86% 60.86% 60.86% 66.44% 69.57% 69.64% 69.64% 69.64%

Max 25 128 664 2902 10730 59.52% 60.86% 60.86% 60.86% 60.86% 68.90% 69.64% 69.64% 69.64% 69.64%

Spread 0 3 21 51 100 0.17421 0.01340 0.20102 0.01479 0.00000 0.18029 0.01005 0.20174 0.01273 0.00000

StdDev 0.0000 0.7102 3.9354 10.4760 21.0278 0.03334 0.00313 0.04297 0.00207 0.00000 0.03549 0.00245 0.04250 0.00159 0.00000

RelStdDev 0.0000 0.0056 0.0060 0.0036 0.0020 0.06075 0.00516 0.07063 0.00341 0.00000 0.05518 0.00353 0.06102 0.00228 0.00000

Test Suite Size Branch Coverage Statement Coverage



    

In case of fc.exe, there is one exception to the overall increasing 

trend and we observe that both the minimum and median 

coverage of t=4 is lower than that of t=3. However, running a 

two-tailed t-test on the samples indicates that these metrics are 

not statistically different at 95% confidence. The same way, the 

difference between medians for t=4 and t=5 are not statistically 

significant. Nevertheless, these may not preclude an observer 

of a much smaller sample (a single test suite per t for a given 

program in the worst case) to conclude otherwise. 

 

As we mentioned before, the results for find.exe are unusual in 

general with only a small number of coverage percentages 

around which the program execution coalesces. This possibly 

indicates that the configuration of factors and levels is not 

penetrating the program’s functionality deep enough, stopping 

execution too early for any meaningful testing to occur. Such 

indications would be very easy to miss when testing with only 

one test suite per t as the statement coverage of find.exe could 

be considered “good enough” at 64%. This aspect requires 

further study. 

 

Low cardinality of a set of achieved total coverage rates may 

indicate that the description of factors and levels is not 

adequately reflecting the complexity of the program. 

 

With the qualification that we might be performing only 

shallow testing on find.exe, the results still conform to majority 

of the intuitions regarding changes in test suites sizes and 

coverage. Also here, as it is the case for fc.exe, the maximum 

coverage achieved by t=3..5 is not different than t=2. However, 

increasing frequency of achieving higher-order combinations 

with increasing t mean that the coverage minima and coverage 

averages are generally higher for higher t. It is likely a side-

effect of increasing test suite size with increasing t. 

 

findstr.exe exhibits an aberration, already mentioned earlier, of 

t=3 test suites having a large portion of the resulting test suites 

having a significantly lower minimum than any t, including t=1 

(!). The case is made stronger when perusing the detailed 

coverage data for findstr.exe. For t=3, even with 654 tests on 

average, we managed to produce 2 test suites with 40.76% 

branch and 49.46% statement coverage which is substantially 

lower than the maximum achieved by a t=3 suite of 60.86% and 

69.64% branch and statement respectively. Moreover, such low 

coverage is well below the minimums achieved by t=2 and 

somewhat lower than any of the t=1 suites. 

 

This indicates that there might be cases where a relatively high 

strength t of a combinatorial design does not guarantee high 

penetration of the functionality of the program. One has to be 

aware of this phenomenon and take preventing steps; 

practitioners would be well-served by trying several different 

test suites of nominally the same strength t as to avoid such 

degenerate cases. 

 

If possible, many different test suites should be created from 

the same domain description and for the same t to avoid 

accidentally stumbling into an artificially low coverage 

situation. 

 

Question 3: Is code coverage achieved by t=k and t=k+1 

statistically distinguishable in all (or even most) cases? 

 

 

 
attrib.exe - branch coverage 

t=1 different different different different 

 t=2 different different different 

  t=3 different different 

   t=4 different 

    t=5 

attrib.exe - statement coverage 

t=1 different different different different 

 t=2 different different different 

  t=3 different different 

   t=4 different 

    t=5 

fc.exe - branch coverage 

t=1 different different different different 

 t=2 different different different 

  t=3 same same 

   t=4 same 

    t=5 

fc.exe - statement coverage 

t=1 different different different different 

 t=2 same same same 

  t=3 same same 

   t=4 same 

    t=5 

findstr.exe - branch coverage 

t=1 different different different different 

 t=2 different different different 

  t=3 different different 

   t=4 same 

    t=5 

findstr.exe - statement coverage 

t=1 different different different different 

 t=2 different different different 

  t=3 different different 

   t=4 same 

    t=5 

Table 5. Results of comparing medians of coverage achieved by t-

way test suites 

 

Comparing medians of coverage for each program and t-way 

test suites reveals that in many cases, the median coverage for 

t=k is not statistically different than t=k+1 and often even 

t=k+2. Since the results for find.exe indicate it is an abnormal 

case with likely low quality of testing provided by the chosen 

test suite, we are excluding find.exe from this analysis. 

 

 



The results, which are summarized in Table 5, suggest that 

when generating t-way test suites, there’s a clear benefit to 

moving from t=1 to t=2 as far as coverage improvement. In 

some cases, the same benefit persist as t increases beyond 2 

however it seems to have diminishing returns. The exact cut off 

point is program specific. 

 

The benefit of extra coverage must be evaluated against the 

much increased size of test suites as one attempts higher 

values of t. A randomly generated test suite at t=5 may be 

indistinguishable in terms of coverage from a suite with t=4 

despite significantly higher cost to execute. 

 

Question 4: Are there qualitative and quantitative differences 

between non-trivial t-way test designs (t=2 and higher) and 

simpler test strategies like each-choice (t=1). 

 

The specific configuration of resulting test cases, even though 

nominally covering the same levels of all factors heavily 

influences the branch and statement coverage numbers for t=1. 

In all studied cases however the “low coverage outliers” are a 

smaller proportion of all generated test suites and often the 

coverage difference between Min and Q1 is higher than Q1 – 

Max indicating a skew: a large concentration of low-coverage 

outliers below the 25th percentile of test suites. 

 

The min-max spread of achieved coverage percentages for each 

t, exhibits a downward trend. Also, there is a pronounced 

difference in variance between t=1 (each-choice) test suites and 

t>=2 (pairwise and higher orders) with t>=2 having 

substantially lower variance and maintaining relative stability 

as t increases above 2.  

 

When test suites with t=1 (each-choice) are used, they must 

be varied across executions to prevent low coverage test 

suites to be used accidentally.  

 

With one exception (findstr.exe, t=3), starting at t=2 the 

variance of coverage from resulting test suites narrows 

significantly. The relative standard deviations of coverage for 

t>1 is an order of magnitude lower than that of t=1. However, 

suites generated for t=2, 3, 4, and 5 have comparable relative 

standard deviations. 

 

Test suites with t>1 provide significantly more stable levels 

of coverage than t=1. t=2 is the minimum that should be 

attempted for all programs. 

 

Question 5: Is increase of coverage attributable to increasing t 

or simply to the fact that more test cases get run for test suites 

with higher t? 

 

Figure 8 depicts the relationships between test suites sizes and 

achieved branch coverage. Omitted here for sake of brevity are 

charts depicting the relationship between size and statement 

coverage; branch and statement coverage are very highly 

correlated and convey the same results. 
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Figure 8. Scatterplots of achieved branch coverage relative to the 

test suite size. 

 

In addition, Figure 9 quantitatively summarizes correlations 

between test suite size and coverage within each category 

determined by t and also overall relationship of coverage with 

test suite size when all results for t=2-5 are considered together. 

 



 
Figure 9. Correlation between the size of generated test suites and 

coverage 

 

Within each category determined by the parameter t, we don’t 

find a correlation between the size of a test suite and achieved 

coverage for any of the programs. In other words, no matter 

how varied test suite sizes are for each t, the achieved coverage 

has little to do with the size of the resulting suite. 

 

The results of quantifying the same relationship for t=2-5 as a 

whole are more mixed. For fc.exe and findstr.exe, there isn’t 

any correlation between the size of test suite and achieved 

coverage. This is consistent with the results shown in Table 5 

in that it supports the claim that there are not statistically 

significant differences in branch coverage achieved by fc.exe 

for t=3-5 and by findstr.exe for t=4-5; no matter the test suite 

size. 

 

For attrib.exe, we find evidence of correlation between the size 

of a test suite and coverage when t=2-5 are evaluated together. 

This result suggests a possibility that at least for some 

programs, it is not the t-wise fault model but rather the 

ability of the t-wise methods to generate large and 

diversified test suites that enables achieving greater 

coverage. 

 

Threads to Validity 

This study reflects the results collected when testing four 

relatively similar utilities. All are command-line tools with 

small to medium size and complexity of code. All models were 

developed using black-box approach i.e. by examining the 

inputs of the programs and not their implementation neither was 

the environment in which they run modelled in any way. 

 

In addition, even though, wherever appropriate, a number of 

interactions was excluded from models by using constraints, 

there was no attempt to model negative testing scenarios. This 

study is focused on two often used code coverage metrics, 

namely statement and branch coverage and even though the 

input models used reflect real-world test configurations for 

each, they are dependent on a skill of the domain modeler. 

 

Conclusions and Future Work 
The primary criterion of combinatorial test designs, namely to 

cover all t-way combinations, does not preclude from 

generating test suites that result in differences in achieved code 

coverage. Researchers and practitioners must realize this 

fundamental property and adjust expectations accordingly. In 

addition, when assessing effectiveness of combinatorial testing 

with coverage metrics using methodologies that might result in 

creating variable test suite sizes, it would be prudent to generate 

many t-way test suites and report the distributions of coverage 

as to provide to the reader more precise information about the 

stability of achieved coverage. 

 

As a result of this study, we found and described several 

properties of the combinatorial test generation technique that 

are related to the fact that many different and still conforming 

to t-wise criterion test suites, can be generated for the same 

description of the SUT. We included general advice for 

researchers and practitioners that stem from these findings. 

 

An attempt to quantify if the same effects are exhibited when 

using “defects found” as a measure of test suite effectiveness is 

left as possible future work. As well as the matter of 

understanding the exact relationship between sizes of test suites 

generated by t-wise methods and coverage; including 

identifying the conditions under which this relationship 

supports the claim of t-wise methods of being more efficient 

and effective than other techniques like random testing. This 

study can also be extended to cover negative testing scenarios 

which could help better understand the coverage properties of 

testing the error paths in relation to the combinatorial strength 

of test suites. 

 

In addition, it will be advantageous to conclusively determine 

reasons of the large coverage variance exhibited by some of the 

test targets and reasons for sometimes generating low coverage 

suites that nominally still cover all t-way combinations. 

 

Lastly, following the finding that achieved levels of coverage 

for one of the programs varied very little in comparison to other 

programs, a follow up study should explore this attribute as a 

more general measure of the input model quality. 
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