
What is a File?

Richard Harper
1
, Eno Thereska

1
, Siân Lindley

1
, Richard Banks

1
,

Phil Gosset
1
, William Odom

2
, Gavin Smyth

1,
Eryn Whitworth

3

1
Microsoft Research Cambridge

7 JJ Thomson Avenue

Cambridge, CB3 0FB, UK

Email: intialsur-

name@microsoft.com

Except r.harper@

2
Carnegie Mellon University

Human-Computer Interaction

Institute

Pittsburgh, PA, USA

Email wo@willodom.com

3
The University of Texas at

Austin School of Information

 1616 Guadalupe

 Austin, TX 78701-1213

Email

eryn@mail.ischoolutexas.edu

ABSTRACT

For over 40 years the notion of the file, as devised by pio-

neers in the field of computing, has been the subject of

much contention. Some have wanted to abandon the term

altogether on the grounds that metaphors about files can

confuse users and designers alike. More recently, the emer-

gence of the ‘cloud’ has led some to suggest that the term is

simply obsolescent. In this paper we want to suggest that,

despite all these conceptual debates and changes in technol-

ogy, the term file still remains central to systems architec-

tures and to the concerns of users. Notwithstanding pro-

found changes in what users do and technologies afford, we

suggest that files continue to act as a cohering concept,

something like a ‘boundary object’ between computer engi-

neers and users. However, the effectiveness of this bounda-

ry object is now waning. There are increasing signs of slip-

page and muddle. Instead of throwing away the notion alto-

gether, we propose that the definition of and use of files as

a boundary object be reconstituted. New abstractions are

needed, ones which reflect what users seek to do with their

digital data, and which allow engineers to solve the net-

working, storage and data management problems that ensue

when files move from the PC on to the networked world of

today.

Author Keywords

File, file systems, databases, cloud computing, grammar of

action, metadata, generic object, ownership, possession,

command, social networking, consumer devices.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

As long ago as 1981, Frank Halasz and Tom Moran argued

that the term file was harmful to good HCI [5]. In their

view, users have some kind of mental model or ‘internal

picture’ of files, and this is necessarily different from the

‘abstract conceptual model’ that is embedded in a comput-

er. When the term is used to conjure ‘literary metaphors’ [p.

385] in, say, the design of interfaces, muddles inevitably

result. For the model that ends up being presented to the

user will never ‘fit’ the actual system – it can never do so,

in their view. The two are fundamentally irreconcilable; the

metaphorical model and the ‘real’ model embedded in the

system.

This view certainly seems cogent and doubtlessly is one

that many in HCI would accept. After all it turns around a

basic premise in much of the psychology used in HCI. This

holds that the external world needs to be represented in

some kind of internal form or ‘qualia’ in the human mind

and good design ensures that there is a fit between this in-

ternal model and the external. Since there is unlikely to ever

be a ‘good internal model’ of computer files, then Halasz

and Moran’s case is that it would be unwise to try and de-

sign towards that model; it is best to design on the basis of

the ‘real thing’ even though that prohibits certain types of

metaphor – like those associated with the term file.

But today, as new applications and technologies confront

the user, the apparent cogency of Halasz and Moran’s case

seems to be weakening. For it turns out that it is not clear

what the entities that users deal with might be from any-

one’s point of view – the users or the engineers. What a file

might be is becoming muddled, lost perhaps; certainly con-

fused.

For example, one of Microsoft’s products is OneNote. To a

user, a OneNote Notebook looks very much like the thing

produced in word processing applications – a document of

sorts; one might even suggest a file-like thing. One of the

appeals of OneNote is that it is somewhat more flexible

than typical word processing applications, such as Mi-

crosoft’s own Word. Users can easily add images and pic-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CSCW 2013, Feb 23-27, 2013, San Antonio, TX, USA.
Copyright 2013 ACM 978-1-4503-1331-5/13/02...$15.00.

mailto:intialsurname@microsoft.com
mailto:intialsurname@microsoft.com

tures, cut and paste from the Web, even add their own

scribbles to a Notebook which the system can convert

through OCR to typescript. All this can be brought together

as a single thing. The application treats the thing that a user

thus creates in a particular way. A Notebook is not a single

entity; it is not, as it were, a single file. It is a collection of

files – and indeed this is how the engineers who designed

and built One-Note think of it: as a thing that consists of a

number of ‘read-write objects’. The important point to un-

derstand, however, is that, in OneNote, it is ‘Sections’ that

define what a ‘file’ is. A user creates Sections within One-

Note (although they may also interact with a Page, which

they may think of as components of a Section).

Thus far, so good; in this scenario what a file is from the

user’s and the system engineer’s point of view is pretty

close; there is some correspondence between the ‘mental

model’ and the ‘real model’. However, when a user tries to

save a Notebook on to a cloud service, like SkyDrive (as it

happens also a Microsoft product), something else comes

into play: namely, a different understanding of what are the

file entities that makes a Notebook. In SkyDrive – to put it

in simple terms – instead of a Section being a file (irrespec-

tive of how many pages it consists of), a file is sometimes

redefined by the cloud storage application itself, one result

of this being that on occasion a Section will be stored as

several files. The cloud system stores its data in terms of

the file abstractions, as bundles of files, but these don’t cor-

respond to the originating application’s way of doing so: in

one, ‘files’ take a different form to another.

That the cloud system defines files in its own way would

not matter to the user as long as conversion back again is

consistent. However, it does become an issue if a user’s

attempt to save to SkyDrive is interrupted (as often happens

when accessing cloud services). For when they go back to

SkyDrive after the interruption, they might find a version of

their Notebook already there. This version will, though, be

partial; incomplete in some respects and reflecting not their

own understanding of the structure of their ‘thing’ nor the

view of the file structure that developers of OneNote had in

mind but something else: what the engineers behind Sky-

Drive conceived of as the file entities constitutive of a

Notebook. It is this vision that will have determined which

entities (files) were copied over before the interruption be-

gan.

At first glance, this would seem to confirm Halasz and Mo-

ran’s fear: don’t expect the user’s mental model to fit sys-

tems. But this is not all that is going on here. What this sce-

nario illustrates is that computer scientists don’t have a

common understanding of files either. This issue, this di-

vergence of basic concepts, is not so much new, as it is one

that comes to be highlighted with the massively networked,

distributed world we are coming to where differences in

basic concepts in applications start clashing when brought

together.

This is not the only change that needs to be borne in mind,

however. If the examples above evoke the PC and how it

works, there are now other devices that are becoming al-

most as common and these have no files at all. The iPad, for

example, has no equivalent to the Windows File Explorer

for the simple reason that it has no files to view. It is file-

less. Or at least this is what some would have us believe.

For underneath the hood of this [see 7] and similar devices

– like the more advanced smart phones – there are things

that get called files although this is a label for ‘abstractions’

that allow the systems in question to run efficiently – ad-

dress book information can be re-used in various applica-

tions, for example, as can user identity information. Unfor-

tunately, it turns out just what these abstractions are and

how they might be used is far from fixed or agreed. At-

tempts to ensure that new application developers avoid

some of the difficulties that these ambiguities produce

through, for example, sandboxing their applications (and

hence hiding any abstractions from the developers’ grasp),

cause considerable complaint and besides, the boundaries of

the sandpits are routinely broken by developers who find

ways to illicitly access file stores via the OS.

A Way Forward

So what is one to make of this all? We don’t think that the

way forward in the current context is to abandon the term

files altogether. We think that the term – and related ones

such as ‘to file’ and ‘filing’– can be linked in a way that can

allow computer scientists and users to orient to a shared

object or set of objects, even though the tasks they have in

mind are in many respects quite distinct. In this regard, we

think that the term can label what Star and Greisemer called

in 1989 a ‘boundary object’ [18, see also Star’s revised and

more nuanced view, 17]: a device of sorts that can, amongst

other things, allow two or more distinct communities to

interact around a mutually comprehended and agreed ‘ob-

ject’ and which can, at the same time, bring them together

through focused arrangements and processes of action. In

this view, files are not merely the neutral ground between

users and engineers but a label for a space of organised col-

laboration.

Our argument will not be that the term file is already a

boundary object of sorts however (it might well have been –

but historical questions are not our main interest), so much

as that it can become an effective one if it is given renewed

meaning and vitality. A new set of definitions for the term

file is required: ones that will allow computer scientists to

engineer what users require, that will provide a meaningful

base for those users to act upon and which can enable an

evolving interaction of design and practice to emerge.

More than this, however: our goal is not only to propose

how a refined definition of the term, a renewed boundary

object, can enable these two sides to collaborate. It can also

be, in our view (and consequent on this), part of a larger

effort to define a new grammar of action for an HCI of the

21st century. This will be of concern to users and engineers.

It seems to us that the practices of users are now profoundly

more social in nature than they were when the term ‘file’

was first coined by computer scientists and the first digital

‘file’ presented to users. Today, users don’t just want to

create and store files. They also want to share those files

with friends and buddies on social networks. Sometimes

they want to give those files to their friends, and sometimes

they want to keep ownership or possession of them, even

while their buddies view them. And all of this might happen

in ways that make the question of where a file is stored

sometimes relevant and sometimes not. At the same time,

the tasks that computer scientists have to attend to given

this evolution in user practice, the diversity of devices that

engineers need to ensure run efficiently as the bedrock for

these new practices, and the need to enable interaction be-

tween applications both between devices and on occasion

processed remotely on the web, requires that from their

view, a revived and invigorated notion of files needs to be

deployed that can allow them to engineer in effective and

hopefully novel ways.

Overview of the Paper

Our goals are then quite bold, albeit our topic might seem

prosaic, almost obsolescent if some commentators are to be

believed. Given this, we will structure the paper as follows.

First, we want to remark on something that might seem

orthogonal to our main goal, though as the paper unfolds

we hope that this will be seen to be not the case.

We commence with the question of how words are to be

understood. If one were to believe Halasz and Moran,

words label things; thus the thing labelled by the word file

in the outside world is (or ought to be) mapped into a repre-

sentation of that thing (i.e., a qualia) in the mental world.

But we think words are best understood as performative, as

ways of doing things as well as sometimes labels for things.

If this is so, we argue that when we approach the problem

of what files ‘are’ (or might be – we shall assume it for the

purposes of argument) we need to be sensitive to how the

word itself is used – and as we shall see, that use is quite

diverse. It is important we do not muddle up uses as we try

to plan a way forward for future use; rather we need to see

what are the kinds of action that maps across and binds

some uses while distinguishing others. These actions can be

the basis of the grammar of action we will want to propose

later on.

Having set the conceptual scene, we then turn to the more

substantive topic of what files do (or did) in early computer

system design. We remark on how the role of files has

evolved and altered over the years. Though only a sketch,

we will look at early attempts to move away from file sys-

tems to, for instance, database systems. The latter can be

seen as emphasising relationships among files, rather than

the file and its location within a folder or file hierarchy, in

that the unit of most interest was the type of relationship

itself. We then remark, again in passing, on attempts to de-

sign interfaces (primarily for the desktop) that sought to

move away from the file metaphor or which sought to rein-

vigorate it, claiming that it has some cognitive value,

Halasz and Moran notwithstanding. We will note that many

of these papers did not attend to the question (or the role) of

files from the engineer’s point of view and so don’t effec-

tively comment on files as a boundary object. Nevertheless,

this research does point towards new user practices.

We shall then turn to the technologies of the current time:

to the world of cloud storage, social networks and applica-

tions like Facebook and Flickr, as well as to a world in

which users have multiple devices and access points to a

file. Building on examples such as provided above with

regard to OneNote, we further illustrate some of the many

difficulties that the old file abstraction has and is creating in

this new world. We argue that these difficulties attest not to

an ‘incorrect model’ of a file, so much as to the stresses that

emerge when engineers and users try to orientate to what

they think is the ‘same model’, when so many changes and

dynamics are afoot that the model (or models) in question

are made muddled, hybrid not to say contradictory. Besides,

we go on to argue that the technology is changing, what

applications allow users to do is changing, what users them-

selves want to do is also altering and this is begging the

question of not so much what files are as what they ought

to be or could be. The role of a file as a boundary object in

the current context is thus losing its efficacy, we suggest,

but if reinvigorated could lead us to inquire into new possi-

bilities. It needs to be made more than simply a term used

in common (or simply used by one side) obviously; it needs

to be a label for some thing and for some practices that bind

and enable, that direct and constrain, and that facilitate co-

herent innovation.

We then outline what we think might be a way forward, a

path that allows designers to offer systems that reflect what

users are seeking to do and which can be engineered so that

the prosaic but nevertheless essential concerns about where

data-as-files might be stored, and how it (they) might be

accessed, copied, moved, made secure and so on, are thus

dealt with effectively. But here we don’t offer technological

descriptions, say, as illustrative of where a new file abstrac-

tion might come to play a role, or recommendations for the

design of a data store that combines file entities with other

data types, such as graph relations (something that is re-

quired in many web-based application experiences [see

19]). Rather, we offer what we think ought to be the foun-

dation of all such considerations: more nuanced vocabulary

about what a system needs to enable and allow. This can be

achieved, we believe, only in part by redefining what is

meant by the word file and the doings associated with that

usage; what is also required, and this is the rub of our paper,

is a new grammar of action: a grammar for both users and

engineers that provides the common ground of cohering

their plans, their doings, their goals, around files and the

other things they want to do in the age of the cloud.

WORDS AND MEANING: FILES AS A PERFORMATIVE
CATEGORY

When one reads papers like Halasz and Moran’s ‘Analogy

Considered Harmful’ one is led to thinking of language as

being a kind of tool, one that when used properly labels

things. From this point of view, one of the troubles that HCI

has to contend with is that users don’t always know how to

deploy language terms properly; there are infelicitous in

their use and their understanding. Experts, meanwhile,

technicians, computer scientists, HCI professionals and so

forth, don’t suffer from this egregious practice: their train-

ing ensures they use words correctly.

This is not the only way of approaching the general rela-

tionship between the use of terms in everyday life and in

specialist or expert contexts, however. Other approaches

treat user understandings as distinct from the technical but

not as competitors to one another, with the user model often

seeming weak or fallible in the way evoked by Halasz and

Moran. Here, philosophers like Hanfling [6], following

Wittgenstein [22], suggest that everyday language terms are

not, as is often claimed by some (most notoriously the

Churchlands [2]), part of ‘common sense’ attempts to do

science – bad science to boot. Everyday terms do have a

use, a purpose if you like; but in this view scientific usages

have another.

The moral from this is that one ought to allow and assume

this diversity. Nor should one rush to judge the former by

their applicability to the latter. Terms are to be assessed by

what they are used to do in the places in which those terms

do ‘work’. The term file and its various uses in everyday

and technical contexts illustrates this kind of diversity and

workload; it highlights too the broad distinctions between

the everyday and the technical action with language.

In ordinary life, words like ‘file’ are often used to label

things. In this respect there is an empirical referent at issue,

one that subdivides the world into things that can be filed

and those that cannot. But the ways in which the term is

used are more nuanced than this. Thus, a letter from the

Bank might be called a file but a love letter not so. The term

implies, that is to say, something about its contents. Further,

the term is also deployed to highlight particular relation-

ships, between a ‘file’ and a person, for example. When this

happens what is being pointed towards is accountability; the

onus that someone might have to look after something is

being emphasised. These usages (and doubtless others),

which are commonplace in everyday life, are glossed over

by the language of empirical reference.

In computer science, meanwhile, the term file is used to

label the minimal digital entity that can be ‘persisted’. A

file is a label for a bundle of data, that is to say, but what

that bundle consists in (i.e., what the binary data represent)

doesn’t really matter nor is it implied in the use of the term.

A love letter and correspondence from the Bank are the

same. And while the computer scientist does worry about

accountability, in their case, they are concerned not with

how an individual needs to look after a file but how a sys-

tem does. The engineer seeks to answer questions like

‘where does the file system put a bundle?’, ‘how does it

name it?’, ‘retrieve’ and ‘make that file secure?’ As it hap-

pens, some of these bundles can themselves be bundled into

larger entities, and these start to look like the things that

users ‘see’ when they interact with digital objects like Mi-

crosoft Word ‘files’. Hence the term files is often labelled

an abstraction in computer science, both because it labels a

category that is a step higher than digital bytes, and because

it can encompass various types of associations, bundles that

look like ‘user files’ from above, from the users’ point of

view.

The point of these remarks is to allow us to assert the claim

that, if and when language is understood as being made up

of terms that are used in diverse and rich ways (as is the

case with the term files), then one should not necessarily

reject attempts to make linkages between instances of lan-

guage use just because the empirical referent in question is

diverse or complex, or because one use is empirical and

another is not. Rather, one needs to approach the possibility

of connection between uses of words carefully. Perhaps

linkages of some kind are useful, perhaps they are not; it

depends on what similarity (or otherwise) in actions are

implied in each case.

Files as a Way of Bundling

This is illustrated when discussions about the cloud beg

questions about what is the stuff that users want backed up

and how it might be that computer scientists can engineer

systems that are secure, economic and pliable with regard to

this stuff. In these discussions one will find that computer

scientists (if one can treat them as a single group for the

moment) use the word file to label things that need to be

dealt with quite carefully, and the doings that they are

thinking of when they use the word are themselves quite

particular and specialised. We have begun to remark on

what those details are. Let us push that further. We have

seen that computer scientists need to bundle the stuff they

store. They need to put it somewhere and know where it is

– though they care little for what it is. But at the same time,

they do care that, whatever it is, it ‘survives’. And this is an

issue for computer scientists – not because they are neglect-

ful in their design. Far from it. The problem is that the stuff

they deal with, the stuff that comes in the form of bits and

bytes, exists in an environment where that stuff (leaving

aside what it consists of) can disappear.

Computer scientists need to cater for the practical reality

that computer systems fail. They fail in part and they fail in

totality; disk sectors can develop defects as a case in point

(and this may mean that part of the digital store for a file is

faulty) and sometimes disks can fail altogether (in which

case remote back-up is required). Given this, computer sci-

entists engineer computer systems (all systems, not only the

flaky PC but also cloud storage systems and servers) to

store data in such a fashion (or arrangement) that if part of

the data is destroyed or even the whole, this event does not

catastrophically affect the system’s functioning, its utility.

For the architecture duplicates data, so that if some is lost

(as it is assumed will happen), then a copy will be available

(somewhere or other) and can thus be used as a replace-

ment. This in turn means that there has to be a system ele-

ment to manage these duplications and stores: this keeps

these versions up to date after changes are made, for exam-

ple, and knows where they are stored. In this view, a ‘file’

is not the stuff stored, it is a way of bundling that stuff into

identifiable materials that in turn can be managed, stored,

retrieved, duplicated, preserved and so on, by the computer

system and its component applications.

Some of the actions done with this abstraction, these things

called files and the systems of which they are a part, are

mirrored in the things that users can see (and do) and some

are not. For example, with the abstraction in hand, a system

can allow a file to be ‘read’ – and thus seen by the user, to

put it crudely, even though the system also has the task of

bringing together the thing-as-seen by the user from the

various parts stored in different places. Likewise, when a

user ‘saves’, the system ‘writes’ that data (i.e., the elements

constituted at an abstract level as ‘a file’) somewhere and

this means the system stores that data. Or to put this another

way (though still simply), when a user ‘saves’, the system

‘writes’, when the user ‘opens’ a file, the system ‘reads’

that file, and so forth (See Fig. 1).

A file of 1 Megabytes
Byte 0 Byte 1048575 (2^20-1)

File can be materialized as:
- Bytes on different sectors of a disk
- Bytes in memory (RAM)
- Bytes on remote data center
- ...

Early grammar:
- create, delete
- read, write
- reposition
- truncate

Figure 1: operating system view of a file abstraction as a consecutive,

uninterrupted range of bytes [14, pp. 372-372]. The abstraction re-

lieves users from understanding how the bytes that make up a file are

scattered across memory or disk, giving them a simple logical object to

operate on.

It is important to bear in mind that all of this work, all these

doings, are not necessarily seen or understood by users –

though these doings allow users to get their doings done

whatever they might be. Questions of where bytes are

stored are systematically hidden from the user’s view.

Files as Boundary Objects

The point is that the term abstraction does label how com-

puter scientists view the issues at hand, the issue of what a

file is for both them and the user. One might say that users

have a different abstraction, one that reflects what they

think of as the properties of a thing that is a file as consti-

tuted in everyday life, while the computer scientist has an-

other. It is in fact more complicated than that, however; it is

not two abstractions. They are distinct yet bound in various

ways. One element that coheres both views is that the thing

itself – the OneNote file, say – is at the point of use for both

the user and the computer scientist effectively a unitary

object, a single entity, not a composite. So although a file

may be made up of bits brought together from other files –

and again, those other files might not be singular – those

bits are brought together in real time when the user ‘engag-

es’ with them. Never mind what a file system does with the

entities constitutive of this file; the point is that at the mo-

ment of interaction, at the interface between the user and

the system and thus, to put it crudely, at the interface as

understood by HCI, what the user sees and what the com-

puter scientist sees is the same thing, though how this gets

assembled, what ‘it’ (i.e., the file) is going to become and

where it came from, is different. The talent of the designers

of early systems is reflected in the fact that despite these

differences in orientation, the interaction that is undertaken

nevertheless succeeds: users by and large get what they

want, a file that can be handled as they understand it and a

system that can function efficiently and effectively. Things

get read and saved, users can act, the system can function.

This description is obviously a simplification of file sys-

tems design just as the one above was of the orientations of

everyday life. But it is sufficient, we hope, to convey the

claim that one might think of the word file – or rather the

concept ‘file’ – as something like a boundary object [18;

see also 17]. Without wishing to make any historical claims

at this point, this object would appear to stand in the middle

ground between the user and the computer scientist in a

complex and delicate way, foreshadowing certain moments

of cohesion while allowing differentiated paths of activity.

It links and binds computer scientists (and their abstraction)

and the user’s point of view (and all that implies). The user

can orient to digital content as if that content had properties

similar to a corporeal file, being an object that can persist,

that can be changed, kept and destroyed; and the computer

scientist can architect systems that allow them to store the

data constitutive of the file-as-seen-by-the-user wherever

they wish, and to ensure that system errors do not destroy or

corrupt data irretrievably.

Previous Attempts to Reconstitute Files

We have suggested that in being an abstraction, a boundary

object, there is a profoundly complex yet binding differen-

tiation between the everyday use of the term ‘file’ and the

use of the same word with regard to systems. Over the years

many attempts have been made to alter the form of this dif-

ferentiation, and crudely speaking to bring these different

orientations to files, the user’s and the computer scientist’s,

closer together, or at least to alter this connection so that it

is better able to allow users to do what they want and engi-

neers to support those doings more effectively. In this re-

gard one might say that there have been attempts to recon-

stitute the boundary object.

More particularly, and until recently, there have been three

major and related themes of inquiry on this topic: the first

concerning how to make documents on computers seem

more like documents from the everyday human point of

view; the second focusing on how to rethink the storage of

a file in a way that gets away from treating a file as an enti-

ty in a hierarchical order, and moves towards distributed

systems where a file can be an entity in more than one place

and with more than one relationship to other files (superor-

dinate or otherwise). The latter can be interpreted as a way

of realising the former, and so oftentimes the arguments

seem to blur into one another.

Beginning with the first theme: documents. There have

been numerous attempts to redesign computer file systems

to reflect the ways that people use and understand docu-

ments. Xerox PARC’s placeless documents research pro-

ject, at the end of the last century, was perhaps the most

ambitious and well thought out of these efforts, reflected in

subsequent years by other similar efforts. In Dourish et al.’s

view [4], the placeless documents paradigm can be con-

trasted with a hierarchical file system. This latter approach

typically puts a file in only one place in a hierarchy, irre-

spective of the fact that users might come to a document

from different points of view and concerns (there are excep-

tions to this with ‘multiple directory entry’ points being

allowed on some systems, for example, and with ‘shortcuts’

in Windows, as another exception).

For example, a document concerning travel plans might be

relevant for budgeting and scheduling. These are distinct

concerns. But the nuance of these distinctions cannot be

represented if the file is only in one place and where the

relationship is always superordinate – where a file must be

in either one or other structural order but not both; either a

budget representation or a scheduling one. Hence, a hierar-

chical system is too constrained, the Xerox researchers ar-

gue; a more human point of view more subtle. So manage-

ment of documents becomes conflated in hierarchical sys-

tems: a file can be retrieved according to one criterion, as

against the multitude of criteria users might apply; the hier-

archical location of a file is used to determine back-up, not

its salience to a user. One could go on.

The placeless documents system, in contrast, made para-

mount the user orientations to documents. So, for example,

since users tend to associate all sorts of apparently ad hoc

properties to their documents, the system would similarly

allow any property to be associated in the ‘file system’

(leaving aside what ‘a file’ is for the moment) when repre-

senting a document. Hence, any categorisation the users

prefer would be acceptable to the system; any way of collat-

ing and bundling would be acceptable too. Furthermore,

these properties might be related to a specific user, and so

the system ought to allow this too. This is important be-

cause the person who uses a document may not be who first

created it – and this may be as important as what constitutes

the use itself. Metadata that allow and govern access and

interaction should reflect this.

All of these arguments can be seen to turn around the idea

of getting away from things in fixed places to relationships

that link things and doings with those things, from a system

that stores a file to databases that create links between enti-

ties, some of which may be file-like. Such a view permits

the heterogeneity highlighted above, and supports the posi-

tion that not all files are equal while moving away from the

notion of a hierarchy. In this view, documents are the ob-

jects in the PARC system, and metadata the material that

allows for the searching, collating and use of those docu-

ments.

This leads us to the second theme: a more general interest

in the relationship between hierarchical systems (documents

being one instance of things in a hierarchy) and databases,

where the latter was to replace the former. This interest was

common in computer science research at the time of Dour-

ish et al.’s efforts. It still is. Some of the titles of well-

regarded papers on the topic, such as Seltzer and Murphy’s

‘Hierarchical File Systems are Dead’ [13], say it all. Much

of the research turned around the idea of treating the things

represented by a file as an object that exists within a data-

base. Thus configured, the argument went, such an object

can be associated and bundled and accessed in all sorts of

more complex ways.

This was the view that drove the WinFS effort in Microsoft,

as an example, undertaken at the start of the last decade

[21]. In the case of WinFS, treating a file in this fashion

would allow users to access a file according to a multitude

of criteria, to associate that file with other files in equally

diverse ways, and to render a file and its relations, graph-

ically, in manners that reflected this diversity.

Though there was much hyperbole at the time, for a variety

of reasons this way of treating files did not get released.

However, various efforts that resonate with the aspirations

behind WinFS have since appeared, at least within the re-

search community. Jones et al.’s ‘Don’t take my Folders

away’ of 2005 [8] explored some of the cognitive muddles

that went with folders and file hierarchies, for example, and

pointed towards ways that current file directories prohibit

multiple locations of file instances, though users themselves

would prefer that such hybridity was allowed. Such possi-

bilities needed to be met without negating the importance of

place in the mental furniture of the mind. Jones et al. did

not make any suggestion as to how to engineer such a sys-

tem, however. Cutrell et al. [3] proposed a system that

combined web-functionality with the PC with their Phlat

system, allowing rich searching and browsing through

augmenting PC files with the kinds of metadata hitherto

associated with websites. Meanwhile, Voida et al. [20]

sought to devise a desktop interface that reframed the enti-

ties engaged with (such as a Word document or an email)

around semantically defined activities – thus evoking Bel-

lotti et al.’s email threading paper of 2003 [1]. Like Jones et

al., none of these attempted to address the design of data

stores, focusing instead on the interface.

More recently, Oleksik et al. [10] have presented a system

that enables a form of threading and association between

digital entities. Users create this through a tagging system.

These tags hide the precise provenance or location of a digi-

tal object – a PowerPoint file, a Website (URL) or a Word

file say – and instead present the user with a collage of

thumbnails bundled together into a ‘cloudlet’ or similar

graphical representation. These concepts are expressly de-

signed with the technical affordances of multiple devices

and cloud infrastructures in mind, and while the research

leaves aside strong claims about engineering, it would ap-

pear that this new mode of interaction would further dis-

tance the connection between the user and file entities stor-

ing data. The abstractions would consist of metadata and,

though looking similar to the user, being all represented as

thumbnails, these metadata would actually point to different

locations and entities from the system point of view. Some

of these indicators would be files to which the system could

read and write, while others would be to the capacity of the

system to request copies and/or viewing rights from content

actually stored on a webserver.

What these studies all affirm, however, is the merits of re-

considering the basic concept of files. This is especially the

case as knowledge work develops beyond the production of

documents, to hybrid and heterogeneous interactions

around multiple digital entity types, which themselves have

complex relations to devices and locations. In the view of

these papers, files are only one of the abstractions that

might cohere interfaces between the user and the systems

engineer.

A File as a Leaky Abstraction

That this is so reflects how it is that, in recent years, there

has been an increasing proliferation of devices and comput-

ers: heterogeneity certainly seems to be a word for labelling

this new world. When Xerox were looking at their systems,

most people (even in PARC) only had access to one device,

the machine that sat in front of them, linked via a local net-

work to other identical machines. But over the past ten

years or so, this singularity has been replaced by a plurality

of devices. People have become used to having many more

devices than ever before, and technologies with distinctly

new properties. These changes have had consequences for

the abstraction that is a file in the digital world, which have

further ramifications for users and computer scientists alike.

The important point that derives from this change has to do

with the fact that these devices are not copies of one anoth-

er; people have different devices doing different things.

They will have a laptop for example, supporting many of

the office and work-related tasks that the original Xerox

machines were designed to support all those years ago: the

creation of texts, reports, memoranda, spread sheets. They

may also have music players, cameras, flash drives (or

memory sticks in common parlance), and so on.

Bound up with this change are two further shifts. Firstly,

people are dealing with an increasing range of file types,

encompassing music (e.g., MP3s), image (e.g., JPEGs), and

movie (e.g., SWFs), to name but a few. Secondly, people

are encountering their data in a number of contexts, some of

which render them in ways that are less ‘file-like’ than hier-

archical systems typically did. The implicit linking of file

with application in operating systems such as Apple’s iOS,

where the underlying file structure is hidden from the user,

would appear to be a case in point.

However as Harter et al. note [7], the emergence of this

complexity and diversity can disguise the persistence of the

term and function of files in computer architectures. They

find on the Apple desktop that the relationship between

different types of digital entities (such as word processing

and graphical objects) most often turns around file type

definitions and abstractions, though these are ragged and

inconsistent, with users thinking one thing and the system

treating file types in another way. Besides, Harter et al. also

note that the architecture often breaks down when the OS

operates upon different data types since there is no con-

sistency between the apps and the OS. This is all the more

startling when one considers the hyperbole given to Apple’s

new data store, the iCloud.

For if it is the case that users are confronted with more data

types, they are also increasingly encountering a new term,

one describing a raft of services and technologies all of

which were meant to let them ‘back up’ these ‘things’,

these ‘files’ – the cloud. This technology, if single technol-

ogy it might be, was introduced to the user as offering them

new ways of storing their digital stuff and of accessing pro-

grams to create that stuff. The cloud was also claimed to

offer new ways of connecting those same people to those

with whom they might want to share their stuff with. In

much of this discussion the term file was used. And here

lies the rub: was this new arrangement of limitless back up

and continuous connectivity to be achieved around that

same concept of a file as had been critiqued, say, by the

Xerox researchers? Or, in the same way that WinFS priori-

tised relationships, was the cloud being designed to support

complex connections across data, now distributed across

different people and different places? If we consider WinFS

as one way of underpinning a collection of files that are

hybrid and diverse, albeit a way that is ill-equipped for

now, we might hope that the bundle of services and applica-

tions constitutive of both the cloud and the things the cloud

will link to, through their common use of the concept of a

file, could offer a way of cohering this diversity.

However, if it was once the case that computer scientists

were of a mind that file architectures were a way of dealing

with hardware fallibility and that there was a time, some-

what later, when they began to think that database systems

provided a way forward, now the world that was being en-

gineered could not be so easily described, however much

the word file was used. If one might have said that users are

rather capricious in their use of the term file, then any ex-

amination of systems encompassed by the desktop PC and

the cloud would say that computer scientists were coming

to be lax in a different way. When they used the term, they

were evoking not just an abstraction but several, each

slightly different; they were designing for a range of devic-

es too, each of which affected what that abstraction stood

for. Following Spolsky [16], we might suggest that the ab-

straction is ‘leaky’. The concept of file is an abstraction of

certain details that are central to systems design. Mismatch

in how those details are abstracted introduce problems. The

problems that began to arise in this period (when the cloud

first started being mentioned) arose not because the abstrac-

tion was altered; it was rather that it became muddled up

and mixed: what a file came to stand for was the problem.

The Elusive “Smallest Allotment”

It may be unsurprising to a HCI audience that what users

think of as a file could differ from what engineers devise

their file abstractions to allow. Indeed, that this is so may be

of little importance; as long as the user can use a file sensi-

bly and the engineer design systems that are effective, what

is the issue? As we have seen however, issues surrounding

what a file means in regard to computers, though often sub-

tle, are leading to solecisms more problematic than the dis-

tinction between what a file ‘is’ from the user’s point of

view and what the system ‘writes as a set of data when ab-

stracted as a file’. They are leading to muddles that cut

across what it means to save one type of file as opposed to

another, and highlight sensitivities regarding whether cer-

tain types of object that we might consider file-like, can be

‘saved’ at all.

“…From a user’s perspective, a file is the smallest allot-

ment of logical secondary storage; that is, data cannot be

written to secondary storage unless they are within a file.”

[14, p. 372]

The term ‘users’ in the above statement probably refers to

fellow engineers, and in this case the abstraction places

much emphasis on a file describing a single unit of data.

But the example that we presented at the outset, of how

OneNote constructs its file storage system, illustrates how

the very same application can have different underlying

structures. Let us take another example to show what a

smallest unit – the file – could be. Like all of the products

in Microsoft’s productivity suite, Word uses a file system to

store a file. But what a file is within this system, how a

.DOC file can be treated and managed as a result, and, re-

latedly, how that links to or is understood by users of a

Word file, is quite particular, special to Word.

At first glance it would appear that a Word file as con-

ceived of in the application (and the OS) is quite close in its

abstraction to the way the user understands it. When a user

creates a Word file, the application creates a single file too;

when a user saves a file, after making some changes, the

application saves pretty much the same thing as the user

understands as well. The addressable object, to put it in

more technical terms, is close if not identical for both the

application and the user. But things start to show some deli-

cate differences when crashes occur. In actuality, Word

periodically writes to a hidden temporary file as the user

makes edits; when the user saves the document, Word

‘commits’ the changes by manipulating the original and

temporary file to make it seem like the original file has

been updated. If the system crashes before the user selects

save, however, then any changes that a user has made since

the last save are not flushed to the original file. This can

muddle the user: sometimes the crash loses changes; some-

times it does not.

Be that as it may, one can imagine that a typical user might

find any of these particularities, the smallest allotment be-

ing a Word file, curious if they found out about them, but

not necessarily consequential. The only time they might

find these differences consequential is when things do not

go as expected during an operation like copy or move. The

user’s expectation is that their commands operate on the

unit as a whole (atomically, as computer scientists say), but

the file system operates on a different, lower unit. It is then

likely that during a crash, or when things go wrong, the user

might puzzle on how the unit ends up being divided, with

some parts of it updated, but some not.

Implications for a Grammar of Action

What this example (and the OneNote example from the

introduction) shows is that the particular concept of a file

and the associated assumptions that go with it are not uni-

versal, reflecting some common agreement amongst those

who design applications. To coin a phrase from the philos-

opher Oswald Hanfling, the ‘grammar of action’ associated

with the use of the concept can be and often is different in

different instances [6]. The differences in grammar turn

around what is understood by the term file, and relatedly,

what action is meant when the terms ‘create’ and ‘save’ are

used. Systems designers have come up with different ways

of enabling these actions in different applications.

One needs to consider these complexities not only when

they manifest themselves when new technologies, like the

cloud, are being introduced. One ought to also consider

them when one tries to understand what motivated earlier

attempts to design actions around a file, undertaken when

file systems were less complex and less diverse. The devel-

opment of Xerox Star [0], for example, was predicated on

the notion of generic objects. These objects could be treated

the same way throughout the OS, being manipulated

through a set of generic commands (move, copy, delete,

etc.) that were designed into the system, each performing

“the same way regardless of the type of object selected”.

Smith et al. [15] continue, “They strip away extraneous

application specific semantics to get at the underlying prin-

ciples, and embody fundamental computer science concepts

and are consequently widely applicable. This simplicity is

desirable in itself…” [p. 523].

The point that Smith et al. make highlights the importance

of the slippage we have described. These differences are

significant to engineers who try to link applications like

Word to cloud services, and for those who are trying to

design cloud services for this and other types of user orien-

tated applications: the grammar that each is relying on is

different, this simplicity is compromised, and this is be-

cause the generic nature of the objects, some of which are

files, that are central to systems can no longer be taken for

granted. The function of the concept ‘file’ as a boundary

object is failing; it is no longer an intermediary that binds

alternative views, but one that muddles them by dint of only

seeming to bind.

Let us return to examples relating to the Xerox Star system.

Smith et al. note an additional “subtle advantage” of the

simplicity of utilising generic objects mentioned above: “it

makes it easy for users to form a model of the system” [p.

523]. Implicit here is the assumption that users understand

the nature of systems and of the doings that these enable: a

consistent grammar aids understanding of what actions are

available. These actions pertain to the things the system

provides, such as ‘a file’. The set of generic actions that can

be imposed on a file reinforce the perception of that thing,

that file as a generic object, as an instance of ‘a file’. When

the doings that are bound up with files lose this consistency,

confusion is likely to ensue: users lose confidence that what

they have at hand is ‘a file’; engineers too begin to wonder

what abstraction they are working to.

A WAY FORWARD

To this point we have put forward the argument that the

term file is fundamental to user experience as well as serv-

ing as a central concept for computer scientists. It has acted

as a boundary object. But as increasingly diverse applica-

tions and networked services have emerged, so the reliance

on the term file has begun to break down. This stretching

shows itself in the grammar of actions associated with vari-

ous digital objects, some of which are file-like and some

not. For example, it is no longer always clear what it means

‘to save’ – the term can mean something different across

applications and even within the same application; it can

mean different things with different types of data entities;

and all of these and other distinctions are compounded by

questions to do with when ‘saving’ is done to different loca-

tions: one’s own computer or the cloud, for example. Does

one save to the cloud, or does one save first to one’s PC? If

one is a back-up of the other, does synching solve the riddle

of what version was saved most recently?

At first glance this might simply suggest a need for in-

creased consistency, in service of the engineering commu-

nity as well as to support users in understanding these sys-

tems. But though laudable, this would be to ignore the fact

that users are likely to want to have files and other digital

types, things which are not file-like. Indeed, looking at the

way that new social networking services have been adopted

in particular demonstrates that there are now a range of data

types that people produce, share and engage with, and these

things go alongside what may be thought of as file-like.

Given this, reworking the abstraction of a file is only one

part of what might be developed, but nevertheless, changes

even as regards this apparently partial component of the

current world opens up an opportunity for something much

bolder. A reconstitution of what a file is could be a neces-

sary part of a new grammar of actions. In allowing file-like

behaviours, other behaviours become possible through be-

ing distinct. It will allow users to navigate and appropriate

as they see fit and in ways that suit the current landscape. It

will allow users to separate what are postings, say, from

what are action records (such as likings and playlists), and

those digital phenomena that they have an especial relation-

ship with, those objects that are file-like, but somehow pre-

sent and shared in the networked, multi-device, collabora-

tive tagging world of today.

Towards an Abstraction that Encompasses Metadata

“…A file has certain other attributes, which vary from one

operating system to another, but typically consist of…[a]

name, …[a] type, …[a] size, …access-control information,

…[a] time, data and user identification…” [14, p. 372]

The first suggestion for a way forward is perhaps the most

obvious: it entails rethinking the role of metadata. This is

becoming central not only to applications such as OneNote,

but also to current technological ecosystems, including re-

cent offerings by Apple, Google and Microsoft, where the

application is represented as being bound up with the file.

But metadata is also now becoming central to what users

understand as a file, though they might not always think of

tags, comments, playlist information and so forth as

metadata. For what a file is is now often bound up with the

things added to it, not only by the originating user but by

others too.

Consider for example, behaviours reported by Odom et al.

[11]. In their study of teenagers and their virtual posses-

sions, participants reported that part of the value of photos

posted on Facebook was the metadata associated with them:

comments and ‘likes’ were so pertinent that they were re-

ported to be printed out and pasted into scrapbooks along-

side photos. This materialisation of the digital is indicative

of a difficulty associated with the current technological

landscape.

It is not clear how one would digitally export a Facebook

photo in order to view it alongside this metadata – the tags

and comments – with another computer program or applica-

tion, and this remains so despite recent innovations in the

Facebook service. Yet it is not surprising that users should

want to treat these entities in the way they treat a file. If

they can upload their photos to Facebook, and given that

they do so the photos are file-like objects, why can they not

download them again, while retaining the value they have

accrued, but still with the benefits of file-like properties?

Although it is now easier for users to export their data from

Facebook, these exports, once represented simply as ‘a file’

on a hard disk, lose their potency. They are disconnected

from the social life they were bound up with; they are the

bare bones of the thing that the original file became when it

was posted on Facebook.

An analogy might be helpful. If in the past a file was a sin-

gle entity to the user, but the system broke the file up into

blocks and bytes when it came to storage, the value of so-

cial networking is to make what starts as a single entity

become a ‘network of stuff’, a composite of the file and the

metadata accreted through use on the social network.

Hence, when a creator of the original file wants to down-

load the thing that it has become on Facebook, they want to

download not the single thing that was the file, but the vari-

ous objects constitutive of the stuff (entities) that have de-

rived from the social discourse around it. They send up a

single entity, and want the system to send back a bundle of

bits, whether these be pointers to data of various types,

stored in various places, or a large entity, originally called

the file but now lined with tags of various kinds. This bun-

dle, this new ‘file’ type, is not merely a complex data type;

the important thing from the users’ point of view is that it is

a mirror of the social life that the file enables.

Rethinking the Grammar of Copy

This suggests much more than an extension of the scope of

the thing ‘copied’ or downloaded, however. The shift that

we describe above, towards an abstraction encompassing

metadata, which in itself reflects the social life of the object

in question, has a number of implications.

For the sake of simplicity, let us continue with examples

taken from actions related to Facebook (and disregarding

the variety of actions that are supported by different social

networking services). Things like the ‘author’ and ‘place’

tags, as well as the ‘likes’ and ‘comments’ that can be ap-

pended to images and other posts, create rich layers of data

on an originating file, which can imbue this file with greater

meaning. Reflecting on this, we have suggested that it is

sensible for a user to be able to interact in file-like ways

with this combination in order to retain this value.

However, this immediately raises complexities. For in-

stance, images posted to Facebook might be copied not only

by the person who posted them, but also by others. In these

circumstances, should these others be able to copy the

metadata, the tags as well as the thing-itself? If so, what of

the rights of the owner or, if you prefer, the maker of the

initial file (see also [9])? When people copy an originating

file, would they be creating a new file or would their new

entity be a version of the original one? Is there an order of

precedence that we are proposing and ought this to be re-

flected in the concept of a file that might apply?

It seems to us that there is a distinction that ought to be

made between things that are put on the web, which the

originator wants to have file-like properties (even as that

thing develops a social life once on the web), and those

things that are posted that the user does not want to have

file-like properties. The properties we are thinking of have

to do with questions like whether ‘making a copy’ means

making a duplicate, or having and owning (as it were) the

originating thing itself and keeping traces of when copies as

somehow distinct ‘lesser’ entities are produced. Each type

of ‘copy’ has implications for the ensuing social life of the

digital entity in question.

The issue here is what grammars of action are implied for

these related but evidently distinct objects, some file-like

and some not, and how this spills out in terms of the actions

possible that mediate the social relations in question. There

are evidently subtleties here. We have begun to point out

some; it is to others we now turn.

Rethinking the Grammar of Delete

Consider this quote, from interviews reported in [12],on the

discontinuities between people’s expectations about what

they can do with their digital material and what they can in

fact do when they place it on social networking sites.

“I guess I can delete them (photos on my computer)…

online, well I can try to delete something but who knows?

Who deletes the deleted? Where does it go when I delete it?

I don’t know but I don’t think it disappears and that way it

feels like I don’t have control over it…”

What is implied here is the possibility, conceived from this

user’s point of view, that a digital object is something that

can be done away with. At least, this is their understanding

of what seems to happen when they interact with things –

certainly this is their understanding of what happens when

they interact with their PC (notwithstanding the subtleties

of this for the moment).

This individual is making a contrast however, between in-

teracting with their PC and when they venture elsewhere,

onto Facebook (or Flickr, say, for want of another illustra-

tive context). Though only one person’s account, it seems

to us that this can be taken as representative of the view

held in common. After all with a computer, the abstraction

representative of a file has for some years now allowed a

user to treat a file in this way: as something that can be

done away with. Never mind that most computer systems

have not been designed so that a file is truly eviscerated

when the ‘delete’ command is selected (instead simply re-

addressing the digital space used by the file in question).

For the purposes of the user, this is sufficient for them to

get on with their doings: for their practical intentions, their

delete action does way with the file.

How different the situation is as both regards this basic in-

teraction and the essential status of the thing filed and-or

deleted when the ‘place’ that this interaction is occurring on

is remote, on some server, either the cloud or on some so-

cial networking service. It is in this sense that the doubts

that this interviewee expressed, though tentative, are accu-

rate. They are right to ask, albeit rhetorically, ‘just what

does happen when delete is selected?’ ‘What is implied

here?’ They are asking, ‘What is left unstated but necessari-

ly relied upon when I press delete?’ Their understanding, as

represented in this single quote, is not naïve so much as too

knowledgeable: just as they understand that on a computer,

to delete doesn’t mean to completely eviscerate or destroy a

file, so now they worry that same will apply in this new

landscape.

It is precisely because of issues such as these that the

grammar of action that was devised for the PC cannot be

the solution that is applicable for the current multiple de-

vice, cloud-linked, multiple file type, social networking

world we have now. Something more is required than was

true in the past if one is to copy or delete in this new con-

text. The grammar must imply more.

What is needed is not only a file abstraction through which

the user’s desire to hold on to the metadata that makes their

files meaningful can be encompassed, when a file gains

what one might say is its ‘social life’. It is that, in addition,

this thing, distributed as it is, can nevertheless be done

away with, removed, taken out of play, ended. A boundary

object needs to be developed that can bridge the abstraction

of the user and the one of the engineer, who needs to worry

about this thing that keeps growing and changing, and

where the locale of storage changes too, such that when a

user says ‘delete’, the thing whatever it is and wherever the

entities constitutive of it are, are indeed, done away with.

Expanding the Grammar of Action: to Own

These examples of the thing that is a file, of the copying of

that thing and, last of all, the deleting of a file, show how

reconstituting a file abstraction needs to be done mindfully.

Nevertheless, one might say that these are still actions that

resonate with the world that existed when engineers at Xer-

ox were developing the Star. But the world is much more

different than is suggested by the continuing applicability of

these terms. Numerous technological shifts are already un-

derpinning various actions that were not possible then:

‘synching’ and ‘streaming’ are amongst this novel set of

behaviours. Devising a new file abstraction also requires

that some actions implied but not stated in the original con-

cept of ‘a file’ now require explicit attention in ways that

would have startled the Xerox engineers more than the in-

troduction of the concept of ‘synching’ would.

Take the following two quotes, from two different partici-

pants (from [12]), as illustrative here:

“the more I talk about it, the more the idea of owning some-

thing online seems lost in translation.”

“it feels like there is this illusion that they are mine, that I

own them. But they could disappear at any moment.”

These quotes are suggesting that the relationship a user can

have to digital stuff can be one where ownership is applica-

ble. At first reading one might think they are alluding to

digital rights management. But further reflection brings this

into doubt. They appear to be thinking of something that

they had been able to take for granted hitherto, something

that went hand in hand with their understanding of what a

file is.

Later on in these same interviews, these participants talk

about how it used to be that they knew where a file was.

They stated that they used to have a desire to put a file “on

a CD” so that “it could be safe”. But they go on to say that

they find that this is hard to do in the context of cloud stor-

age. The reasons why they wanted to do this (before we

remark on the difficulties) were that, for them, where a file

is could act as an instrument of ownership. Being “here”,

“on their PC”, or “in a CD”, could make it “theirs”. That

they can see “it is here” could assure them that their own-

ership has not been violated.

What is being pointed towards is a set of assumptions, relat-

ing to the functioning of a file on a computer that harks

back to the discussion of deletion above. The thing that can

be a file, and hence the thing deleted or in this case owned,

is treated as if it has a physical locale, a knowable place

where it lives. This somewhere used to be (of course)

“there”, in a particular machine, on their desk at home or at

work. But when it comes to the current world, where this

‘there’ might be is no longer clear; there is often no know-

ing where a file is, certainly from a user’s point of view.

What follows on from this is the possibility that what once

was taken for granted can no longer be. In the UK, where

this research was conducted, one’s ownership of digital data

was manifest in the physical presence of the devices that

housed that data. Now that proxy relationship no longer

applies. And users are right to wonder about what owner-

ship means in this new context. Amazon’s continuing ef-

forts to specify how Kindle users can lend each other

(whose?) books highlight the complexities in this space; it

certainly doesn’t offer a way forward and out of them.

We think that a new concept of what a file might be does,

and further, that unpacking such a concept presents an oc-

casion for rethinking what ownership might look like.

Translating what was once a relationship between a user

and a physical thing into one between a user and a digital

thing is not simply a matter of replication and, even if it

were, the reinforcing of one model of possession would

mean disregarding other ways in which ownership is ac-

complished. Expanding the grammar of action to encom-

pass possession means considering how to enable the do-

ings that underpin what ownership looks like in the many

parts of the world where file infrastructures are used. It

means acknowledging the complexities that are associated

with this concept and designing for a diverse range of ac-

tions. And it opens up the possibility that cloud computing

could enable new kinds of practices to emerge, which

change ideas about how individuals relate to ‘their’ data,

and to each other via it.

CONCLUSION

Whatever future work does need undertaking – and there

are obviously plenty of opportunities here – these examples

have been presented to assert our view that users sometimes

want a particular type of digital entity. This entity needs to

let them do certain things, a particular job. A new version

of what users think of as a file can let them do this, we have

proposed. But we are also proposing that this new entity

needs to be engineerable, too. The thing that will result may

well not look a file as conceived of in file architectures; nor

will it have quite the same assembly of interactional fea-

tures, the same grammar of action as we have put it, as a

file on a computer.

We have noted that the devising of a new abstraction needs

to be done in a way that is cognizant of the grammar of

action that it will imply. Enduring actions, such as copy and

delete, need to be re-thought, and new actions may be need-

ed, for example to provide a sense of ownership of data. A

new abstraction might allow users to eradicate a file that is

stored in the cloud, or withdraw one from a social network.

It might allow them to knowingly place a file in a particular

location, one that is tied to a physical locale. It might re-

solve issues surrounding the loaning of digital media or

enable a sense of shared ownership. Although we conclude

with these suggestions, we make them tentatively. A new

abstraction, and a new associated grammar of action, will

require a good deal of thought and experimentation. In this

case, diligent HCI research is warranted more than ever.

ACKNOWLEDGMENTS

Many thanks to reviewers and to colleagues in SDS.

REFERENCES

1. Bellotti, V., Ducheneaut, N., Hoard, M. and Smith, L.

2003. Taking email to task: the design and evaluation of

a task management centred email tool. In Proc. CHI

2003, ACM Press, 345-352.

2. Churchland, P. and Churchland P. 1995. The Engine of

Reason, The Seat of the Soul: A Philosophical Journey

into the Brain. Boston: MIT Press.

3. Cutrell, E., Robbins, D., Dumais, S. and Sarin, R. 2006.

Fast, flexible filtering with Phlat. In Proc. CHI 2006,

ACM Press, 261-270.

4. Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J.,

Petersen, K., Salisbury, M., Terry, D. B. and Thornton,

J. 2000. Extending document management systems with

user-specific active properties. ACM Trans. Inf. Syst. 18,

2 (2000), 140-170.

5. Halasz, F. and Moran, P. 1981. Analogy considered

harmful. In Proc. CHI 1981, ACM Press, 383-386.

6. Hanfling, O. 2000. Philosophy and Ordinary Language:

The Bent and Genius of Our Tongue. London:

Routledge.

7. Harter, T. Dragga, C., Vaughn, Arpaci-Dusseau, A. and

Arpaci-Dusseau, R. 2011. A file is not a file: under-

standing the I/O behaviour of Apple desktop applica-

tions. In Proc. SOSP 2011, ACM Press, 71-83.

8. Jones, W., Phuwanartnurak, J., Gill, R. and Bruce, H.

2005. Don't take my folders away!: organizing personal

information to get things done. CHI ‘05 Extended Ab-

stracts, ACM Press, 1505-1508.

9. Marshall, C., McCown, F. and Nelson, M. 2007. Evalu-

ating personal archiving strategies for internet-based in-

formation. In Proc. IS&T Archiving 2007, 151-156.

10. Oleksik, G., Wilson, M., Tashman, C., Rodrigues, M.,

Kazai, G., Smyth, G. Milic-Frayling, N. and Jones, R.

2009. Lightweight tagging expands information and ac-

tivity management practices, In Proc. CHI 2009, ACM

Press, 279-288.

11. Odom, W., Zimmerman, J., Forlizzi, J. 2011. Teenagers

and their virtual possessions. In Proc. CHI 2011, ACM

Press, 1491-1500.

12. Odom, W., Harper R., Sellen. A., Thereska. E. 2012.

Lost in translation: understanding the possession of digi-

tal things in the cloud. In Proc. CHI 2012, ACM Press,

781-790.

13. Seltzer, M. and Murphy, N. 2009 Hierarchical file sys-

tems are dead. In Proc. HotOS 2009, USENIX Associa-

tion, 1-1.

14. Silberschatz, A, Galvin P.B and Gagne G. (2002) Oper-

ating System Concepts, (6th Ed). New York: Wiley.

15. Smith, D.C., Irby, C., Kimball, R. and Harlsem, E.

1982. The Star user interface: an overview. In Proc.

AFIPS 1982, ACM Press, 515-528.

16. Spolsky, J. 2004. Joel on Software. Berkeley: Apress.

17. Star, S.L. 2010. This is not a boundary object: reflec-

tions on the origin of a concept. Science Technology &

Human Values 35, 5 (2010), 601-617.

18. Star, S.L and Greisemer, J.R. 1989. The structure of ill-

structured solutions: boundary objects and heterogene-

ous problem solving. In L. Gasser and M.N. Huhns

(Eds.) Distributed Artificial Intelligence: Vol. 2. San

Francisco: Morgan Kaufmann, 37-54.

19. Thereska, E., Gosset, P. and Harper, R., 2012. Multi-

structured redundancy. Presented at HotStorage 2012,

June 2012, Boston, MA.

https://www.usenix.org/system/files/conference/hotstora

ge12/hotstorage12-final6.pdf

20. Voida, S., Mynatt, E.D. and Edwards, W.K. Re-framing

the desktop interface around the activities of knowledge

work. In Proc. UIST 2008, ACM Press, 211-220.

21. WinFS. Wikipedia, accessed 23 August 2012.

http://en.wikipedia.org/wiki/WinFS

22. Wittgenstein, L. 1953. Philosophical Investigations.

Trans. A.N. Anscombe. Oxford: Blackwell.

Xerox Star. Wikipedia, accessed 23 August 2012.

http://en.wikipedia.org/wiki/Xerox_Star.

The columns on the last page should be of approximately equal length.

https://www.usenix.org/system/files/conference/hotstorage12/hotstorage12-final6.pdf
https://www.usenix.org/system/files/conference/hotstorage12/hotstorage12-final6.pdf

