Pairwise Ranking Aggregation in a Crowdsourced Setting
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ABSTRACT

Inferring rankings over elements of a set of objects, such as
documents or images, is a key learning problem for such im-
portant applications as Web search and recommender sys-
tems. Crowdsourcing services provide an inexpensive and
efficient means to acquire preferences over objects via la-
beling by sets of annotators. We propose a new model to
predict a gold-standard ranking that hinges on combining
pairwise comparisons via crowdsourcing. In contrast to tra-
ditional ranking aggregation methods, the approach learns
about and folds into consideration the quality of contribu-
tions of each annotator. In addition, we minimize the cost of
assessment by introducing a generalization of the traditional
active learning scenario to jointly select the annotator and
pair to assess while taking into account the annotator qual-
ity, the uncertainty over ordering of the pair, and the current
model uncertainty. We formalize this as an active learn-
ing strategy that incorporates an exploration-exploitation
tradeoff and implement it using an efficient online Bayesian
updating scheme. Using simulated and real-world data, we
demonstrate that the active learning strategy achieves sig-
nificant reductions in labeling cost while maintaining accu-
racy.
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1. INTRODUCTION

Obtaining a set of gold-standard labels for a set of objects
is a critical step in learning to rank. For example, when de-
termining how to rank the results returned in response to a
Web search, the results are often passed through a ranking
model that has been learned using a machine learning pro-
cedure [13]. In order to learn this model, learning methods
typically require a training set of queries and documents
where gold-standard labels on relevance with respect to a
query have been provided. The learning method optimizes
some objective with respect to the labels.

A variety of approaches can be employed to acquire la-
bels. We may obtain binary relevance judgments, graded
relevance judgments, or preferences [1]. Among these there
may be tradeoffs in the amount of information the label con-
tains and the noise associated with obtaining the label. For
example, while a graded relevance judgment on a five-point
scale may contain more information than a binary judgment,
annotators may also make more errors due to the complexity
of assigning finer-grained judgments. One approach to ac-
quiring inputs on rank is to obtain relative preference judg-
ments for pairs of items. This method promises assessments
that are easier and faster to obtain, is less prone to assessor
error, and enables fine-grained comparisons. Such pairwise
assessment may be especially valuable for ranking in tasks
with higher numbers of gradations, e.g., assessing reading
difficulty into one of the standard 12 American grade levels
[3]. Pairwise assessment may also be valuable for inferring
global rankings in such settings as developing recommender
systems where we desire to order a set of products based
on a small number of observed preferences from individual
users.

We focus on the task of inferring a gold-standard rank-
ing from a set of preferences over objects given in the form
of pairwise comparisons (i.e., ¢ is preferred to j denoted as
i > 7). As in any collection of gold-standard data, we seek
to obtain the most accurate labeling with minimal label-
ing cost. To this end, we seek to take advantage of crowd-
sourcing services, such as Amazon Mechanical Turk, which
enables one to programmatically obtain large collections of
pairwise comparisons from sets of annotators at low cost.
However, the reliability of annotators available via crowd-
sourcing can vary significantly. In addition, seeking pair-
wise assessments from the crowd can lead to inconsistent
pairs (e.g., i > j by one annotator and j > i by another
annotator; or ¢ > j, j = k and k > 7). Many existing rank-
ing aggregation methods [21, 16, 19, 14, 2, 20] are either
incapable of modeling the quality of work by annotators or
are inadequate for dealing with inconsistent pairs.



To address the challenge of learning a global ranking in
a crowdsourced setting, we introduce the Crowd-BT algo-
rithm, which extends the widely used Bradley-Terry model
[21] by explicitly incorporating the quality of contributions
provided by different annotators. The Crowd-BT algorithm
can both appropriately weight annotators’ contributions by
their annotation quality as well as distinguish between spam-
mers and malicious annotators: spammers assign random
labels,! while malicious annotators (or poorly informed an-
notators) assign the wrong label most of the time.? Many ex-
isting crowdsourcing algorithms treat assessments provided
by spammers or malicious annotators the same as they do
assessments of low quality. In contrast, Crowd-BT can ex-
clude pairs labeled by spammers from the modeling while
automatically correcting the pairs provided by malicious an-
notators.

Beyond appropriately handling error, spam, and malicious
inputs, we seek to be budget-conscious; we typically prefer
to harness fewer labeled samples while achieving reasonably
good accuracy. Thus, we seek a formal model of active learn-
ing to guide the allocation of effort in crowdsourcing (e.g.,
see [9]). Most active learning methods [23] assume the avail-
ability of an oracle that can provide the correct label. In
such settings, we only need to decide how to select the next
pairwise assessment. We typically do not have access to such
expertise in a crowdsourced setting. Thus, we face the chal-
lenge of simultaneously selecting the best next pair to be
labeled and the best annotator to label the next pair. We
shall formulate and study an exploration-exploitation trade-
off in crowdsourcing, previously explored in bandit and re-
inforcement learning. More precisely, exploration refers to
using pairs with high-confidence labels to test the quality of
annotators, while exploitation refers to asking for labels for
the most uncertain pairs. We need to balance the tradeoff
between exploration and exploitation carefully: too much
exploration could lead to samples being repeatedly labeled,
so that we do not have a sufficient number of unique samples
within the assessment budget; however, too much emphasis
on exploitation may result in a large number of noisy labels
provided by low-quality annotators.

In the remainder of the paper, we first provide background
on the Bradley-Terry model and demonstrate how to incor-
porate annotator quality into the model. We then demon-
strate how to address situations that arise in practice via a
regularization term before discussing how to optimize the
objective function to infer the model parameters. Next,
we formalize the active learning problem as an exploration-
exploitation tradeoff and derive an approach that enables
the efficient updates needed in an active learning setting. Fi-
nally, we present a series of experiments with synthetic data
to better understand model properties. The experiments
with real-world data demonstrate that modeling annotator
quality improves inferred ranking quality, and furthermore,
that our active learning approach achieves 90% of the best
gold-standard accuracy with only 3% of the total labeling
cost.

! Annotators who either do not actually look at instances,
or robots pretending to be human annotators, presumably
to quickly receive pay for work.

2That is, they label i > j whenever j > i and vice versa,
perhaps because the annotators are malicious or misunder-
stand the labeling criteria.

2. RELATED WORK

Early work for modeling annotator quality is presented in
[5], where the true category of an object is inferred from
the crowd. With the availability of programmatic access to
human effort via crowdsourcing platforms, a range of studies
have applied machine learning to data collected from the
crowd. Raykar et al. [22] extended Dawid & Skene’s work [5]
by introducing a logistic classification model to incorporate
features of the input data. Wang et al. [26] proposed to
separate malicious annotators from spammers in a binary
classification setting. Our Crowd-BT algorithm extends the
latter work to pairwise ranking aggregation problems.

Karger et al. [10] proposed an iterative algorithm to infer
consensus class labels with asymptotic consistency guaran-
tees. Welinder et al. [27] extended Dawid & Skene’s work [5]
to Bayesian updating procedures. While most of the work in
learning from the crowd has focused on classification prob-
lems, several studies examine ordinal regression and ranking
problems with assessments [22, 25]. For example, the for-
mulation presented by Volkovs & Zemel [25] models anno-
tator quality as the variance term in a logistic formulation
and could be used to address our challenge. However, the
methodology suffers from the weakness that it cannot distin-
guish spammers and malicious (or poorly informed) anno-
tators. In addition, Bayesian modeling and active learning
with the variance term in their logistic formulation provide
more difficult computational challenges.

Cost and efficiency within a budget are important for
learning about and harnessing a crowd for problem solving.
Costs can be throttled with selective assessments guided by
active-learning procedures. Unlike many applications of ac-
tive learning, in a crowd setting, we cannot assume we have
access to an oracle with answers. Yan et al. [30] proposed
an active learning strategy for binary classification with a
crowd. This work mainly focused on selection of an an-
notator who can provide the most confident label for an ac-
tively selected sample. Kamar et al. [9] describe methods for
guiding the acquisition of votes in a crowdsourcing system
for citizen science with a decision-theoretic computation of
value of information within a POMDP representation, using
a voting rule on a training set to define ground truth.

A great deal of prior work has been devoted to chal-
lenges with aggregation of rankings. Methods studied in-
clude permutation-based methods (e.g., Mallows [2] and CPS
[20] models), matrix factorization methods (e.g., [6]) and
score-based probabilistic methods (e.g., Bradley-Terry [21],
Plackett-Luce [16, 19] and Thurstone [14] models).

Permutation-based methods are generally computation-
ally expensive while matrix factorization methods lack prob-
abilistic interpretation. Thus, we build our work on score-
based methods which are both more suitable for modeling
pairwise comparisons and computationally efficient.

In summary, in contrast to previous work in pairwise rank-
ing aggregation, our method can learn annotator quality
with a unified model and distinguishes malicious annota-
tors from spammers. More importantly, the active learning
strategy proposed in this paper explicitly models the tradeoff
between the learning of annotator quality versus the learn-
ing of pairwise preference. Our work formalizes this as the
important concept of an exploration-exploitation tradeoff in
active learning with the crowd.



3. CROWD-BT: EXTENDING BRADLEY

-TERRY MODEL TO CROWDSOURCING

As mentioned above, we choose to extend the Bradley-
Terry model because it has a well-understood probabilistic
interpretation, is well-suited to preferences, and can be op-
timized for computational efficiency. In particular, we ex-
tend the Bradley-Terry model [21] to incorporate parameters
for individual annotator quality. We first review the basic
Bradley-Terry model before demonstrating how annotator
quality can be incorporated.

For any two objects X and Y, Bradley-Terry models the
probability that X is preferred over Y as Pr(X = Y) =
ﬂx"fﬂy , where mx,my > 0 can be viewed as relevance scores
for X and Y respectively (alternative interpretations in other
settings are as skill scores or difficulty scores). By defining
mx = exp{sx}, we obtain:

eSX elsx—sy)

Pr(X = Y) = (1)

The Bradley-Terry model can be easily extended to model
preferences among a small set of objects:

esYy + esy - 1+ elsx—sy)’

e®X
PH(X = (V. 2]) = (2)
It can also model a chain-complete partial order by decom-
posing it into pairwise preferences: Pr(X = Y > Z) =
Pr(X = Y)Pr(Y = 2).

We assume there are N objects {o1,...,0on} and a pool
of K annotators {a1,...,ax}. We denote the set of labeled
pairs by the k-th annotator as S, = {(4, ) : 0; =« 0;}, where
0i > 0; represents that the k-th annotator prefers o; over
0;. Here, we make an implicit assumption that an annota-
tor never simultaneously claims o; > 0; and o; < oj, so that
each pair (7, j) in Sy can be ordered by 0; > 0;. Directly ap-
plying the Bradley-Terry model without dlstlngulshmg each
annotator’s quality, we have Pr(o; = 0;) = m. Then,
pairwise ranking aggregation can be directly formulated into
a log-likelihood mazimization problem as follows:

ZS,‘ = 0. (3)

Because the objective function on the left of Eq. (3) is not
scale-invariant: if we increase all s; by any given constant
¢, the log-likelihood will remain the same. Therefore, to
make the objective identifiable, we use a standard trick (e.g.,
[8]), which adds one additional constraint, >~ | s; = 0. By
maximizing Eq. (3), we can obtain a global ranking over N
objects by sorting the obtained s.

When directly applying the Bradley-Terry model in crowd-
sourcing, as in Eq. (3), each annotator is treated equally
and, hence, the model is incapable of capturing the variabil-
ity in quality of contribution across individual annotators.
We now introduce a parameter 7y for the k-th annotator
which is defined as the probability that the k-th annotator
agrees with the true pairwise preference. In particular, for
any pair with the true preference X > Y

e =Pr(X =, Y|X = Y). (4)

K
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If the k-th annotator is perfect, we have 7, & 1; if he/she is
a spammer, we have 1 & 0.5; while if he/she is a malicious
or poorly informed annotator, we have 7, =~ 0. Applying
the law of total probability, we have

Pr(o; = 0j) = Pr(o; =k 0jlo; = 0j) Pr(o; > 0j)
+Pr(o; >k 0j]lo; < 0j) Pr(o; < 0j)
esi e’i
= Mg TUTWaT O

The log-likelihood L(n,s) thus takes the form

K
L(n,s) = Z Z log Pr(o; > 0j) (6)

k=1(i,5) €Sk
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For a perfect annotator with n, = 1, Pr(o; >, o;) will
reduce to the Bradley-Terry model. For a spammer with
Nk = 0.5, Pr(o; =1 0;) = 0.5 for any s;, s; and hence all the
pairs provided by a spammer will not affect our objective
in Eq. (7). In other words, once we detect a spammer, we
automatically discard all the pairs labeled by him/her. For
a malicious annotator with ny = 0, we have Pr(o; >« 0;) =
esfj_ﬁ, which is equivalent to having o; > 0; provided by a
perfect annotator. This means that our model can automat-
ically recover the errors made by a malicious annotator. On
the other hand, if s; > s; (i.e., there is a significant differ-
ence between these two objects), we have Pr(o; >« 0;) ~ 1,
which indicates that the probability depends largely on the
annotator’s quality. If s; = s;, we have Pr(o; >x 0;) ~ 0.5
which indicates that for two very similar objects, they are
indistinguishable regardless of the annotator’s quality.

3.1 Thurstone model

A closely related model to the Bradley-Terry model is the
Thurstone model [14], which assumes that the score for each
object X has a Gaussian distribution N(Sx,ox). For sim-
plicity, here we only consider the Case V Thurstone model
where ox = 1 for all objects. Then, the difference between
the score of X and that of Y follows a Gaussian distribu-
tion N(Sx — Sy,+/2) and thus Pr(X = Y) = ® (%
where ®(-) is the standard Gaussian cumulative distribution
function. The likelihood £(n,s) under the Thurstone model
thus takes the following form:

)

L= Y toe [ (225 ) (- e (V20).

k=1 (i,j)€SE

To solve this corresponding maximum likelihood problem,
we need to evaluate ®(-) many times, which involves an in-
tegration and hence is computationally more expensive than
maximizing Eq. (6). Thus, we adopt the Bradley-Terry
model in the paper. However, we note that the performance
of Bradley-Terry and Thurstone models have been shown to
be very similar [24]; and all the developed methods in this
paper can be used in a straightforward way to extend the
Thurstone model for use in crowdsourcing.

3.2 Regularization

For better visualization and interpretation, pairwise com-
parisons are often presented as a comparison graph: if an an-
notator prefers o; over o;, we draw a directed edge from o; to
0i;. We first point out that application of the Bradley-Terry
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Figure 1: Example of comparison graph.

model in Eq. (3) can face numerical challenges if the under-
lying comparison graph is not strongly-connected.®> More
specifically, one cannot have a maximizer of the log-likelihood

in Eq. (3) when the comparison graph is not strongly-connected.

As an example, we consider the comparison graph in Fig. 1
with two strongly-connected components in red circles. For
any given solution sa, sg, sc, sp, if one adds an arbitrary
positive constant ¢ to sa,sp and subtracts the constant ¢
from sc, sp, then the likelihood terms corresponding to the
edges C — A and D — B (i.e., eSAejrAeSC and es;sesfesn)
will always increase, while the likelihood terms correspond-
ing to the edges within each strongly-connected component
(i.e., A—> B, B — A, C — D and D — () will remain
the same. Therefore, we could not have a maximizer of the
log-likelihood.

This numerical problem can be addressed via the so-called
virtual node regularization which has been used in ranking
problems under different settings [4, 11]. In particular, we
introduce a virtual object (node) og with the score e*°. We
assume that each object o; is compared to o9 by a perfect an-
notator with one virtual win and one virtual loss. Thus, any
comparison graph will be made into a strongly-connected
one. According to [15], the log-likelihood will then have a
unique maximizer. In fact, this amounts to using a regu-
larized form L(m,s) + AR(s), where the regularization term
R(s) is defined as:

N .
e’ e’i
R(s) = ; (log (T T e) +log (T e ))

and A > 0 is the predefined regularization parameter.

3.3 Crowd-BT

The final Crowd-BT formulation for pairwise ranking ag-
gregation in crowdsourcing is essentially a regularized max-
imum likelihood problem:

max L(n,s) + AR(s) (7)
n,s
o e e
o DI I L N Ee
k=1 (i,j) €S e ey e e
o e’0 e’
A 1 _ 1 _
A2 <Og <e +es'i> e (eso +e~%)>

s.t. 0<m <1, vk e {l,...,K}.

As we can see from Eq. (7), another benefit of this extra
regularization is that the constraint 3" | s; = 0 in Eq. (3)

3A directed graph is called strongly-connected if there is a
path from each node in the graph to every other node.

is no longer needed if we fix sg. Recall that this constraint is
used to address the scale-invariant problem in the objective
function in Eq. (3). Now, in Eq. (7), if we fix so, the ob-
jective is no longer scale-invariant and hence the constraint
SN, s; = 0 could be dropped.

Let us provide more detailed explanations for the regular-
ization term in Eq. (7). First, as we show in Section 3.2,
without the regularization, the corresponding optimization
is not well-defined when the graph is not strongly connected,
and we will not have a finite solution. Therefore, the reg-
ularization is indispensable for comparison graphs that are
not strongly connected. Secondly, when the graph is in-
deed strongly connected, the regularization might change
the solution. However, if we set A to be sufficiently small,
the ranking inferred from s will be the same as that ob-
tained from the un-regularized problem. Interestingly, in
many problems, the regularized problem could lead to an
even better solution than the un-regularized one as shown
in our experiments. In practice, if one only wants to recover
the ranking from the un-regularized problem (assuming it
is well-defined), one could just use a sufficiently small .
On the other hand, if gold pairs are available (i.e., samples
with the true label provided by exper‘cs),4 one can carefully
use them to tune the parameter A to achieve the best perfor-
mance on gold samples. Regardless of the optimal choice, we
show empirically later that for a broad range of A € [0.1, 10]
our algorithm outperforms the baseline (see Tables 2 and 3).

To maximize the objective £(n,s) + AR(s), a natural op-
timization strategy is the alternating approach [17]: fix i
and optimize over s; then fix s and optimize over m; and
iterate over these two steps. In particular, we adopt limited-
memory BFGS [17] to optimize s and the projected Newton
method to optimize n [12]. We note that as Eq. (7) is a
non-concave maximization problem, a good initialization is
important to avoid being trapped in local minima. As long
as the average quality of the annotators is better than that
of spammers, we suggest starting with 7, = 1 for each an-
notator and first optimizing over s. In fact, this strategy
is better than the traditional multiple random initialization
strategy for solving non-convex optimization since we utilize
the prior side information of the problem (i.e., most anno-
tators are good). If there are more spammers and malicious
annotators (although it may happen rarely in practice), we
could initialize nx by measuring the performance of each an-
notator on a handful of gold samples. In particular, 7, could
be initialized as the ratio of the correct answers on the gold
samples.

4. ACTIVE LEARNING

Active learning in crowdsourcing is fundamentally differ-
ent from traditional active learning in two different aspects:
(1) we do not have access to an oracle for labels and (2)
beyond selecting pairs to be labeled (exploitation) we also
need to probe each annotator’s quality (exploration), and
carefully balance this exploration-exploitation tradeoff. For
pairwise comparison, at each round, we need to choose a
triplet (object i, object j, annotator k) and ask for the pref-
erence between object i and object 7 from the annotator k.

4In fact, even if there is no expert, one can construct gold
pairs from the data. For example, we could treat a pair as
a gold sample if more than 10 annotators rank the pair and
at least 90% of them agree on the same preference.



Let T be the total budget, i.e., the total number of triplets
that we can query. The high-level picture of the active learn-
ing in crowdsourcing for our problem is as follows. For each
round t = 1,...,7T run the following steps:

1. Choose the triplet (0;, 05, k) that maximizes the impact
on the model uncertainty given the expectation over
the annotator k’s response.

2. Query the preference between o; and o; from the an-
notator k.

3. Update the model with the elicited preference.

However, there are three major challenges for implement-
ing the above approach. First, the sheer number of possible
triplets is KN(N — 1)/2 so that the maximization in Step
1 is taken over a large space. The second is quantifying the
impact on the model uncertainty in a way that also incor-
porates the notion of an exploration-exploitation tradeoff.
The third is how to update the model in a time-efficient
manner without re-training the whole model. For the first
issue, since the maximization can be solved in a straight-
forward parallel manner, this challenge can be addressed
given enough computational power. For the second issue,
we establish a Bayesian framework for our problem and in-
troduce a novel definition of the expected information gain
by extending the traditional Kullback-Leibler (KL) diver-
gence to incorporate the exploration-exploitation tradeoff.
Finally, we introduce an efficient online update of the model
parameters using the techniques from [28].

We first extend Crowd-BT into a Bayesian framework to
enable the definition of the information gain/model uncer-
tainty and facilitate the development of an online updating
method. We assume {s;}X_; and {n;}f_; are independent
random variables and introduce a Gaussian prior for each
s; (i.e., s; ~ N(ui,0;)) and a Beta prior for each ny (i.e.,
i ~ Beta(ay, Br)). Given a pair labeled by the k-th anno-
tator, (0; > 0;), we have the prior

p(si,85,mk) = N (833 i, 00) N (555 15, 05) B(nw; o, Bre)

with the likelihood I(s;, s;,m%) given in Eq. (5). Then the
posterior can be calculated from Bayes’ rule. However, since
the marginal posterior will be again used as the prior for
the coming pairs, it is difficult to directly use the exact in-
ferred posterior. Therefore, we approximate the posterior
p(si, 85, Mk|0i =k 05) using the variational approximation:

p(si, $j,Mk|os =k 05) = U1(si, 85, mK)p(Ss 85, 1k)/C (8)
~ N(sz,uf” Z>kj)N( :M;HJ

where
eSi
= Pr(oi »x 0;) = Ukar(l*Uk)m’
is the likelihood function and C' = Pr(o; >k 0;) is the nor-
malization constant. In particular, we assume s;, s; and 7y
are (conditionally) independent in posterior, the posterior
distributions for s; and s; are still Gaussian, and 7 is Beta.
Let us defer the discussion of how to efficiently update the
posterior parameters to the next subsection and first present
the proposed active learning strategy. For each potential
triplet in the pool (0, 0j, ax) (i.e., represents asking the k-th
annotator to compare o; and 0;), we compute the expected
information gain:

e’
1(si,55,M)

1>kj)B(n o/;;“, Ii>k.7‘).

Pr(o; = 0;) (KL (N, 0i"¥)|IN (i, 04) ©)
+ KL (N(u;}’“j,af>’“j)llN(ijaj))

+7 KL (Beta(a, ™, 8,7 +)||Beta(as, A1) ) )
(KL (NG ™ o) N (s, 00))

+KL (N (™ 04 [N (g, 07))

+ Pr(o; < 0j)

+~ KL (Beta(a]:kj Bl<kJ)HBeta(ak, Bk))>

where KL(-) denotes the Kullback-Leibler (KL) divergence.
Since we do not know whether o; >, 0; or not before the
pair is labeled, we take the ezpected information gain over
the Bernoulli outcome; the computation of Pr(o; > o0;) is
shown in the next section (Eq. (15) and Eq. (18)). At each
iteration, we choose the triplet (o0;,0;,ar) that maximizes
Eq. (9). In other words, we use a pure greedy strategy to se-
lect the most informative triplet. We also realize that other
mixed methods may work better in practice. For example,
one can use an e-greedy approach, i.e., with probability 1—e¢
select the triplet that maximizes the expected information
gain, else with probability e, select a random triplet.

The expected information gain defined via KL divergence
has been a popular utility function in traditional active learn-
ing [23] and used for ranking problems [18]. To extend ac-
tive learning to crowdsourcing, our formulation in Eq. (9)
generalizes the traditional expected information gain by in-
troducing an extra parameter . In particular, recall that
the traditional information gain is simply defined by the KL
divergence between the posterior and the prior:

KL(p(SiaSjWHOi =k Oj Hp(5i7 Sj,’qk)) (10)
_ KL (zv(uzim, o) N (i ) )

+ KL (N (™, 077) || N (5, 0))
+ KL (Beta(oz}?“,ﬂ,?kj) [ Beta(ak,ﬂk)) .

As compared to Eq. (10), our formulation in Eq. (9) in-
troduces the parameter v which represents the tradeoff be-
tween exploration and exploitation. A larger v will give
more weight to the KL divergence terms related to annota-
tor quality in the objective in Eq. (9), which means that we
are willing to spend more to explore the quality of annota-
tors. On the other hand, a smaller « will result in relatively
more emphasis on exploiting the information in the observed
pairwise comparisons. When gold samples are not available,
according to our experience, any v € [5,10] could lead to
much better performance than setting v = 0 (i.e., tradi-
tional active learning without exploring annotator quality)
or v = 1 (i.e., traditional information gain defined by KL
divergence). Meanwhile, setting v larger than 10 could lead
to too much exploration at the beginning—especially when
the budget is limited. Therefore, as a simple rule of thumb,
one could set v = 5 when the budget is limited while v = 10
when the budget is sufficient. Although such a simple rule is
by no means an optimal choice of 7, it often leads to superior
empirical performance. We can adopt a more sophisticated
guideline for the selection of . Specifically, we can start
from a large 7; and gradually reduce the parameter v by
half for every 7% of the budget (e.g., 7 = 25). The reason
behind such a dynamic strategy of setting ~ is as follows: at



the beginning, we may typically have very little knowledge
about the quality of annotators, so more exploration should
be carried out with a larger 7. As we gradually gather more
information about annotator quality, we should do more ex-
ploitation instead of exploration using a smaller ~.

4.1 Online Learning

To update the posterior parameters efficiently in Eq. (8),
we use a moment-matching strategy. We first approximate
the first- and second-order moments for s;, sj, n, under the
true posterior distribution and then update the posterior
parameters accordingly. To compute E(s;), E(s;), Var(s;),
Var(s;) under the true posterior, we first integrate out n
and the marginal posterior for (s;, s;) takes the form:

fs(se,85)N (835 i, 00) N (855 115, 05),

where

g e’i B e5i

s(8i,85) = -+ -

f ( J) ak + ﬁk esi + e%i o + Bk esi + e

Let z; = S8 ~ N(0,1) and z; = 2% ~ N(0,1). We
i J

can view fs(si, s;) as a function of z;, z; and rewrite it as:

ap eTiZit
Zi,%j) =
f2(2i, ) ap + By eTizitii 4 e%i%itH;
B e%i%itH;

o + Bi evizitii 4 %3zt

Using the technique from [28], which is essentially the ex-
tension of the Stein’s Lemma [29], the expectation E(z;) can
be approximated:

B(z) = E(afz(zi7zj)/8zi> __ Olog fx(zi, 25)
1 - ~
J=(7i, 2j) 0z 2y=2;=0
Therefore, we have:
pR = E(si) = pi + 0iB(z) (11)
Hi Hi
R Y (. R
apeti 4 Bke“J eHi + et

We can interpret this updating rule as follows. For a perfect

. Mg
ope ~
annotator with ay > [, we have St BT 1 and
i1 7 Mg . .
hence '™ " & p; + U?m. This formulation captures

the intuition that p; should increase when an observation
0; > 0; is made by a good annotator. Secondly, if p; > pu;,
the extra information of observing o; > o; is limited and

— % is very small
(T +e“] 3’ Vi y .
On the other hand, for a random annotator with ay ~ B,
k] . .. ]

7~ p; while for a malicious annotator, u;” *’ ~

hence the amount of increase of p;, o2

we have p

i — '?e“ieile‘u‘ ~. Similarly, we have:
pH = E(sy) = g + 0 E(Z)) (12)
et et
~opt 0]2- ( Bk - - . )
apeti 4 ﬁke”‘J eti + et

2 akeﬂi eti
~ M — O'j - w; - “; .
apeti + Breti eti 4 et
) i e )
We can also derive o;” %, o""* following [28]:

Vair(z:) = E(Zi) — (E(z))? 2 ]
= (14 (ZLCROY) (00 s)/0nys

fz(Zi,Zj) fz(Zi,Zj)
o (Plog L) L 9 log flei )
=14+E ( azf ~ 1+ azf

z;=z;=0

Then we have:

. N 2
(gj*“) = Var(s;) = o} Var(z;) (13)
_ 2 2 ageti Brets etiel
= 0; max (1 + o; ((ake“i T ﬂke‘uj)2 - (elii + e“j)2 I

(0;}”)2 = Var(s;) = o} Var(z;) (14)
) ) ane’i Breti el gt

=oc;max 1+ o; — , .
e (1403 (G oy~ vy

where the parameter x is a small constant (e.g., 1074) to

ensure the positivity of variance.

To update ay and B, let C1 = En (%), where E N
denotes the expectation over the prior Gaussian distribu-
tion of (s;,s;) and let Co = En (%) =1—-C. The
normalization constant C' = Pr(o; > 0;) in Eq. (8) can be
computed as:

c = / (Cai + Co(1 — 14)) Beta(mes e, B )
[0,1]

_ Crax + C2ﬁk. (15)
ar + Bk
Then we can compute the first and second order moment of
7 as follows:

1
E(ne) = rol o Mk (C1ime + C2(1 — ni)) Beta(nw; o, Bi)dne
_ Ci(ak + Doy + Coorfr
Cak + Br + 1) (ak + Br)
2 Ci(ak + 2)(ak + Dag + Coag + 1) P
E(nk)

Clak + Br + 2)(ak + B + 1) (cw + Br)

and update the ax and i as follows:
i i E(n) — E(np)E ()
R = ( k 16
¢ E(7) — (E(m)? 1o
i i (E(nr) — E(n2))(1 — E(n))
Jé) k] 17
C EG) — (E(m)? 4
Now the challenge is to compute C1 efficiently. Let g(si, s;) =
esie+’tesj
g(si,s5) at (pi, py):
9(si,85) = g(pis ptg) + (i — i) Vs, g (i, )+

and we take the second-order Taylor expansion of

1
(85 = 13)Vs;9(hi, p13) + 5 (si = 1) Vi 5,9 (i 1)+

1 2
5(81 — 145) Vs, 5,9, pg)-
We take the expectation of g(s;, s;) under the prior distri-
bution and we obtain C7. In particular, by the fact that
En(si — pi) = En(s; — pj) = 0, we have:
gHighj (Sﬂj — SMi)
(sti + std)3
We can use the above closed-form updating rules to infer
approximate posterior distributions in constant time. Com-
bining the posterior update rules with our selection criteria
based on expected information gain in Eq. (9), the entire
active algorithm is presented in Algorithm 1. We note that,
after labeling the pairs, we can simply sort {u;} to obtain
the ranking (which is used in our experiments), or we could
rank the objects by using Crowd-BT. In general, solving the
optimization of Crowd-BT leads to a slightly better perfor-
mance than sorting {u;} but is also computationally more
expensive.

(si = pi) (85 = 13)Viis; 9 (i 1) +

ek 1
Ci~ —— + 5(01-2 +O'J2-)

eti + et (18)



Algorithm 1 Active Ranking Aggregation in Crowd

Input: Prior distribution parameters {p;}, {o:}, {aw},
{Bk}, the tradeoff parameter v and the total budget T

fort=1,...7T do
Select a pair (0q,05) and an annotator k& which maxi-
mize the expected information gain in Eq. (9).
Query the annotator k on the preference between o,
and op.
if 0, > op then
Seti=aand j=0»b
else
Set ¢t =band j = a.
end if
Update ui, pj, 04, 05, ar and By according to Eq. (11),
(12), (13), (14), (16) and (17).
end for

Output: Rank objects by sorting the obtained {p;}.

5. EXPERIMENTS
5.1 Simulated Study

5.1.1 Accuracy for Different Distributions of Anno-
tator Quality

We first conduct experiments with simulated data to test
the performance where the average quality of annotators is
varied. We assume that there are 100 objects, each with
an underlying true score in the range of 1 to 100. We ran-
domly sample 400 pairs of objects and assume that each
pair is labeled by 10 different annotators. In this way, we
gather 4000 labeled pairs. We assume that the ground truth
quality of 100 annotators {n;}12% follow a Beta distribu-
tion Beta(a, 3). For any pair (0;,0;) labeled by the k-th
annotator, he/she will claim o; > 0; with the probability
nr and vice versa with the probability 1 — 7. We test our
Crowd-BT method Eq. (7) with two different initialization
schemes: (1) initialize each nx by 1, i.e., starting by as-
suming that all annotators are perfect (Crowd-BT-One) and
(2) initialize each n, by the accuracy on 5 gold pairs with
known true relationship (Crowd-Gold); and compare them
with the vanilla Bradley-Terry model (BT) in Eq. (3). We
evaluate algorithms using the accuracy based on Wilcoxon-
Mann-Whitney statistics:

>0 Wy > yi Asi > s5)
Zi,j I(y: > ;) ’

where y is the true relevance score and s is the estimated
score.

We first vary the distribution of annotator quality and
report the accuracy for each distribution in Table 1 with
virtual node regularization parameter A = 0.5. The sensi-
tivity of A will be further investigated in another simulated
experiment. As we can see from Table 1, when the aver-
age quality is above 0.5, the two initialization strategies for
Crowd-BT achieve very similar performance and are both
better than the Bradley-Terry model. For a difficult scenario
with many more malicious annotators, the performance of
Crowd-BT with “all ones” initialization is indeed quite bad.
However, initialization by a very rough estimate of quality
using only five gold pairs will lead to a significant boost in
performance. This is because our method has the ability to

ACC := (19)

[ ,‘ ot exploration
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Figure 2: Active Learning with different ~.

automatically recover from the errors made by malicious an-
notators with a reasonable initialization. In summary, when
there are more good annotators, which is often the case in
practice, we could directly apply Crowd-BT with “all ones”
initialization; otherwise, it is necessary to obtain a rough
estimate of quality via several gold samples.

5.1.2  Exploration-Exploitation Tradeoff

We now investigate the effect of considering the control of
an exploration-exploitation tradeoff in active learning and
compare our active learning method with different configu-
rations of the tradeoff to the random selection strategy. In
particular, we assume that the true quality for each anno-
tator is drawn from the Beta distribution Beta(2,1). This
is similar to one of the most common settings in practice
where we have many good annotators but also some spam-
mers and malicious contributors. We initialize the prior of
the quality with Beta(10,1) to reflect our starting assump-
tion that all annotators are very good. We plot the number
of sampled pairs against accuracy by varying the parameter
~. As displayed in Figure 2, the active learning strategy with
an appropriate v (e.g., blue line with v = 5) significantly
outperforms the random selection strategy. If one uses too
small a value for v (e.g., red line with v = 0), the accuracy
has a sharp increase at the beginning, but becomes worse as
we sample more pairs. This outcome arises because in the
absence of enough exploration of annotator quality, we may
assign many pairs to bad annotators and thus harm the per-
formance in the long run. On the other hand, if we adopt
too large v (e.g., black line with v = 30), the increase in
accuracy is slow at the beginning. The main reason for this
is that during the first few hundred iterations, we perform
too much exploration and hence obtain limited information
about pairwise preferences.

We also study the exploration-exploitation tradeoff under
different settings of averaged annotator quality. For each dis-
tribution of annotator quality and each setting of v, we cal-
culate the normalized area under the active learning curve.
A typical active learning curve is displayed in Figure 2. As
presented in Figure 3, in both (a) and (b) with different pri-
ors, when the average quality is relatively low (e.g., 0.667),
a larger v (e.g., v = 5, 10) performs best, which means that
we need more exploration in that scenario. On the other
hand, when average quality approaches one, exploration be-
comes unnecessary and v = 0 or v = 1 leads to the best
performance.



(o, B) (1o, 1) | (5,1) [(21) |(22) |(@12) | (@5)

Average Quality | 0.909 0.833 | 0.667 | 0.500 | 0.333 | 0.166
BT 0.882 0.890 | 0.800 | 0.542 | 0.171 | 0.144
Crowd-BT-One 0.899 | 0.918 | 0.869 | 0.849 0.109 0.122
Crowd-BT-Gold | 0.899 | 0.917 0.869 | 0.850 | 0.897 | 0.878

Table 1: Accuracies of different approaches on the simulated datasets. Average Quality is the mean o/(a+ )
of the Beta distribution. Best performance in each column is in bold.
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Figure 3: Normalized area under the active learning
curve for different averaged quality and ~.

5.1.3  Virtual Node Regularization

Finally, we conduct a simulated experiment to investigate
the effect of the virtual node regularization parameter .
We generate the synthetic data in a similar manner as in
the previous section. Again, we assume that there are 100
objects, each with an underlying true score in the range 1
to 100, and 100 annotators with the ground truth quality
{0312 following a Beta distribution Beta(2,1). We ran-
domly sample n pairs of objects and assume that each pair
is labeled by m = (4000/n) distinct annotators. We test
our Crowd-BT algorithm in Eq. (7) with different virtual
node regularization A under different settings of n and com-
pare the accuracies with that from the Bradley-Terry (BT)
model. We report the accuracy and the correlation between
the estimated quality 1 and true quality n* in Table 2. For
all settings, Crowd-BT is superior to the baseline Bradley-
Terry model. In addition, the correlations between the esti-
mated quality and true quality are very close to one. More
interestingly, when n is smaller (i.e., the number of unique

ACC

0.6722 (0.002)
0.6822 (0.002)

TrueSkill
Online-Crowd-BT

Table 4: Comparisons of online learning methods on
reading level dataset (with all 12,728 pairs).

pairs is small), we need a larger regularization weight A to
achieve better performance. In fact, when n = 4000, it is
very likely that the underlying comparison graph is strongly
connected and hence we do not need a strong regularization.
On the other hand, when n = 200, then we have at most 400
directed edges in the graph. In such a sparse graph, strong
regularization will help to improve performance.

5.2 Real-World Challenge: Reading Level

We now apply Crowd-BT to the task of ranking docu-
ments by their reading difficulty. Our dataset is composed
of 491 documents, each assigned a gold-standard reading dif-
ficulty level from 1 to 12, as described in [3] in more detail.
Using the CrowdFlower crowdsourcing platform,® a total of
624 distinct annotators in the United States and Canada
were shown representative passages from randomly selected
pairs of these documents, and asked to decide which of the
two texts was more challenging to read and understand. To
help avoid an imbalanced judgment pool that is biased to-
ward a few prolific annotators, each annotator was allowed
to contribute a maximum of 40 judgments. We obtained a
total of 12,728 pairwise comparisons. The overall quality of
annotators on this task is known to be relatively high.

We compare Crowd-BT with 7, = 1 as the initialization
to several competitors: (1) Bradley-Terry (BT) model; (2)
for each pair of objects (0;,0;), we first use majority vote to
obtain the preference between them and apply the BT model
(e.g., if 3 annotators claim o; > o; and 2 claim o; < oj,
then we generate a pair o; > o; as labeled by a perfect
annotator); (3) a model proposed in [25] where the difference
for annotators is captured by a variance term in the logistic
form in Bradley-Terry model. We call this method Variance-
BT. As the evaluation metric, we again use the accuracy in
Eq. (19) as in the simulated experiments which measures
the overall accuracy across all pairs in the gold-standard
ranking. The results are presented in Table 3. As we can
see, Crowd-BT performs the best for any A, followed by
Variance-BT and Majority-Vote-BT, which has the worst
performance. We also plot the histogram for the estimated n
in Figure 4 and we observe that about half of the annotators
are estimated to be perfect annotators on this dataset.

We also compare our Bayesian online Crowd-BT with
another well-known online ranking aggregation algorithm:
Trueskill [7]. Since the sample ordering in an online algo-

Shttp://crowdflower.com/



nxm 4000 x 1 400 x 10 200 x 20
A 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1
BT (ACC) 0.849 0.849 0.849 | 0.803 0.804 0.804 | 0.745 0.748 0.749
Crowd-BT (ACC) | 0.955 0.946 0.936 | 0.893 0.894 0.883 | 0.793 0.803 0.810

Crowd-BT Estimate vs. Truth

Quality Correlation | 0.956

0.950 0.945 | 0.957

0.950 0.947 |

0.972 0.970 0.967

Table 2: Simulated studies for the virtual node regularization. Best performance in each block is in bold.

ACC
A=01|A=05| =1 A=10 | A=50
BT 0.6760 | 0.6796 | 0.6815 | 0.6802 | 0.6629
Majority-Vote-BT | 0.6686 | 0.6700 | 0.6688 | 0.6483 | 0.6409
Variance-BT 0.6790 | 0.6835 | 0.6862 | 0.6828 | 0.6658
Crowd-BT 0.6924 | 0.6961 | 0.6978 | 0.6874 | 0.6690

Table 3: ACC for different methods on reading level dataset (with all 12,728 pairs). Best performance in
each column is in bold. Best performance in each row is in italics.
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Figure 4: Histogram for the estimated 7 for different
annotators.

rithm is random, the results could be slightly different for
each run, so we report the mean and standard deviation
over 50 runs in Table 4. As we can see, our method im-
proves over the TrueSkill method’s accuracy. We note that
the performance of the online methods is worse than that of
the deterministic methods. The main advantages of online
methods are their computational efficiency and the ability
to handle streaming data.

Finally, we compare the active-learning strategy with dif-
ferent exploration-exploitation tradeoffs, against the random
strategy. For better visualization, we only present the accu-
racy for the first 4,500 labeled pairs in Figure 5. As captured
in the figure, the active learning strategy significantly out-
performs the random strategy. The exploration-exploitation
tradeoff can also be observed from Figure 5. In particular,
the accuracy for v = 0 (red line) increases sharply at the be-
ginning; on the other hand, the accuracy for v = 50 (black
line) increases slowly at the beginning but outperforms the
v = 0 case after about 3,000 samples. This indicates that
different from traditional active learning, the exploration-
exploitation tradeoff leveraged by = is very important for
active learning in crowdsourcing. In practice, according to
our experience, we suggest choosing v € [1,10] to achieve
better performance. To further quantify the improvement,

0.81
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Figure 5: Active learning vs. random strategy on
reading level dataset.

we report the number of sampled pairs to first achieve a
certain accuracy. In particular, the best accuracy over dif-
ferent methods after sampling all 12,728 pairs is 0.6843. We
report the number of sampled pairs to achieve a certain ratio
of best accuracy in Table 5. As we can see, the number of
pairs needed for the active learning strategy is much smaller
than that for the random strategy. With active learning,
we can achieve 90% of the best accuracy with only about
400/12, 728 ~ 3.14% of the total pairs.

Ratio to best accuracy | y=0 | v=5 | v =20 | Random
98 % 1850 | 1400 | 3650 7250
95 % 700 850 2450 5350
90 % 400 450 850 2150

Table 5: Number of pairs required to achieve a spec-
ified level of accuracy. Best performance in each row
is in italics.




6. CONCLUSIONS AND FUTURE WORK

We have explored the challenge of learning a global rank-
ing from pairwise comparisons via inputs from the crowd.
We generalized the widely applied Bradley-Terry model by
incorporating annotator quality. We further proposed an ac-
tive learning strategy that can adaptively sample the next
assessment pair and annotator. We introduced and studied
an exploration-exploitation tradeoff in active learning with
crowdsourcing pairwise comparisons, and demonstrated the
importance of the configuration of this tradeoff via empirical
studies. Although we developed methods on the foundation
provided by the Bradley-Terry model, the proposed methods
can be applied to other models for pairwise ranking, such as
the Thurstone model [14].

We see several interesting future directions for extending
this work. In one direction of research, we see opportunities
for reducing the computational cost via narrowing the sam-
pling space for active learning. Heuristics for narrowing the
space promise to be valuable. For example, if we are certain
about o; > o0; and 0; > oy, we may exploit the nearly certain
preference between o; and o which can be inferred by the
transitivity rule. A second direction of research centers on
optimizing in an automated manner both the exploration-
exploitation tradeoff parameter v and virtual node regular-
ization parameter A\. We are also interested in better ways
of harnessing limited sets of gold samples in validation sets.
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