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Abstract

Consolidation of multiple workloads, encapsulated in virtual machines
(VMs), can significantly improve efficiency in cloud infrastructures. But con-
solidation also introduces contention in shared resources such as the memory
hierarchy, leading to degraded VM performance. To avoid such degradation,
the current practice is to not pack VMs tightly and leave a large fraction of
server resource unused. This is wasteful. We present a performance preserv-
ing VM consolidation system that selectively places those VMs together that
are likely to have the least contention. This drastically reduces the amount
of wasted resources. While the problem of selecting the most suitable VM
combinations is NP-Complete, our system employs a practical method that
performs provably close to the optimal. In some scenarios resource efficiency
may trump performance and our system also implements techniques for this
case. Experimental results show that the proposed system realizes over 30%
savings in energy costs and up to 52% reduction in performance degradation
compared to consolidation algorithms that do not consider degradation.

1 Introduction

Average server utilization in many data centers is low, estimated between 5% and
15% [9]. This is wasteful because an idle server often consumes more than 50% of
its peak power [10], implying that servers at low utilization consume significantly
more energy than fewer servers at high utilization. Additionally, low utilization
implies a greater number of servers being used, resulting in wasted capital. One
solution to prevent such wastage is to migrate applications to a public or private
cloud and consolidate them on fewer servers.



The efficiency increase due to consolidation comes at a cost: a potential degra-
dation in performance due to contention in shared resources. In particular, degra-
dation due to shared caches and memory bandwidth is significant in magnitude as
has been measured for a variety of real workloads [20, 4, 32, 18, 16, 2, 29, 15, 3].
Increases in execution time by up to several tens of percent are typical, though
increases as high as 5x have also been reported.

But performance is paramount for Internet services. Measurements on Ama-
zon, Microsoft and Google services have shown that a fraction of a second increase
in latency can result in losses as high as 1% to 20% of the revenue [12, 19, 24]. A
knee-jerk reaction then is to forgo all or part of the savings from consolidation. In
Google data centers for instance, workloads that are consolidated use only 50% of
the processor cores [20]. Every other processor core is left unused simply to ensure
that performance does not degrade.

We wish to perform consolidation in a manner that preserves performance, but
does not waste excessive resources in doing so. The key intuition we rely on is that
the degradation depends on which VMs are placed together. If we place together
those VMs that interfere with each other minimally, then the excess resources left
unused to overcome degradation would be minimized. The challenges in doing
this are to (1) determine how much each VM will degrade when placed with each
possible set of VMs, where that set may be taken from among all VMs to be con-
solidated, and (2) identify the sets that lead to the least overall degradation and
use those in a performance preserving consolidation scheme. We design practical
methods to address these challenges. The problem of determining the best sets of
VMs to place together turns out to be NP-Complete, and we design a computation-
ally efficient algorithm that we prove performs close to the theoretical optimal. As
a result, the excess resources left unused to preserve performance in our approach
are significantly lower than in current practice.

An alternative approach to preserving performance after consolidation is to
improve the isolation of resources in hardware [26, 4, 32, 2, 15], or software [1, 5,
25, 3, 29]. Further, excess resources may be allocated at run time [22] to overcome
degradation. These approaches are complementary because they do not determine
the least degrading VMs to be placed together in the first place. Our method can
make that determination, and then these techniques can be applied, resulting in
lower resource usage to preserve performance. Prior works have also proposed
consolidation heuristics that attempt to reduce degradation [16] while packing VMs
tightly to use all cores on active servers. We focus on preserving performance, and
rather than proposing additional heuristics, we present a consolidation algorithm
that provides a guarantee on how good the solution is compared to the optimal.

Specifically, we make the following contributions:

First, we present a performance aware consolidation manager, PACMan, that



minimizes resource cost, such as energy consumption or number of servers used.
PACMan selects combinations of VMs that degrade the least when placed together.
Since this problem is NP-complete, PACMan uses an approximate but computa-
tionally efficient algorithm that is guaranteed to perform logarithmically close to
the optimal.

Second, while interactive user-facing applications are performance constrained,
batch data processing, such as Map-Reduce [7], may prioritize resource efficiency.
For such situations we provide an “Eco” mode in PACMan that packs VMs tightly
to fill all cores on servers that are used, but attempts to minimize the worst case
degradation. We specifically consider worst case performance as opposed to av-
erage performance since, in Map-Reduce, the reduce stage cannot begin until all
processes in the map stages have completed and hence, only the degradation of the
worst hit map stage matters. We show that it is difficult to obtain efficient approx-
imate solutions that have provable guarantees on closeness to the optimal. Hence,
PACMan uses a suitable heuristic for this scenario.

Finally, we evaluate the design of PACMan for both the performance mode and
Eco mode using actual degradation measured on SPEC CPU 2006 applications. For
minimizing energy while preserving performance, PACMan operates within about
10% of the optimal, saves over 30% energy compared to consolidation schemes
that do not account for interference, and improves total cost of operations by 22%
compared to current practice. For the Eco mode, optimizing performance while
using minimum possible resources, PACMan yields up to 52% reduction in degra-
dation compared to naive methods.

2 PACMan Design

This section describes the performance repercussions of consolidation and how our
design addresses such issues.

2.1 Problem Description

The problem of performance degradation arises due to the following reason. Con-
solidation typically relies on virtual machines (VMs) for resource and fault isola-
tion. Each VM is allocated a fixed share of the server’s resources, such as a certain
number of cores on a multi-core server, a certain fraction of the available memory,
storage space, and so on. In theory, each VM should behave as if it is a separate
server: software crashes or resource bottlenecks in one VM should not affect other
VMs on the same server. In practice however, VM resource isolation is not perfect.
Indeed, CPU cores or time slices, memory space, and disk space can be isolated



well using existing virtualization products, and methods have emerged for other
resources such as network and storage bandwidth [21, 31]. However, there remain
resources, such as shared caches and memory bandwidth, that are hard to isolate.
Hence, consolidated workloads, even when encapsulated in VMs, may suffer re-
source contention or interference, and this leads to performance degradation. Such
interference complicates VM consolidation, as shown in the following example.
Example: Consider a toy data center with 4 VMs, A, B, C, and D (Figure 1).
On the left, the 4 VMs are placed on a single server each. Suppose the task inside
each VM takes 1 hour to finish. The shaded portion of the vertical bars represents
the energy used over an hour; the darker rectangle represents the energy used due to
the server being powered on (idle power consumption) and the rectangles labeled
with the VM name represent the additional energy consumed in VM execution
(increase in server energy due to processor resource use). On the right, these VMs
are consolidated on two servers (the other two are in sleep mode). The setup on the

right is more efficient.
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Figure 1: Energy cost change due to consolidation.

However, due to resource contention, the running time goes up for most of
the jobs. Both the server idle energy and the additional energy used by each job
increase due to the longer run time. The increase in energy consumption due to
contention may wipe out some or all of the energy savings obtained by turning
off two servers. Also, longer running time may violate quality of service (QoS)
requirements.

The increase in run time depends on which jobs are placed together. For in-
stance, in the above example, had we placed A and C' together instead of A and
B, the change in run times would have been different. Given a set of VMs and
servers, there can be many possible consolidated placements (sets of VMs allo-
cated to a server) differing in terms of which VMs share common servers. Each
combination may lead to different performance degradation in the co-located VMs.
Some servers may be allocated fewer jobs than others, leaving processor cores un-
used, to reduce the interference.

The choice of which VMs and how many VMs to place together on a server



yields a range of different operating points varying in resource efficiency and per-
Jormance. One may minimize performance degradation by placing each VM in a
separate server, but that obviously reduces efficiency. On the other hand, one may
maximize efficiency by packing the VMs into the minimum number of servers
required to satisfy the number of processor cores, memory and disk space require-
ments of each VM, but such packing hurts performance.

2.2 System Overview

Our key idea is to consider the extent to which different VMs are affected, deter-
mine the VMs that degrade the least when placed together, and then consolidate
these VMs to the extent that performance constraints are not violated.

2.2.1 Assumptions

We make two assumptions about the system, described below.

VM to Processor Core Mapping: We assume that each VM is assigned one core,
following closely the model developed in [18, 16, 2, 29, 15, 11]. The key reason for
this assumption is that we are primarily concerned with resource interference due to
shared cache hierarchy within a multi-processor chip. Such interference is the hard-
est to isolate using current virtualization technologies, and is well-characterized for
VMs running on separate cores. Considering VMs that span multiple cores does
not change the problem fundamentally. However, if multiple VMs share a sin-
gle core, the nature of resource contention may change, and new characterizations
would be needed.

Performance Degradation Data: We assume that the performance degradation suf-
fered by each individual VM, when consolidated with any set of other VMs, can
be determined using existing methods [18, 11, 20]. These methods can predict the
degradation for multiple combinations of VMs based on an initial profiling of the
individual VMs, without having to explicitly measure the degradation by running
each combination. Explicit measurement may also be used for a small number
of VMs, such as those used in [16]. This allows us to focus on the consolidation
method itself.

2.2.2 Architecture

The PACMan system architecture is shown in Figure 2. The system consists of the
following three components:

Conservatively Packed Servers: Customers submit VMs through appropriate
cloud APIs. Ideally, a VM placement solution should determine the optimal place-
ment for each VM as soon as it arrives, such that the entire set of VMs currently
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Figure 2: PACMan block diagram.

running in the cloud is optimally placed. However, since such an optimal online
solution is not available, we focus on a batched operating scenario. The cloud op-
erator collects the incoming VMs over a batching period (say 30 or 60 minutes)
on these servers. The conservatively packed servers may comprise a small frac-
tion (say 1%-5%) of the data center servers. The VMs are placed conservatively,
i.e., wit significant resource left unused, on these servers to avoid interference (for
example, by leaving several cores unused [20]). The use of these servers is trans-
parent to the customer as their VM starts executing once placed accepted.

VM Profiling Engine: While a VM is running on the conservatively packed
servers, profiling methods from [11, 20] are applied to the VMs. These methods
can characterize a VM while it is running normally, and generate a set of param-
eters that allow estimating the performance degradation that will be suffered and
caused by the VM when consolidated with other VMs. Their prediction accuracy
is high (5-10% of actual performance), as measured on real data center and bench-
mark applications. For the PACMan prototype, we follow the method from [11].
Given n VMs and k core servers, this method requires only O(n) measurements,
even though the number of possible consolidated sets is O(n*). Each VM is
mapped to a clone application, which closely mimics the application’s interference
signature. A discrete set of clones covers the entire spectrum of memory-subsystem
interference behaviors. Thus, a potentially unbounded number of applications are
mapped to a finite number of clones. A one-time profiling step maps a new VM to
a known clone. The clones are then used as a proxy for predicting performance for
different consolidation sets.

Consolidation Algorithm: At the end of each batching period, PACMan uses
the VM consolidation algorithm proposed in this paper to place the VMs on hosting
racks that comprise the bulk of the cloud’s infrastructure. Most of the data center
thus operates in an efficient manner using the near-optimal placement. The inputs
to the consolidation algorithm are the interference characteristics for each of the
accepted VMs, obtained by the profiling engine. These are used to determine the
performance degradation that would be suffered if a set of VMs are placed together



on a server. Using this information, the algorithm carefully selects the sets of
VMs to be placed together such that VMs with least degradation end up being on
the same server, and leaves sufficient resources unused such that the performance
constraints are not violated. Alternatively, if the number of servers available is
fixed, the algorithm could attempt to minimize degradation. The detailed design of
algorithms provided by PACMan is presented in the next two sections.

Temporal Demand Variations. Before discussing the algorithm, we note a prac-
tical issue that arises due to time-varying user demand for the VMs. The interfer-
ence generated by a VM typically depends on the volume of demand being served
by it. Interference generated is higher when serving peak demand than that at
lower demand. Different applications may even peak at times that are inversely
correlated, making them good candidates for consolidation. Therefore the perfor-
mance degradation behavior must be profiled at each demand level. As a result the
optimal placements will continuously change with varying demand. Both the re-
quirements to profile at multiple demand levels and to continuously re-consolidate
are impractical for realistic demand dynamics.

The scale-out design followed by many cloud-hosted applications offers a so-
lution to this complication. Since the cost incurred by an application depends on
the number of VM instances hosted in the cloud or a private data center, com-
mercial products now offer solutions to dynamically scale the number of hosted
VMs [23, 30]. Using this feature, hosted applications tune the number of active
VMs to match the demand volume. As a result, each active VM operates at an
efficient demand level. Hence we can safely assume that an active VM operates
within a small band around its optimal demand level. Degradation is estimated at
that demand level, and used in the consolidation algorithm. Changes in demand
result in a varying number of active VMs, handled using the batched operation
described above.

3 Performance Mode

The core of the PACMan consolidation system is the algorithm that determines the
best sets of VMs to be placed together. In the first mode of operation, denoted the
performance mode (P-mode), the consolidation algorithm determines the best sets
and limits the sizes of the sets such that performance constraints are not violated.
This may result in leaving some processor cores unused, unlike prior degradation-
aware consolidation works that use up every core [16, 17].

To describe our algorithm precisely, and to establish its near-optimal solution
quality, we abstract out the problem specification as follows.



Servers and VMs: Suppose m chip-multiprocessors (CMPs) are available,
each with k cores. We are primarily interested in the inter-core interference within
a CMP. The VMs placed on the same CMP suffer from this degradation. If a server
happens to have multiple processor sockets, we assume there is no interference
among those. As a result, multiple CMPs within a server may be treated indepen-
dently of each other. We loosely refer to each CMP as a separate server as shown
in Figure 3.
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Figure 3: CMPs (referred to as servers) with k£ cores. VMs placed within the
same server suffer degradation due to contention in the shared cache and memory
hierarchy.

We are given n VMs to be placed on the above servers, such that each VM
is assigned one core. Active servers may not be tightly packed but servers left
completely unused can be turned off or repurposed.

Degradation: Suppose that the set of VMs placed together on a server are
denoted by S. The choice of S influences the degradation suffered by each VM in
that set. For singleton sets, i.e., a VM j running alone, there is no degradation and
we denote this using a degradation d; = 1. For larger sets, the degradation for VM
j € S is denoted by df > 1. For example, for two co-located VMs, S = {4, B},
suppose A’s running time increases by 50% when it runs with B, relative to when
it runs alone, while B is unaffected by A. Then, dfl = 1.5 and d% =1.

We assume that adding more VMs to a set may only increase (or leave un-
changed) the degradation of previously added VMs.

3.1 Consolidation Goal

The goal of consolidation is to minimize the resources used while preserving per-
formance. This implies an upper bound on the allowable degradation due to in-
terference suffered by each VM. We assume that the performance constraint is the
same for all VMs though multiple quality of service classes, each with their own
degradation limit, could be considered as well and do not fundamentally change
the problem. The consolidation objective may be stated as follows:
P-Mode Objective: Minimize energy subject to a performance constraint:

Given

1. n VMEs,



2. Servers with & cores,

3. VM degradations for all combinations of VMs placements with up to k co-
located VMs,

4. A cost w(S) for a set of VMs S placed on a server (e.g., energy cost), and

5. A degradation constraint D > 1 representing the maximum degradation tol-
erable for any VM.

Find a placement of the n VMs using some number, b, of servers, to minimize

where S; represents the set of VMs placed on the i’ server.

Cost Metric: The resource cost, w(.S), to be minimized may represent the
most relevant cost to the system. For instance, if we wish to minimize the number
of servers used, then we could use w(S) = 1 for any set S regardless of how
many VMs S contains. The total resource cost would then simply be the number
of servers used. To minimize energy, w(.S) could be defined as the sum of a fixed
cost ¢y and a dynamic cost ¢4. Server idle power is often very high, exceeding
50% of the total power used with all cores utilized [10] and ¢y models this. Capital
expenses may also be added to the fixed cost cy. The dynamic cost, cg, models
the change in energy with the number of VMs assigned to a server, and the energy
overhead due to degradation, since higher degradation would lead to higher energy
use over time (Figure 1). For concreteness, we consider the cost function w(.S) to
be the energy cost. The specific values used for ¢y and ¢4 are described in Section 5
along with the evaluations. Our solution is applicable to any cost function that
monotonically increases with the number of VMs.

Batched Operation: The problem above is stated assuming all VMs to be
placed are given upfront. In practice, following the setup from Figure 2, only the
VMs that arrived in the most recent batching period will be available to be placed.
Each batch will hence be placed optimally using P-mode consolidation, but the
overall placement across multiple batches may be sub-optimal. Hence, once a day,
such as during times of low demand, the placement solution can be jointly applied
to all previously placed VMs, and the placement migrated to the jointly optimal
placement. The joint placement satisfies the same performance constraints but
may reduce resource cost even further.

The number of cores k is a fixed constant as it is fixed for a particular server
deployment and is not to be optimized during placement. This ensures that the size



of the input is polynomial in n. In particular, if £ were variable, the size of the input
itself would be exponential in k£, which would render the problem uninteresting.

3.2 Problem Complexity

It turns out that the complexity of the problem is different depending on whether
the servers have only k = 2 cores or more than 2 cores.

Dual-Core servers: The polynomial-time algorithm for £ = 2 proceeds as
follows. We first construct an undirected, weighted graph on 2n nodes, n of which
correspond to each of the n jobs, while the other n serve as “dummy” nodes. For
each pair of job nodes S = {4, j}, if the performance of both jobs is acceptable
when placed together (d < D and df < D), we add an edge (7, j) with weight
w({7,j}). Recall that w(.S) represents the cost to run this set of two jobs on a
server. For each job j, we associate a unique dummy node ;' with j and add
an edge (7, ") of weight w({j}) (i.e., the cost to run job j alone on a server).
Finally, we form a complete graph among the dummy nodes, so that for each pair
of dummy nodes ¢’ and j’, we add an edge (i’, j') of weight O (representing the
cost of a non-existent or powered down server). Figure 4 illustrates such a graph
for 4 jobs {i, j, k, [} where set {k, [} is not allowed due to performance degradation
being greater than D on one of the two jobs, and the resource costs for other sets
are marked on the edges.

Figure 4: Nodes denote jobs and edge weights denote cost of a set (pair). Dashed
lines show zero-weight edges. Bold edges show the minimum weight perfect
matching.

We now observe that finding a minimum-weight perfect matching in this graph
exactly corresponds to an optimal solution for the problem of minimizing resource
cost. The minimum weight matching covers all nodes and has the minimum sum
of edge costs, which is exactly the minimum cost server allocation. In the toy
example illustrated in Figure 4, the bold edges represent a minimum weight perfect
matching, and imply that placing the corresponding job pairs on servers leads to
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the least cost (an edge connecting only dummy nodes need not be assigned a real
server).

We add edges between all dummy nodes ¢’ and j’ to ensure that we can form
a perfect matching (choosing such edges does not contribute anything to the cost,
since these edges have weight 0). Note that the graph can be constructed in poly-
nomial time, and it is well known that minimum-weight perfect matchings can be
computed in polynomial time [16].

NP-Completeness: Present day servers however have more than 2 cores within
a CMP. For servers with more than two cores (kK > 3), the problem is NP-
Complete. This is because it can be thought of as a variant of the k-Set Cover
problem. In the k-Set Cover problem, we have a universe U of elements to cover
(each element could represent a VM), along with a collection C' of subsets each
of size at most k (the subsets could represent feasible sets of VMs with degrada-
tion below D). Placement of VMs on servers correspond to finding the minimum
number of disjoint VM subsets that cover all VMs. Assuming w(S) = 1 for all
sets .S, the k-Set Cover problem becomes a special case of the P-Mode problem,
i.e., solving the P-Mode problem enables solving the k-Set Cover problem. The
k-Set Cover problem is NP-Complete [8]. Hence, the P-Mode problem is NP-
Complete.

3.3 Consolidation Algorithm for Multiple Cores

Since the problem is NP-Complete for £ > 3 cores, we propose a computationally
efficient algorithm that is near-optimal (i.e., our algorithm finds a placement of
VMs such that the resultant resource use is provably close to optimal).

Using the profiling method described in Section 2.2, it is easy to filter out the
sets that violate the degradation constraint. Among the remaining ones we want to
choose those that have the least resource cost. Suppose the collection of allowed
VM sets is denoted by F.

First, for each allowed set S € F, the algorithm assigns a value V(S) =
w(S)/|S|. Intuitively, this metric characterizes the cost of a set S of VMs. Sets
with more VMs (larger set size, |S|) and low resource use (w(S)) yield low V(.5).

Second, the algorithm sorts these sets in ascending order by V'(.S). Sets that
appear earlier in the ascending order have lower cost and are favored.

The final step is to make a single pass through this sorted list, and include a set
S as a placement in the consolidation output if and only if it is disjoint from all sets
that have been chosen earlier. The algorithm stops after it has made a single pass
through the list. The algorithm can stop earlier if all the VMs are included in the
chosen sets. The first set in the sorted list will always be taken to be in the solution
since nothing has been chosen before it and it is hence disjoint. If the second set is
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disjoint from the first set, then the algorithm takes it in the solution. If the second
set has at least one VM in common with the first, the algorithm moves onto the
third set, and so on. The precise specification is given in Algorithm 1.

Algorithm 1 CONSOLIDATE(F, n, k, D)

Compute V' (S) « %S‘), forall S € F
L < Sorted sets in F such that V' (S;) < V(S;)ifi <j
L+ ¢
fori =1to |L| do
if S; is disjoint from every set in L then
L+ Lu{s}
Return L

A o ey

Example: Consider a toy example with three VMs, A, B, and C and k = 3 cores.
Suppose the characterization from the VM profiling engine results in the degra-
dation numbers shown in Table 1. Suppose the performance constraint given is
that no VM should degrade more than 10% (D = 1.1) compared to when run-
ning without consolidation and the cost metric w(S) is just the number of servers
for simplicity (w(S) = 1 for any set). A set with two VMs (|.S| = 2) will have
V(S) = 1/2 while a set with one VM will have V' (S) = 1. Then filtering out
the sets that cause any of the VMs to have a degradation greater than D, and com-
puting the V'(.S) metric for each set, we get the sorted list as: BC, AB, A, B, C
(let us assume that running all three VMs together is infeasible due to performance
degradation exceeding D). The algorithm first selects set BC' and allocates it to a
server (VMs B and C thus share a single server). The next set AB is not disjoint
from BC' and the algorithm moves to the subsequent set A. This is disjoint and is
allocated to another server. All VMs are allocated and the algorithm stops.

VMSet | AB AC BC |A[B]|C
A5, [ da=11|da=1.0|dp=10] 1|11
dp=11|dc=15|do=1.1

Table 1: Degradations for VMs in the example.

Computation Complexity: The algorithm operates in polynomial time since
sorting is a polynomial time operation, O(|F|-log(|F|)). The subsequent operation
requiring a single pass through the list has linear time complexity. At every step in
the linear pass the algorithm needs to check if each VM in the set being selected
has been assigned already and this can be achieved in constant time as follows.
Maintain a boolean bit-vector for every VM indicating if it has been assigned yet.
For the set being checked, just look up this array, which takes at most O(k) time

12



per set since the set cannot have more than £ VMs. Since the number of cores, k,
is a constant, O(k) is a constant. Also, after selecting a set we update the boolean
array, which again takes constant time.

While the computation time is only polynomial in the size of the input, the
size of the input can be large. The list of degradation values for all possible VM
sets has size |F| = O(n*) elements. While k is constant, n can be large for a
cloud infrastructure hosting thousands of VMs. However, when the degradation
estimation technique from [11] is used, all VMs are mapped to a clone and the
number of clones does not grow with the number of VMs. We can treat all VMs
that map to a common clone as one type of VM. The number of clones used to map
all VMs then represents the distinct types of VMs in the input. For instance, for
the characterization technique in [11], for quad-core servers, at most 128 types of
clones are required, and not all of them may be used for a particular set of input
VMs.

Suppose the n VMs can be classified into 7 < 128 types. Then, the algorithm
only needs to consider all sets S from 7 VM types with possibly repeated set ele-
ments. The number of these sets is O(7*), which is manageable in practice since
7 does not grow very large, even when n is large.

The algorithm changes slightly to accommodate multiple VMs of each type.
The assignment of value V' (S) and the sorting step proceed as before. However,
when doing the single pass over the sorted list, when a disjoint set S is chosen, it is
repeatedly allocated to servers as long as there is at least one unallocated instance
of each VM type required for S. The resultant modification to Algorithm 1 is that
F is provided as input instead of F where F; denotes the collection of all feasible
sets of VM types with repeated elements, and at step 5, instead of checking if the
VMs are not previously allocated, one repeats this step while additional unallocated
VMs of each type in the set remain.

Algorithm Correctness: It is easy to show that the algorithm yields a correct
solution. The algorithm always assigns every VM to a server since all singleton
sets are allowed and do appear in the sorted list (typically after the sets with large
cardinality). Also, it never assigns a VM to more than one server since it only picks
disjoint sets, or sets with unallocated VM instances when VM-types are used, while
making the pass through the sorted list.

3.4 Solution Optimality

A salient feature of this algorithm is that the consolidation solution it generates is
guaranteed to be near-optimal, in terms of the resources used.

Let ALG denote the allocated sets output by the proposed algorithm, and let
OPT be the sets output by the optimal solution. Define the resource cost of the

13



proposed algorithm’s solution to be £(ALG), and that of the optimal algorithm as
E(OPT). We will show that for every possible collection of VMs to be consoli-
dated,

E(ALG) < Hy, - E(OPT)

where Hj, is the k'"-Harmonic number. Hj, = Ele 1 ~In(k).

In other words, the resource cost of the solution generated by the proposed
algorithm is within In(k) of the resource cost of the optimal solution. Given that &k
is constant for a data center and does not increase with the number of VMs, this is

a very desirable accuracy guarantee.

Theorem 1. For all inputs, the proposed algorithm outputs a solution that is within
a factor Hy, =~ In(k) of the optimal solution.

Proof. The proof is similar in spirit to the approximation quality proof for the
weighted k-Set Cover problem [14, 6]. However, due to the difference that we
cannot pick overlapping sets unlike in those works (since choosing sets in our set-
ting corresponds to choosing a placement of VMs onto servers), a new proof is
required.

By definition, we have

B(ALG)= Y w(S)

SeALG

Assign a cost to each VM c¢(j) as follows: whenever the proposed algorithm
chooses a set S to be part of its solution, set the cost of each VM j € S to be
c(j) = w(S)/|S| (these costs are only for analysis purposes, the actual algorithm
never uses ¢(j)). Hence,

w(S) e
E(ALG) = Z WW = Z ZC(J) = ZC(J)
SEALG SCALG jeS j=1
where the last equality holds because the set of VMs in the solution is the same as

all VMs given in the input. Then, since the optimal solution also assigns all VMs

to servers:
n

BALG) =Y "cG)= > 3 )

j=1 S*€OPT jeS*
where S* € OPT is a set chosen by the optimal solution. Suppose, for the mo-

ment, we could prove that the last summation term above satisfies > jes c(y) <
Hiw(S*). Then we would have

E(ALG)< ) Hyw(S*) = Hy- E(OPT)
S*eOPT
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All we have left to prove is that, forany S* € OPT, we indeed have ) q. c(j) <
Hjyw(S*). Consider any set S* in the optimal solution and order the VMs in the
set according to the order in which the proposed algorithm covers the VMs, so
that S* = {js, js—1,...,71}. Here, js is the first VM from S* to be covered by
the proposed algorithm, while j; is the last VM to be covered by the proposed
algorithm in potentially different sets. In case the proposed algorithm chooses a
set which covers several VMs from S*, we just order these VMs arbitrarily.

Now, consider VM j; € S* immediately before the proposed algorithm covers
it with a set 7. At this time, there are at least ¢+ VMs which are not covered,
namely j;, ji—1, ..., j1. There could be more uncovered VMs in .S*, for instance,
if the proposed algorithm chose set 1" such that T' covers VMs jg, . . ., j;, then all
VMs in S* would be considered uncovered immediately before set 7" is chosen.
Moreover, since the optimal solution chose S*, and since sets are closed under
subsets, it must be the case that the proposed algorithm could have chosen the set
S ={ji,...,j1} (since it is a feasible set and it is disjoint). At each step, since the
proposed algorithm chooses the disjoint set 7 that minimizes w(7")/|T’|, it must be
the case that w(T")/|T'| < w(S)/|S|. By our assumption that energy costs can only
increase if VMs are added, we have w(.S) < w(S*), and hence VM j; is assigned a
costof w(T)/|T| < w(S)/|S| < w(S*)/|S| = w(S*)/i. Summing over all costs
of VMs in S*, we have

o elh) < ) w(S)/i=Hy-w(S*) < Hy - w(S*)

jes* Ji€S*

(since |S*| = s < k). Hence, } ;. c(j) < Hj - w(S*) indeed holds and this
completes the proof. 0

To summarize, if only dual-core servers are used, a polynomial time algorithm
is available to find the optimal placements. However, the consolidation problem
becomes NP-Complete when the number of cores £ is greater than 2, and we
provide a polynomial time algorithm that is guaranteed to provide near-optimal
solutions. Our algorithm performs within a logarithmic factor of the optimal, and
this is asymptotically the best approximation factor guarantee one could hope for,
due to the hardness of approximation lower bound that exists for the k-Set Cover
problem [28].

4 Eco-Mode

In some cases, such as batch based data processing, resource efficiency may take
precedence over performance. For such scenarios, PACMan provides a resource
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efficient mode of operation, referred to as the Eco-mode. In this mode, the number
of servers used is fixed and the VMs are tightly packed, using up every available
core on the servers used. The goal is to minimize the degradation of the worst-
hit VM. The worst case degradation is especially important for parallel computing
scenarios where the end result is obtained only after all parallelized tasks complete
and hence performance is bottle-necked by the worst hit VM.

The problem setup we consider is that n VMs are to be placed on a fixed num-
ber m of servers each with k cores (we have n < mk). We need to find the
placement that minimizes the worst case degradation across all VMs. This is simi-
lar to problems previously considered in [16, 27, 17] in the sense that resources are
constrained and performance degradation is to be optimized, though we are opti-
mizing worst case performance instead of the average case. We now give a more
formal description of the Eco-mode problem.

Eco-Mode Objective: Minimize Maximum Degradation:

Given

1. An existing placement of n VMs on m servers (VM sets Sy, . .., Si,), Where
each server has k cores, and

2. Degradations for all possible sets of VMs.

Find a placement of the n VMs to m servers to get a new placement 77, ...,7T,,
that minimizes

max /;

1<i<m

where /; is the largest degradation suffered by any VM in set 7;.

4.1 Problem Complexity

As in the previous case, while the 2-core case can be solved in polynomial time,
the Eco-mode problem becomes NP-Complete for k > 3.

Dual-Core servers: We first describe how to solve this problem in the case
when there are n = 2m jobs, so that all m machines have exactly two jobs running
on the two cores. We then explain how to generalize the problem to an arbitrary
number of jobs m < n < 2m (if n < m, this problem is trivial, since one can just
assign each job to its own machine and the maximum degradation will be 1, which
is optimal).

First suppose that the number of jobs is n = 2m, and consider all sets of
jobs of size 2. Fix such a set, say S = {j1,J2}, and assign a value to this set
V(S) = max(dy,d5), where d; is the degradation of the first job in set S and
d5 is the degradation of the second job in S. That is, V' (S) measures the largest
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degradation in .S. Now, sort all these size two sets of jobs according to the V'(.5)
values in ascending order (if multiple sets have the same value, ties may be broken
arbitrarily). Sets in which both jobs experience no degradation (i.e., df = dg =1)
will come earliest in the sorted order (if such sets exist), while the set containing
the jobs which experience the largest degradation comes last in the sorted order.
Suppose, for the moment, we could find the earliest point in this sorted order where
we can choose m pairwise disjoint sets. That is, the first set S* in the sorted order
such that it is possible to choose m pairwise disjoint sets using only set S* and sets
that appear earlier in the sorted order. We claim that, if we find this point, then we
have the optimal solution.

To see this, we first note that choosing m pairwise disjoint sets corresponds to
finding a valid schedule, one in which all jobs are assigned to exactly one machine
(since there are n = 2m jobs, each of the m sets is size 2, and the m sets are
pairwise disjoint). Now, we just have to argue optimality. We observe that the
cost of our solution is precisely V(S*), since S* contains the job with largest
degradation in our solution and we set V' (S*) to be the maximum of the two job
degradations in S*. Moreover, any solution which uses a set after S* in the sorted
ordering can only be worse than our solution, since any set 1" which appears after
S* has V(T') > V(S*) (since we sort in ascending order), and hence the cost of
this other solution must be at least V' (7T').

Suppose, towards a contradiction, that V' (.5*) is not the optimal solution. Con-
sider the assignment of jobs to machines in the optimal solution. We observe
that every machine has exactly two jobs, and all jobs are assigned to exactly one
machine. Hence, this schedule corresponds to choosing m pairwise disjoint sets
(each of size 2) in the sorted ordering. Let 7" be the last set in the sorted or-
dering chosen by the optimal solution. By definition of being optimal, we have
V(T) < V(S*) (since the cost of the optimal solution is at most the cost of our
algorithm’s solution). If 7" appears after S*, then we have V(T") > V(S*) (and
hence, V(T') = V(S*)) and the two solutions have equal cost. If 7" = S*, then
the two solutions again have equal cost. The only issue to take care of is when 7T’
appears earlier in the sorted ordering than S* (in such a case, all we can conclude
is V(T') < V(S*)). However, we claim that this scenario cannot occur. Since
the optimal solution corresponds to choosing m pairwise disjoint sets in the sorted
ordering, and we find the earliest point S* in the ordering when this is possible, it
must be the case that either 7" = S* or T" appears after S* in the sorted list.

All we have left to argue, when n = 2m, is how to find the set S* efficiently.
After obtaining the sorted list, we construct a graph on n nodes, where each node
corresponds to a job. For each set S = {j1,j2} in sorted order, we add an edge
to the graph between nodes j; and jo. Each time we add an edge, we find a max-
imum cardinality matching in the graph. That is, a set of disjoint edges in the
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graph that is maximum. The first set in the sorted list that causes the size of the
maximum matching to reach m is precisely the earliest point in the ordering when
it is possible to choose m pairwise disjoint sets. This clearly runs in polynomial
time, since finding a maximum cardinality matching can be done efficiently. In
fact, this algorithm can be made more efficient by performing a binary search on
the sorted ordering. For a set S in the sorted ordering, if it is not possible to choose
m pairwise disjoint sets using .S and sets that appear earlier, then there is no point
in checking sets to the left of S. On the other hand, if it is possible to choose m
pairwise disjoint sets using S and sets that appear earlier, then there is no point in
checking sets to the right of S.

In the case that m < n < 2m, the techniques are very similar. In this scenario,
there is an optimal solution in which n — m machines have been assigned two jobs,
while the remaining 2m — n machines have been assigned a single job. With this
in mind, we again sort a list of size 2 sets, and these sets get the same value as in
the case when n = 2m. We again construct a graph on n nodes (corresponding to
the n jobs), plus an additional 2m — n dummy nodes (these will correspond to the
fact that we will have 2m — n machines which have been assigned one job). We
connect each node corresponding to a job j to all 2m — n dummy nodes (this is
in case job j should be run alone on a machine). We then proceed as before. That
is, we go down the sorted list, adding an edge between jobs j; and jo for each set
S = {j1,jo}. Each time we add an edge as we go down the list, we test whether
the maximum cardinality matching is of size m. Similarly as before, this can be
made more efficient by performing a binary search. Picking an edge between two
job nodes (j1,j2) corresponds to assigning jobs j; and jo to the same machine,
while picking an edge in which one of the endpoints is a job node while the other
is a dummy node corresponds to assigning that job to a machine on its own.

Hence, we have an efficient, polynomial-time algorithm which solves this prob-
lem to optimality in the case of two cores for an arbitrary number of jobs.

4.2 Efficient Near-Optimal Algorithms

For the case of more than 2 cores (k > 3), it is not too difficult to show that this
problem is NP-Complete, and hence a polynomial time algorithm to compute the
optimal solution is unlikely to be found (unless P = NP). The next question
then is whether we can find an algorithm that computes a provably near-optimal
solution.

Surprisingly, for £ > 3 a computationally efficient algorithm with a reasonable
guarantee on the solution quality cannot be found. So, not only is this problem
NP-Complete, but it is also NP-Hard to approximate this problem to within any
reasonable factor, including a factor that grows with the number of VMs. For
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instance, a computationally efficient algorithm that can guarantee its solution to be
within a factor n'%° of the optimal cannot be found.

We accomplish this as follows. Consider a decision problem A that is NP-
Complete. By decision problem, we mean that, given an arbitrary input x for the
NP-Complete problem A, we must determine whether x is a “yes”-instance or a
“no”-instance. Suppose we could come up with a reduction function f which maps
inputs from problem A to inputs for another problem B which is a minimization
problem (i.e., B is an optimization problem with an objective of minimizing some
function). Moreover, suppose we can show that there exists a ¢ such that if x is a
“yes”-instance of problem A, then the optimal solution of f(z) is at most ¢ (i.e.,
OPT(f(x)) < t), and if x is a “no”-instance of problem A, then the optimal
solution of f(x) is at least « - t (i.e., OPT(f(x)) > « - t). Note that, even though
x is an instance of a decision problem, we have that f(z) is an instance of problem
B, so that it makes sense to consider its optimal solution. We claim that, if such a
reduction function f exists, and if f runs in polynomial time, then approximating
the problem B to within a factor less than « is impossible, unless P = NP.

To see this, we claim that if such a reduction function f exists, then we can
correctly decide whether x is a “yes”-instance or a “no”-instance of problem A in
polynomial time, which is a contradiction unless P = NP (since A is assumed
to be an NP-Complete decision problem). Suppose, towards a contradiction,
that we have an algorithm ALG with an approximation factor better than « for
problem B. Given an input x for problem A, we compute f(z) and check to see
whether ALG(f(x)) < a-t. If ALG(f(x)) < - t, then we output “yes”, and if
ALG(f(x)) > a-t, then we output “no.” If f () runs in polynomial time, we claim
the procedure just described correctly decides whether x is a “yes”-instance or a
“no”-instance in polynomial time. If x is a “yes”-instance, then OPT(f(x)) < t,
which implies that ALG(f(x)) < « -t and hence the procedure answers “yes”
(note that we have ALG(f(z)) < « -t since we assume that ALG guarantees an
approximation ratio that is less than o). On the other hand, if x is a “no”-instance,
then OPT'(f(z)) > « - t, which implies that ALG(f(z)) > « -t and hence the
procedure answers “no” (note that ALG(f(x)) > -t since B is a minimization
problem, and for such problems we always have ALG > OPT for any input).

Thus, to achieve our inapproximability result for the Eco-mode problem, we
must choose an NP-Complete problem and prove that such a reduction function
f exists. The decision problem of choice will be k-Dimensional Matching, and it
is well known that this problem is NP-Complete. In the k-Dimensional Matching

problem, we are given as input k disjoint sets X7, ..., X, each of size m, along
with a set of k-tuples T" C X; X X9 X --- x Xj. Here, X1 X --- x X}, is the
set of all possible k-tuples, so we can think of each element (a1,...,a;) € T asa

compatibility constraint, where a; € X; for all 7. We must decide if there exists a
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subset of compatible k-tuples M C T (i.e., a matching) such that any two k-tuples
in the matching M are disjoint and | M| = m.

Given an input = for the k-Dimensional Matching problem, we will give a
polynomial-time reduction function f with the property that if x is a “yes”-instance
(i.e., there exists a k-Dimensional Matching), then OPT(f(x)) < ¢, and if x is a
“no”-instance (i.e., there is no k-Dimensional Matching), then OPT(f(z)) > a-t
(in fact, in our proof we will show that ¢ = 1 suffices).

Theorem 2. For the Eco-mode consolidation problem, it is NP-Hard to approxi-
mate the optimal solution to within any factor that is polynomial in the number of
VMs and servers.

Proof. The decision problem we will reduce from is the k-Dimensional Matching
problem.

Suppose, towards a contradiction, that there exists a polynomial-time approx-
imation algorithm for the Eco-mode problem with approximation ratio better than
a. Consider an input = for the k-Dimensional Matching problem. We will con-
struct an instance of the Eco-mode problem based on input z in polynomial time
(this procedure will serve as our polynomial-time reduction function f). Recall
that input x consists of &k sets X7i,..., Xy, each of size m, along with the set of
compatible k-tuples 7. Given this input, we construct m machines, each having &
cores, and create n = mk jobs.

All we have left to specify is how each job degrades in performance when it
is assigned to a machine with an arbitrary set of other jobs. Observe that, since
n = mk, every machine in any solution must have k jobs assigned to it, and hence
we only need to describe how jobs in sets of size k degrade. Each element in
X1 U .-+ U X} can be thought of as a job, and choosing a k-tuple (ay,...,ax)
(where each a; € X;) to be part of the matching is equivalent to assigning the
corresponding set of jobs to the same machine. With this in mind, for any set .S
of jobs of size k£ such that S corresponds to a compatible k-tuple in T', we degrade
each job in set .S by a factor of 1 (i.e., each job in S experiences no degradation in
performance). For each set S that does not correspond to a compatible k-tuple in
T, we degrade each job in S by a factor of .

We now claim that if there is a k-Dimensional Matching, then OPT(f(x)) <
1. Suppose there exists a k-Dimensional Matching - that is, a matching M of size
m. In particular, every element in X; U --- U X} appears in exactly one tuple
since the tuples must be pairwise disjoint and |M| = m. Hence, there exists a
solution for the Eco-mode problem of cost ¢ = 1, where we assign the set of jobs
corresponding to each k-tuple in M to the same machine. Note that, since the
matching M consists of m compatible k-tuples, this implies that every job in the
Eco-mode instance f(x) experiences a degradation factor of 1 (since all jobs in a
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set corresponding to a compatible tuple degrade by a factor of 1), and hence the
optimal solution is at most 1 (in fact, it will be equal to 1).

On the other hand, suppose there does not exist a k-Dimensional Matching for
the input z. We wish to show that for such inputs z, OPT(f(x)) > a-1 = .
Since there is no k-Dimensional Matching, this implies that in any assignment of
jobs to machines, there must exist at least one machine which is assigned a set of
jobs S that does not correspond to a compatible k-tuple (otherwise, there would be
a k-Dimensional Matching). Hence, the set of jobs S already contributes a value
of « to the objective function (since each job in S degrades by a factor of «). Since
any assignment must incur at least this cost, the optimal solution must as well, and
hence OPT(f(x)) > a-1 = «a.

Thus, we have shown that approximating this problem to a factor better than «
is not possible unless P = NP. In particular, we can set « to be any constant we
desire. We can also set « to be any polynomial in n and m (in fact, o can be chosen
to be any function in the number of jobs and machines, so long as the function is
polynomial-time computable). O

The key implication of the theorem is that any computationally efficient con-
solidation algorithm designed for this scenario will have to rely on heuristics.

4.3 Eco-mode Algorithm

Since this problem is NP-Complete, and based on Theorem 2 a polynomial-time
algorithm that guarantees a good solution quality is also unlikely to be found un-
less P = NP, we must resort to heuristics. A heuristic algorithm may be based on
some intuition about what method is likely to be beneficial. While such a consol-
idation algorithm may not be provably near-optimal, as long as it can improve the
performance compared to naive interference unaware methods currently in use, it
will still be useful.

The algorithm we propose is perhaps very natural, and is based on a greedy
heuristic. The key idea is to start with a random placement and greedily improve
it using VM swaps. A swap refers to exchanging the placement of a VM with
another. We limit the number of swaps allowed to terminate the search. Note
that it is possible to reach any other placement (e.g., the optimal placement) by
performing at most G = (k — 1)(m — 1) swaps. This holds because for each
server, we can imagine one of the VMs to be in the correct position on that server,
and hence there can be at most £ — 1 VMs on that server that are out of place.
By swapping two VMs, we can assign each VM which is on the wrong server to
the right server. Hence, each server can be fixed in at most £ — 1 swaps. Once
m — 1 servers have been fixed, the last server must already be correct. However,
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our heuristic is not guaranteed to find the optimal placementin G = (k—1)(m—1)
swaps, or any number of swaps.

The algorithm operates as follows. Start out with any initial placement of VMs.
Now, consider all possible placements that are reachable from the existing place-
ment in a single swap. In each such placement, for each server, compute the degra-
dation of the worst hit VM on that server, using the degradation characterization
from the VM profiling engine. Take the sum of these worst case degradations on
all servers as the cost of that VM placement.

Among all possible placements reachable within a swap, greedily select the
one with the lowest cost and actually perform the swap required to reach that place-
ment. This uses up one allowed swap. Repeat the above process as long as there
are additional allowed swaps available. This process stops when swaps no longer
yield an improvement or the number of allowed swaps is exhausted.

For the Eco-mode, the algorithm above does not need all sets of VMs and their
corresponding degradations up front. Rather, the degradations of just the reachable
sets can be estimated on the fly, which helps reduce the size of the input.

5 Experimental Results

In this section, we evaluate the performance of PACMan. Ideally, we wish to com-
pare the practical algorithm used in PACMan with the theoretical optimal, but the
optimal is not feasible to compute (these problems are NP-Complete) except for
very small input sizes. Hence, we illustrate the performance of the proposed meth-
ods with respect to the optimal for a few small input instances (n = 16 VMs,
m > [n/k]). For more realistic inputs, of the same order of magnitude as the
number of VMs in data centers (10° VMs), we compare the performance to naive
methods that are either unaware of the performance degradation and with one cur-
rent practice that leaves alternate processor cores unused [20]. For these cases,
we also compute the degradation overhead compared to a hypothetical case where
resource contention does not cause any degradation. This comparison shows an
upper bound on how much further improvement one could hope to make over the
PACMan methods.

5.1 Experimental Setup

The following server and workload characteristics are used for our experiments.
Degradation Data: We use measured degradation data for SPEC CPU 2006

benchmark applications. These degradations are in the same range as measured for

Google’s data center workloads in [20], and may hence be considered representa-
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Application VMs Degradations (%)

lbm, soplex 2,19.7
soplex, soplex 10, 10
lbm, soplex, sjeng 2,10, 4.1
lbm, povray, lbm 19.6, 5.32, 19.6
lbm, soplex, soplex, sjeng 14.56,36.9,36.9,5.83
lbm, lbm, lbm, lbm 104.6 (each)

Table 2: Sample degradation data for the application VMs used in experiments.
Degradations are measured on a quad-core processor. For combinations with only
2 or 3 VMs, the remaining cores are unused. Degradations over 100% imply that
the execution time of the workload increases by more than twice.

tive of at least some real world workloads. In particular we select 4 of the SPEC
CPU benchmark applications for which we have detailed interference data for all
possible combinations: 1bm, soplex, povray, and s jeng (some combinations
shown in Table 2). These span a range of interference values from low to high.
When experimenting with n VMs, we generate an equal number, n/4, of each.

Cloud Configuration: We assume that each server has £ = 4 cores since
quad-core servers are commonly in use, though £ = 2 and k£ = 6 are also possible.
While a server may have many cores across multiple processor sockets, the relevant
value of k is the number of cores sharing the same cache hierarchy, since that is
where most of the interference occurs.

5.2 Performance Mode

For the P-mode, a degradation constraint is specified and resource cost is opti-
mized. The evaluation metric of interest is thus the resource cost. We choose
energy as our resource metric. Each server has a fixed and dynamic energy com-
ponent (Section 2), resulting in an energy cost w(S) = cf + > djs . Here, the
additional cost of each VM is being modeled as df . Considering that running 4
VMs each with an incremental cost of 1 or more would add an additional 4 units
of dynamic resource cost, we set the fixed cost ¢y = 4 to reflect about 50% of the
total server energy as the fixed idle cost, which is representative of current server
technology. Newer generation servers are trending towards better energy propor-
tionality and idle power costs as low as 30% are expected in the near future. A
lower idle power cost will only exaggerate the fraction of overhead due to interfer-
ence and lead to even greater savings in PACMan.

Comparison with Optimal: To facilitate computation of the optimal, we use
a small number, 16, of VMs, with equal proportion of VMs from each of the four
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benchmarks. We vary the degradation constraint from 10% (D = 1.1), to as high
as 50%'. Aside from the optimal, we also compare against a naive method that
does not quantitatively manage degradation but conservatively leaves every other
core unused [20].

Figure 5 shows the energy overhead of the consolidation determined by PAC-
Man, and by the naive method, over and above the energy used by the optimal
method. The proposed approach is within 10% of the optimal, and significantly
better than the naive approach currently in use.
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Figure 5: (P-Mode) Energy overhead comparison (computable for a small number
of VMs). The overhead shown is the excess energy used compared to the optimal.

Figure 6 shows the server utilizations achieved by the three methods. The pro-
posed method achieves over 80% utilization in most cases yielding good resource
use. Of course, when the degradation allowed is small, servers must be left under-
utilized to avoid interference, and even the optimal method cannot use all cores.

120 4
- -4 - Naive —®— Proposed —&— Optimal

100 4
80 -
N /—.—-—-/

40 -

Server Utilization (%)

20 4

0 10 20 30 40 50 60
Degradation Constraint (%)

Figure 6: (P-Mode) Server utilizations achieved by the theoretical optimal, pro-
posed, and naive algorithms.

Large number of VMs: The second set of experiments uses more realistic

'If a degradation tolerance of 0% is enforced, then most VMs would require a dedicated machine,
leading to an uninteresting (and inefficient) solution.
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input sizes, up to n = 1000 VMs, again taking an equal proportion of VMs from
each of the four SPEC CPU applications listed in Section 5.1. Since the optimal
solution is not feasible to compute with a large numbers of VMs, we plot the re-
source overhead compared to the resources used when interference has no effect.
In reality, interference will lead to a non-zero overhead and the optimal perfor-
mance should be expected to be somewhere between 0% and the overhead seen for
the proposed method.

Figure 7 shows the results, with a performance constraint of 50% (D = 1.5),
for varying n. We see that the proposed method performs significantly better than
the naive one.
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Figure 7: (P-Mode) Resource overhead comparison, normalized with respect to
hypothetical resource use when there is no interference.

The utilizations achieved by the proposed method are between 75% and 80%
for all n (plot omitted for brevity), as opposed to a server utilization of 50%
achieved by the naive method.

5.3 Eco-Mode

For the Eco-mode, we again compute the optimal solution for a small set n = 16
VMs with m = 4 servers, with the VMs taken from the SPEC CPU benchmarks.
The initial allocation of VMs to servers is arbitrary and we repeat the experiment
10 times, starting with a random initial allocation each time. Since any allocation
can be reached in at most (kK — 1)(m — 1) = 9 swaps, we vary the number of
allowed swaps G from 2 to 9. As an additional point of comparison we use a naive
approach that does not consider interference and places the VMs randomly. The
performance of the randomized approach is averaged across 10 trials.

Figure 8 shows the excess degradation suffered by the VMs compared to that
in the optimal allocation. The practical heuristic used in PACMan performs very
close to the optimal and has up to 30% lower degradation than the naive method.
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Figure 8: (Eco-mode) Maximizing worst case performance: Comparison of pro-
posed heuristic and a naive random algorithm with the theoretical optimal (com-
putable for small input instances). Excess worst case degradation experienced com-
pared to that seen in the optimal solution is shown. The error bars show the standard
deviation across 10 random runs for the naive approach.
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Figure 9: (Eco-mode) Large input size: Reduction in degradation compared to
a naive approach. The error bars show the standard deviation across 10 random
placements for the naive approach.

Next we vary the number of VMs up to n = 1000, packed tightly on m = n/4
quad core servers. The applications are taken from the SPEC CPU benchmarks as
before, in equal proportion. The naive approach used for comparison is a random
placement that does not account for interference (10 random trials are performed
for each point).

Since the optimal is not feasible to compute, we use the naive approach as the
base case and show the reduction in degradation achieved by PACMan (Figure 9).
The worst case degradation is reduced by 27% to 52% over the range of number
of VMs. While the number of servers is a fixed constraint, reduction in perfor-
mance degradation results in a corresponding increase in throughput or reduction
in runtime, yielding a proportional saving in energy per unit work performed.

In summary, we see that PACMan performs well on realistic degradation data.
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5.4 TCO Analysis

The total cost of ownership (TCO) of a data center includes both the operating ex-
penses such as energy bills paid based on usage, and capital expenses, paid upfront.
Consolidation affects multiple components of TCO. The resultant savings in TCO
are described below.

To compare capital costs and operating expenses using a common metric, James
Hamilton provided an amortized cost calculation of an entire data center on a
monthly basis [13]. In this calculation, the fixed costs are amortized over the life of
the component purchased. For instance, building costs are amortized over 15 years
while server costs are amortized over three years. This converts the capital costs
into a monthly expense, similar to the operating expense.

Figure 10 shows the savings resulting in various data center cost components
due to the proposed performance preserving consolidation method, compared to
current practice [20]. In all, a 22% reduction in TCO is achieved, which for a
10MW data center implies that the monthly operating expense is reduced from
USD 2.8 million to USD 2.2 million.

W Existing OProposed

Cost (USD Million)

Figure 10: (P-Mode) TCO reduction using the proposed performance preserving
consolidation method, compared to current practice [20] used in Google data cen-
ters. Pwr. Cool. Infra. refers to the power and cooling infrastructure cost, as
defined in [13].

6 Related Work

We focused on performance degradation due to interference in the memory hierar-
chy. Performance isolation from memory subsystem interference has been studied
at different levels of the system stack: the hardware level [26, 4, 32, 2, 15], the
OS/software level [1, 22, 5, 25], and the VM scheduler level [3, 29]. These meth-
ods control the usage of shared resources to either improve isolation or tune excess
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allocation at run time to compensate for degradation. Our method is complemen-
tary in that we facilitate determining the combinations of VMs that will interfere
the least. The above techniques can then be applied to these preferred combina-
tions, with lower resource overhead.

Performance estimates due to interference [18, 20, 11] have also been devel-
oped to aid VM placement. We build upon these works directly. The VM Profil-
ing Engine in PACMan uses the interference characterization methods provided in
these works.

Consolidation methods taking interference into account have been studied in [16,
27, 17]. These methods assume that servers are tightly packed and degradation is
to be minimized, whereas we do not assume that servers are tightly packed. Rather,
cores may be left unused to preserve performance. While only heuristics are pro-
vided in these works, we present a provably near-optimal algorithm. For the case
where servers are tightly packed, we study an additional problem where the worst
case performance is optimized. We show for this case that provably near-optimal
methods are unlikely to exist.

7 Conclusions

We considered the problem of VM consolidation, one of the key mechanisms to
improve efficiency for cloud infrastructures. In particular, we focused on the per-
formance degradation that occurs due to resource contention among VMs, in spite
of the isolation provided by current virtualization technologies.

The extent of interference and hence the resultant performance depends on
both how many VMs are consolidated together on a server and which VMs are
placed together. Hence, it becomes important to intelligently choose the best com-
binations. For many cases, performance is paramount and consolidation will be
performed only to the extent that it does not degrade performance beyond the QoS
guarantees required for the hosted applications. We presented a system that selects
VMs that interfere the least with each other and places them together on the same
server. This way the degradation is minimized, and as a result, the excess resource
required to compensate for it is also minimized. While the problem of determining
the best suited VM combinations is NP-Complete, we proposed a polynomial time
algorithm which yields a solution provably close to the optimal. In fact, the solu-
tion was shown to be within In(k) of the optimal where k£ is the number of cores
in each server, and is independent of the number of VMs, n. This is a very tight
bound for practical purposes. We also considered the dual scenario where the re-
source efficiency is prioritized over performance. For instance, a certain number of
servers is already provisioned and the objective is to get the best performance out of
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them. For this case, we showed that even near-optimal algorithms with polynomial
time complexity are unlikely to be found. Experimental evaluations showed that
the proposed system performed well on realistic VM performance degradations,
yielding over 30% savings in energy and up to 52% reduction in degradation.

We believe that the understanding of performance aware consolidation devel-
oped above will enable better workload consolidation in cloud platforms and virtu-
alized servers. Additional open problems remain to be addressed in this space and
further work is required to develop consolidation methods that operate in an online
manner and place VMs near-optimally as and when they arrive for deployment in
the cloud.
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