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ABSTRACT
Interleaving is an online evaluation technique for compar-
ing the relative quality of information retrieval functions by
combining their result lists and tracking clicks. A sequence
of such algorithms have been proposed [6, 13, 4], each being
shown to address problems in earlier algorithms. In this pa-
per, we formalize and generalize this process, while introduc-
ing a formal model: We identify a set of desirable properties
for interleaving, then show that an interleaving algorithm
can be obtained as the solution to an optimization problem
within those constraints. Our approach makes explicit the
parameters of the algorithm, as well as assumptions about
user behavior. Further, we show that our approach leads to
an unbiased and more efficient interleaving algorithm than
any previous approach, using a novel log-based analysis of
user search behavior.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval.

Keywords: Interleaving, Evaluation, Web Search

1. INTRODUCTION
In most studies retrieval evaluation is performed using

manual relevance judgments that assess the relevance of
particular documents to particular queries, or by observing
user behavior in an actual retrieval system. In both cases,
the goals are clear: Sensitivity to small improvements in re-
trieval quality for a given cost of evaluation, and fidelity to
the actual user experience were real users to directly com-
pare particular retrieval systems.

The most common approach involves relevance judgments.
Among other benefits, this most easily allows for repro-
ducibility and reusability: A retrieval algorithm can be run
on a document collection for a particular query set for which
judgments are known. Performance can be measured us-
ing any number of metrics such as Mean Average Precision
(MAP) [11], Discounted Cumulative Gain (DCG) [11], or
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Subtopic Recall [16]. Different researchers can apply the
same retrieval algorithms to the same collection to repro-
duce results. Further, the data can be used to evaluate fu-
ture retrieval methods on the same document collection and
query set.

In contrast, online evaluation involves real users search-
ing for actual and current information needs. The users
can enter search terms, and documents are retrieved. Based
on the user interface (in particular the captions shown by
the retrieval system), users select results, reformulate or re-
vise their information need, and continue with other tasks.
Their behavior in selecting queries issued and documents
clicked can be interpreted as feedback about the documents
retrieved. Reproducing an evaluation requires showing new
users similar results. If the new users are substantially dif-
ferent, or have substantially different needs or behavior, the
outcome may change. Furthermore, a record of behavior
given particular documents returned to users does not tell
the researcher how the users would have behaved had other
documents been shown, so observed behavior is not easily
reusable when evaluating new retrieval methods.

However, online evaluation benefits from involving real
users, particularly when conducted on real queries in situ.
In that case there is no uncertainty in how a judge should
interpret the query sdsu, nor how to trade off the relevance
of new and old documents to the query wsdm. All aspects of
the users’ context and state of knowledge are present, some
of which may be difficult to realistically capture in a test col-
lection. Finally, as usage data can be collected essentially
for free by any active information retrieval system, its cost
can be much lower than that of obtaining sufficient relevance
judgments from experts to detect small relevance improve-
ments. For these reasons, we focus on online evaluation.

Among online evaluation approaches in the context of
Web search, two methods dominate today: The first involves
measuring properties of user responses to retrieval, such as
the the time it takes users to click, or the positions of these
clicks and other observable behavior [9, 14, 5]. This can be
used to compute a score for a given retrieval algorithm that
can be compared across systems. The second approach in-
vovles showing users a combination of results retrieved by
different ranked retrieval algorithms, and observing which
results users select from this combination. This is usually
termed interleaved evaluation. A number of authors have
demonstrated the higher sensitivty of the interleaved ap-
proach [7, 13, 1], largely due to the within-user comparison
that is taking place: The same user with the same informa-
tion need at the same time is shown the best results proposed
by both systems, and directly chooses between them.



Figure 1: Illustrative example of interleaving. Rankings pro-
duced by two retrieval functions for the query napa valley,
are combined into an interleaved combination.

In this paper, we address the question of how to obtain
an optimal interleaving algorithm. In particular, a num-
ber of interleaving algorithms have been proposed, includ-
ing Balanced Interleaving [6], Team Draft Interleaving [13]
and Probabalistic Interleaving [4]. Further, additional vari-
ants of interleaving algorithms, for example involving how
credit is assigned for clicks have been proposed [2, 15]. This
leads to the question of what the best interleaving algorithm
would be, and why. Also, the two most recent interleav-
ing algorithms addressed unexpected flaws in previous al-
gorithms. This suggests that analysis of interleavings algo-
rithm is difficult, and that the properties encoded by each
algorithm implicitly make assumptions that are difficult to
verify. The designer of an algorithm risks creating new prob-
lems, even while fixing existing ones.

We thus invert the problem of deriving an interleaving
algorithm: Starting with properties that we wish the al-
gorithm to have, we formulate interleaving as the solution
to an optimization problem. We then solve for the algo-
rithm. This is the key contribution of our work. A second
contribution is our evaluation method: Following a similar
approach to Li et al. [10], we show how different interleaving
algorithms can be evaluated on historical log data, without
running a new algorithm on new users.

This paper is organized as follows. First, we present inter-
leaved evaluation in detail. We then describe our approach,
interleaving as the solution to an optimization problem. Af-
ter formulating the optimization problem, we show theoreti-
cal guarantees and solve for two interleaving algorithms. We
conclude with an evaluation comparing our approach with
previous interleaving algorithms using a real usage data.

2. INTERLEAVING
An interleaving evaluation compares two retrieval func-

tions RA and RB . Rather than showing the results of RA to
some users, and RB to the rest, both results lists are gener-
ated for each query issued and a randomized combination is
presented to users, as illustrated in Figure 1.

2.1 Goals of Interleaving
While mixing retrieval results from multiple rankings was

first described by Kantor [8], the first interleaving algorithm
was detailed and implemented by Joachims [6, 7]. He pro-
posed that the comparison should satisfy:

(a) be blind to the user with respect to the underlying
[retrieval functions],

(b) be robust to biases in the user’s decision process that
do not relate to retrieval quality,

(c) not substantially alter the search experience, and

(d) lead to clicks that reflect the user’s preference.

2.2 Previous Algorithms
A number of interleaving algorithms have been proposed

that attempt to satisfy these requirements. We focus on
three: Balanced, Team Draft and Probabalistic interleav-
ing. In all cases, we suppose that we are wishing to con-
struct an interleaved list of results A = (a1, a2, . . .) and B =
(b1, b2, . . .). We denote the interleaved list I = (i1, i2, . . .).

Balanced Interleaving
Balanced interleaving [6] creates a combined list I such that
the top-kI results of I includes the top-kA of A and the
top-kB of B where for every kI , values kA and kB differ by
at most 1. The algorithm runs as follows: First, toss an
unbiased coin. The outcome of this coin toss is t = (A)
or t = (B). Let there be two pointers pA and pB that
indicate the rank of the highest ranked document in A and
B respectively that is not yet in I. Construct I by greedily
appending apA whenever pA < pB , or pA = pB and t = (A),
and appending bpB otherwise. Recompute pA and pB after
each document is added to I.

Team Draft Interleaving
Radlinski et al. proposed Team Draft interleaving [13] based
on how sports teams are often assigned in friendly matches:
Two captains (each with a preference order over players)
toss a coin, then take turns picking players for their team.

In the retrieval setting, the algorithm proceeds similarly:
In each iteration, toss an unbiased coin, t. If t = (A), ap-
pend the next available result from A (i.e. the next highest
result in A that is not already in I) to I, followed by the next
available result from B. If t = (B), follow the same proce-
dure but with B before A. This process continues, with a
coin toss and two results added per iteration. The output
is the interleaved list I and a record of which list provided
each of the results in I.

Probabilistic Interleaving
Probabilistic interleaving, proposed by Hofmann et al. [4],
is similar to Team Draft but allows a richer set of rankings
to be constructed. First, rather than taking two results per
coin toss, Probabilistic interleaving takes one. In an extreme
case, I could be constructed entirely from A (with probabil-

ity 0.5|I|), but in expectation A and B contribute the same
number of results. Second, when selecting a result to append
to I, Team Draft interleaving selects the next available re-
sult from a ranking. In Probabilistic Interleaving, results
are instead selected with a probability decreasing with the
position of the result in the ranking from which it is being
selected. Thus, when selecting the first document in I from
A, it is most likely that a1 is selected, less likely that a2 is
selected, even less likely that a3 is selected, and so forth.

Assigning Credit for Clicks

Having established these three list combination approaches,
a way to interpret user clicks in each case is also required.
Each interleaving algorithm was presented with a credit as-
signment rule, while other work has proposed alternate credit



assignment approaches (only). It is the combination of list
interleaving and credit assignment that comprises an inter-
leaving algorithm, and determines fidelity and sensitivity.

In Balanced interleaving, when clicks are observed, the
minimum values of kA and kB to generate the list down to
the lowest click are computed. Then, k = max(kA, kB).
The number of clicked documents present in the top k of
A is compared to the number of clicked documents in the
top k of B. The ranking with the higher count “wins” this
ranking instance (also termed impression), otherwise it is a
tie. If one of the retrieval functions wins more than half of
non-tied impressions, Balanced interleaving concludes that
this retrieval function is better.

In Team Draft interleaving, each document is assumed
to “be on the team” of the ranking from which it was se-
lected: Clicks on this document count as credit for that
ranker (each team always has an equal number of docu-
ments). The ranker with more credit“wins”each impression.
A refinement ignores clicks on results in any identical prefix
of both A and B, increasing sensitivity of the algorithm [1].

In Probabalistic interleaving, credit assignment is more
sophisticated: Given an interleaved ranking I, all the pos-
sible coin toss sequences that could have resulted in I are
computed. For each possible sequence of coin tosses, the
algorithm computes which retrieval function “wins” using
the same logic as with Team Draft. Probabilistic interleav-
ing then assigns a probabalistic outcome to each impression
based on how likely each ranker is to have won each impres-
sions across all possible consistent coin toss inputs.

Finally, an assumption implicit in the above is that all
clicks on documents are treated equally. Yue et al. [15]
showed how to learn a weight for each click to improve sensi-
tivity, for example perhaps treating top-position clicks differ-
ently. Hofmann et al. [3] reduce bias by similarly reweight-
ing clicks. Alternatively, Hu et al. [2] proposed to interpret
clicks as pairwise preferences over documents.

2.3 Success Criteria and Breaking Cases
Given these alternatives, the question arises of what makes

a successful interleaving algorithm. When considering suc-
cess, we adopt the approach of [12], focusing on fidelity and
sensitivity. An interleaving algorithm with good fidelity will
tend to agree with other appropriate evaluation methods
such as test collections or randomized A/B tests in identi-
fying the better of two retrieval functions. A sensitive algo-
rithm will make efficient use of data, coming to a statistically
significant conclusion with fewer interleaved impressions.

Fidelity and sensitivity of interleaving algorithms can be
affected by systematic problems in their design, known as
breaking cases. Breaking cases are interesting in the cur-
rent study since they indicate algorithmic problems that we
wish to address. More generally, in a practical setting it
is useful to know the breaking cases of an algorithm, since
a particular comparison (with an ‘unlucky’ pair of retrieval
functions) may systematically have that case more often,
which can change or delay the outcome of the comparison.1

As shown in [13, 1], A = (doc1, doc2, doc3) and B =
(doc3, doc1, doc2) is a breaking case for Balanced interleav-
ing. In particular, a user who clicks at random on one of the
documents in the interleaved list will prefer A two out of

1Note that while these constructed breaking cases are possi-
ble for the interleaving algorithms, in many real-world eval-
uations they are not prevalent enough to affect the outcome.

three times. Team Draft interleaving also draws the wrong
conclusions for some pairs of rankings A and B [4, 1]. For
instance, if the only relevant and clicked document is doc∗,
in expectation Team Draft interleaving prefers neither rank-
ing when A = (doc1, doc

∗, doc3) and B = (doc1, doc2, doc
∗),

despite one clearly being better for users. Finally, while
Probabilistic interleaving avoids these breaking cases, it can
show rankings that are very dissimilar from A and B, po-
tentially degrading the user experience.

3. OPTIMIZING INTERLEAVING
We now turn to the question of deriving an interleaving

algorithm as the solution to an optimization problem. We
start by deriving the constraints on this problem.

3.1 Refining Interleaving Goals
Refining the desirable properties presented by Joachims [6],

we propose to modify the two last conditions:

(c’) The comparison does not substantially alter the search
experience, presenting the user with one input ranking,
or the other, or a ranking that is “in between” the two.

(d’) An interleaved evaluation produces a preference for a
ranker if and only if the users prefer the documents
returned by that ranker. Specifically:

d’.1 If document d is clicked, the input ranker that
ranked d higher is given more credit for the click
than the other ranker.

d’.2 In expectation, a randomly clicking user does not
create a preference for either input ranker.

These goals will be written formally in Section 3.2. How-
ever, we first consider the intuition.

There are two naturally competing goals in an online eval-
uation: Should rankings be shown to obtain maximally use-
ful relevance information, or should rankings that minimally
disrupt the user be shown? Similar to Joachims requirement
(c), we argue for the latter as users can quickly abandon an
information retrieval system that performs poorly – even if
it is doing so for evaluation reasons. In our formulation, (c’)
aims to guarantee small relevance impact: (1) interleaving
two identical lists must yield the same list; (2) if two lists
start with the same k documents, the interleaved list must
also start with those same k documents; (3) if document d1
is ranked higher than d2 in both input rankings, it is also
ranked higher in the interleaved ranking; (4) any document
shown in the top k by an interleaving algorithm must be in
the top k of at least one of the input rankings.

The property (d’) limits how credit can be assigned to
rankers based on clicks. For example, if a ranking is im-
proved by moving the only relevant document higher (and
users click on relevant documents), then the interleaving al-
gorithm must recognize this improvement. Similarly, if clicks
are made randomly then there should not be any preference.

Sensitivity

A further goal is for the interleaving algorithm to be as sen-
sitive as possible to changes in ranking quality. This means
that it should require the fewest user queries (or impres-
sions) possible to infer a statistically significant preference.
While absent from Joachims’ original explicit criteria, we
will show how to incorporate this as well.



Given these goals, we now show how the interleaving al-
gorithm can be written as the solution to an explcit opti-
mization problem.

3.2 Optimization Framework
Suppose we have two input rankers, RA and RB , that

we wish to compare. We use lowercase letters to denote
documents returned by these rankers, and uppercase let-
ters to denote (ordered) rankings of results. For example,
A(q) = (a1, . . . , an) denotes the results retrieved by RA for
query q. Let Ak(q) denote the (unordered) set of top-k doc-
uments {a1, . . . , ak}. Without loss of generality, for nota-
tional simplicity we present the optimization problem for a
single fixed query, for example writing A instead of A(q).

Our goal is to obtain an algorithm that, given any two
rankings A and B, produces a distribution over interleaved
rankings of documents L. The parameter we learn, pj , is
the probability with which each ranking Lj ∈ L will be
shown to users2. For any given L = (l1, l2, . . .) ∈ L, let
δi(L) (subsequently δi) be the (real valued) credit assigned
to RA whenever document li is clicked. Thus δi is positive
if ranker RA receives credit for this document, and negative
if ranker RB receives credit.

We next address randomly clicking users: We would like
that for any user who clicks at random there is no prefer-
ence inferred by the interleaving algorithm for either input
retrieval function. However, it is not clear how to formalize
this requirement. Instead, we require this to be the case for
a specific model random user:3 Let a randomly clicking user
be a user who (1) picks a random threshold k from any dis-
tribution, then (2) clicks on η ≥ 1 documents in the top-k
of the interleaved list chosen uniformly at random.

We can finally write a formal definition of our constraints,
based on the intuition from Section 3.1:

c’ The interleaving list L satisfies:

∀k. ∃i, j. s.t. Lk = Ai
⋃
Bj (1)

This simply requires that any prefix of L consists of all
top i documents from ranking A and all top j docu-
ments from ranking B. This means that, for example,
the top document of L must be either a1 or b1. Simi-
larly, the top two must be {a1, a2}, {a1, b1} or {b1, b2}.

d’.1 The credit function δ satisfies:

rank∗(li, A) < rank∗(li, B) ⇔ δi > 0 (2)

rank∗(li, A) > rank∗(li, B) ⇔ δi < 0 (3)

where rank∗(d,R) is the rank of document d in R if
d ∈ R, and |R| + 1 otherwise. Rank positions are
numbered from top to bottom, so the highest position
has the lowest rank.

d’.2 Given the probability with which each ranking Lj is
shown to users,

∀k, ∀η, E
[
ηE [δi]i∈1...k

]
Lj

= 0 (4)

2For example, in Balanced interleaving, there would be one
or two elements in L, with equal values of pj . For Team

Draft interleaving, there are up to 2|L|/2.
3Other models of random user could be used instead of, or
even in addition to, this model.

3.3 Problem Definition
The set of permissible interleaved rankings is:

L = {L : ∀k, ∃i, j. s.t. Lk = Ai
⋃
Bj} (5)

The only parameter of the algorithm is the probability pi
with which each ranking Li ∈ L is shown to users. The
values of pi must satisfy

1. Each ranking Li is shown with a valid probability:

pi ∈ [0, 1] (6)

2. The probabilities add to 1:

|L|∑
i=1

pi = 1 (7)

3. The expected credit from a random user is zero:

∀k, ∀η,
|L|∑
n=1

(
pnη

1

k

k∑
i=1

δi

)
= 0

which simplifies to:

∀k,
|L|∑
n=1

(
pn

k∑
i=1

δi

)
= 0 (8)

For any input rankings A and B, and credit function δi,
the solution values of pi completely define an interleaving
algorithm. The pi values indicate the probablity with which
each ranking is shown to users, and δi determines credit
assignment.

However, this problem is also usually underconstrained.
To produce an interleaved list of length k, there are k + 1
constraints but up to 2k parameters pi (although in practice
usually many fewer, as A and B in Equation 5 are often
similar in most real-world comparisons). We can therefore
further refine the algorithm by optimizing for sensitivity.

3.3.1 Ensuring Sensitivity
As formulated, this problem allows any ranking that shows

any prefix combination of results from A and B to be shown
to users. However, as noted earlier, interleaving is more
sensitive than comparisons where each ranking is shown to
half of users because the same user observes documents from
both rankers simultaneously and chooses between them. We
therefore propose to maximize a sensitivity term subject to
the above constraints (Equations 5 through 8).

Intuitively, the solution is to ensure fairness at the impres-
sion level: For every ranking shown to users, both rankers
should get approximately equal space. While our formula-
tion ensures fairness in expectation, here we wish to max-
imize it for every impression shown to users. Our goal is
also similar to that of Probabilistic interleaving [4], where
each impressions is given a real valued score that depends
on all possible team assignments that could have generated
it, smoothing the preference inferred. However, we instead
select impresions that are most sensitive to ranking changes.

We choose a simple model of sensitivity to retain tractabil-
ity that is a special case of our model in Section 3.2. Suppose
that users observe the result at position i with probability



f(i). Assuming a single random click on an interleaved list
L, the probability of ranker RA winning the impression is

wA(L) =
∑
i:δi>0

f(i), (9)

although we now drop the parameter L from wA(L) for suc-
cinctness. Similarly, the probability of ranker RB winning
the impression, and of the rankers being tied can be written

wB =
∑
i:δi<0

f(i) (10)

wT =
∑
i:δi=0

f(i) (11)

Sensitivity can be defined as the uncertainty in the win-
ner of a particular impression. Intuitively, sensitivity should
be low if one of the rankers is bound to be preferred, or
if the impression is always tied. Conversely, if each ranker
would win 50% of impressions with random clicking, sensi-
tivity should be high. We choose the following form of the
sensitivity s(L) of a particular ranking L:

s(L) = 0× wT + entropy(wA, wB)× (1− wT ) (12)

= − 1− wT
wA + wB

log2

wwA
A wwB

B

(wA + wB)wA+wB
(13)

Note that if wT = 0, this reduces to the entropy of a
binomial outcome. For example, if for a given L, wA =
wB = 0.5, the sensitivity is 1. On the other hand, if wT = 1,
wA = 1 or wB = 1, the sensitivity is zero.

The optimized interleaving algorithm thus reduces to max-
imizing the expected sensitivity (Equation 13) subject to the
constraints presented in Equations 5 through 84.

An alternative formulation may be to minimize the vari-
ance in the expected outcome of the entire interleaving ex-
periment across all impressions, although we leave assessing
this to future work. We also note that different sensitivity
criteria could be proposed, and be substituted into our ap-
proach. This would simply change the optimal probabilities
for showing different ranking.

3.3.2 Secondary Goals
If we desire, we can also add extra criteria to optimize

at the expense of sensitivity. For example, all else being
equal, minimize the frequency with which we show results
from ranker RB . This might be required, for example, if
we are performing high-risk comparisons of a known high
quality ranker RA with an experimental ranker RB .

3.3.3 Credit as a Parameter
One particular difference in this formulation over previ-

ous approaches is that the credit function δ is an explicit
parameter of the algorithm. This may seem a new param-
eter, but was in fact implicit in previous algorithms. For
instance, Balanced, Team Draft and Probabalistic interleav-
ing approaches each deal with multiple clicks differently. Yet
this choice may have a non-trivial impact on the outcome of
experiments, and the implicit behavior may not be desired.
Rather, an explicit δ means the experimenter can choose the
tradeoff, much as judgment based metrics make explicit the
tradeoff between documents at different positions. We will
consider some examples of credit functions below.
4For simplicity, in our evaluation we assume that f(i) in
Equations 9 through 11 is proportional to 1/i

Probabilistic Interleaving encodes a similar idea – credit
is assigned based on possible coin toss outcomes, and the
closer a document is in RA and RB , the smaller its effect
when clicked. However, instead of encoding credit in how
documents are selected when interleaving, we make it ex-
plicit. Yue et al.’s [15] approach is also related, where the
weight of each click is learned. Our approach is complimen-
tary: An experimenter can specify a credit function based
on where clicks happen, and the importance of e.g. duration
of click may be learned using their approach.

3.4 Theoretical Guarantees
In this section we show the theoretical benefits of our ap-

proach over previous algorithms.

3.4.1 Allowed Rankings
We first consider the class of rankings allowed in L, which

are a superset of those produced by Team Draft and Bal-
anced interleaving and a subset of those produced by Prob-
abilistic interleaving.

Property 1. The rankings produced by Balanced inter-
leaving are in L.

Proof Intuition. Balanced interleaving constructs an in-
terleaving by maintaining pointers pA and pB to the highest
ranked documents in each input ranking but that are not in
the interleaved list. It then greedily selects the next document
to add to the interleaved list based on the higher pointer, or
the coin toss in the event of a tie. The value of i and j in
Equation 5 is equal to pA − 1 and pB − 1 when result k is
added by the Balanced interleaving algorithm.

Property 2. The rankings produced by Team Draft in-
terleaving are in L.

Proof Intuition. Team Draft interleaving involves the
two rankers greedily selecting the next available document to
add to the interleaved list subject to the coin tosses. The
ranks of the last document that is not available for each
ranker correspond to the values of i and j in Equation 5.

Property 3. The rankings produced by Probabilistic in-
terleaving are a superset of L.

Proof Intuition. Every prefix Lk involves the top i doc-
uments from ranking A and top j documents from ranking
B. Clearly these could have been selected at random by the
Probabilistic interleaving algorithm.

We also note that any ranking shown to users by our ap-
proach does not misorder more pairs of documents than
would be misordered in expectation if half the users were
shown the results from ranker A and half the users were
shown the results from ranker B:

Property 4. For every Lk prefix of length k of any L ∈
L, the number of misordered pairs of documents between Lk

and Ak plus the number of misordered pairs between Lk and
Bk is less than or equal to the number of misordered pairs
between Ak and Bk.

Proof Intuition. Let rank∗(d,R) be the rank of docu-
ment d in R if d ∈ R, and |R| + 1 otherwise. For any pair
of documents li, lj ∈ Lk, with i < j, there are three cases.
One of three cases must hold:



1. rank∗(li, A) ≤ rank∗(lj , A), rank∗(li, B) ≤ rank∗(lj , B)
This pair of documents is not misordered with respect
to either A or B.

2. rank∗(li, A) > rank∗(lj , A), rank∗(li, B) ≤ rank∗(lj , B)
This pair is misordered between L and A. However, it
is also misordered between A and B.

3. rank∗(li, A) ≤ rank∗(lj , A), rank∗(li, B) > rank∗(lj , B)
This pair is misordered between L and B. However, it
is also misordered between A and B.

It is not possible that rank∗(li, A) > rank∗(lj , A) and that
rank∗(li, B) > rank∗(lj , B) because li could then not be at
position i in L: Document lj would have had to have been
selected before li could have been selected because it precedes
li in both A and B. Hence the total number of misordered
documents must be bounded as required.

3.4.2 Comparisons with Previous Algorithms
Balanced interleaving and Team Draft interleaving both

have known breaking cases that Optimized interleaving solves:

Property 5. The breaking cases with Balanced interleav-
ing do not exist with Optimized interleaving.

Proof. Balanced interleaving is biased when one of the
rankings is preferred more often in expectation by a randomly
clicking user. The randomly clicking user constraints ensure
this does not occur with Optimized interleaving.

Property 6. The breaking cases where Team Draft in-
terleaving is not sensitive to actual relevance improvements
with a single click do not exist with Optimized interleaving.

Proof. The formulation of Optimized interleaving requires
that the ranker that places a document higher receives more
credit for that document whenever it is clicked. Hence pro-
moting a relevant and clicked document will always be rec-
ognized by Optimized interleaving.

On the other hand, Probabilistic interleaving can present
rankings that degrade the user experience more than Opti-
mized interleaving. Letting MOP (A,B) be the number of
pairs of documents misordered between A and B,

Property 7. If A and B agree on the order of any pair
of documents, there exists a ranking R that can be shown
to users by Probabilistic interleaving where MOP (R,A) +
MOP (R,B) > maxL∈LMOP (L,A)+MOP (L,B). In words,
Probabilistic interleaving may show rankings that include more
disagreements with both input rankers than the ranking with
most disagreements shown by Optimized interleaving.

Proof Outline. As shown in Property 4, the number of
misordered pairs in any ranking shown by Optimized inter-
leaving is bounded by MOP (A,B). Ranking A is at this
bound, and A ∈ L. Let ai and aj with i < j be a pair
of documents in the same order in B with smallest i and
then smallest j given i. Consider the ranking R that re-
verses ai and aj in A. This ranking can be shown by Prob-
abilistic interleaving. Moreover, MOP (R,A) ≥ 1. Also,
MOP (R,B) ≥ MOP (A,B) because only pairs of the form
(ai, ak) or (ak, aj) with i < k < j also change order when
ai and aj are reversed. Now, it must be that case that
rank(ak, B) < rank(ai, B) because j has the smallest pos-
sible value. After the swap, R and B agree on the order of
(ai, ak), but disagree on the order of (aj , ak) whereas the re-
verse was true previously. Hence MOP (R,A)+MOP (R,B) ≥
1 +MOP (A,B) > MOP (A,B).

3.4.3 Existence of a Solution
It would be useful to know what further requirements on

credit functions must be satisfied for there to always exist a
solution to the optimization problem for any pair of input
rankings A and B. It is clearly essential that for any k,
there exist rankings in L ∈ L where ∆k(L) =

∑k
i=1 δi(L)

are both positive and negative, or that all ∆k(L) values are
zero: Otherwise Equation 8 has no soluton. Empirically, for
the Linear Rank Difference and Inverse Rank credit function
examples below there is always a solution for rankings of
length up to 10. However, we leave the question of general
conditions as future work.

4. EXAMPLES
To obtain an interleaving algorithm, we need to specify a

credit function. What form should this function take? We
now present three examples that satisfy requirement (d’.1)
in Section 3.2, followed by an example of how this impacts
the interleaving algorithm obtained.

4.1 Example Credit Functions
Binary Preference
A particularly simple credit function would be to to give
all the credit for any clicked document to the ranker that
positioned this document higher:

δBin
i =

 1 if rank∗(li, A) < rank∗(li, B)
−1 if rank∗(li, A) > rank∗(li, B)

0 otherwise

Given this credit function, consider Equation 8, with k =
3 and input rankings A = (d1, d2, d3) and B = (d2, d3, d1).
Under (c’) there are three allowed rankings, the two original
rankings plus the intermediate ranking (d2, d1, d3). In all
three cases a user who clicks randomly to k = 3 will assign
two thirds of credit to input B. The equation becomes:

|L|∑
n=1

(pn(1− 1− 1)) = 0

Together with Equation 7, we see that there is no valid
solution for pi. Hence this credit function would be biased
and cannot be used. These input rankings are also a break-
ing case for Balanced interleaving. In fact, this credit func-
tion closely resembles that encoded by Balanced interleav-
ing. Note that this credit function also violates the require-
ment introduced in Section 3.4.3.

Linear Rank Difference
Next consider an approach where the credit assigned to a
clicked document is the additional effort that a user would
have to spend to find the document in the other ranking:

δLin
i = rank∗(li, A)− rank∗(li, B), (14)

Inverse Rank
A third way we could assign credit for clicks would be to
give more weight to changes in rank at the top of a ranking.
For example, we could use an inverse-rank credit scoring:

δRank
i = 1/rank∗(li, B)− 1/rank∗(li, A) (15)



Table 1: Interleaved rankings L for A = (a, b, c, d) and B = (b, d, c, a). For two different credit functions, we show solution

display probabilities p with cost constraints ∆1 . . .∆4 for each ranking, where ∆j =
∑j
i=1 δi. Each allowed ranking has a total

of 4 misordered pairs with respect to A and B. For comparison, we show the display probabilities for three other algorithms.

Linear Rank Diff. Cost Inverse Rank Cost sensi- Other algorithm
Interleaved Constraints Constraints tivity ranking probabilities Misordered Pairs
Ranking Li ∆1 ∆2 ∆3 ∆4 pi ∆1 ∆2 ∆3 ∆4 pi s(Li) Bal. TD Prob. Li ∼ A Li ∼ B
(a, b, c, d) 3 2 2 0 0 3/4 1/4 1/4 0 0 0.83 25% 15.7% 0 4
(a, b, d, c) 3 2 0 0 25% 3/4 1/4 0 0 40% 0.87 50% 25% 18.0% 1 3
(b, a, c, d) -1 2 2 0 0 -1/2 1/4 1/4 0 0 0.73 25% 11.5% 1 3
(b, a, d, c) -1 2 0 0 35% -1/2 1/4 0 0 35% 0.74 50% 25% 13.2% 2 2
(b, d, a, c) -1 -3 0 0 40% -1/2 -3/4 0 0 25% 0.60 10.8% 3 1
(b, d, c, a) -1 -3 -3 0 0 -1/2 -3/4 -3/4 0 0 0.50 6.3% 4 0

other disallowed disallowed 24.3% average sum: 5.69

4.2 Illustrative Optimization Solutions
Table 1 compares the solutions produced using these credit

functions with Balanced (Bal), Team Draft (TD) and Prob-
abilistic (Prob) interleaving for one particular pair of rank-
ings. We now walk through the example in the table.

The left column shows the allowed rankings L for this pair
of input rankings. There are six of them. As shown above,
the possible rankings produced by Team Draft and Balanced
interleaving are subsets of these six. The Other algorithm
column shows that each possible ranking for these algo-
rithms is shown equally often. The rankings shown by Prob-
abilistic interleaving are a superset of these six rankings. To
illustrate the user impact of interleaving, the rightmost col-
umn shows the number of misordered pairs of documents
in the interleaved list with respect to the input rankings A
and B. While all six allowed rankings are “in between” the
input rankings in terms of the total number of misordered
pairs, Probabilistic interleaving shows other rankings 24.3%
of the time, allowing possibilities such as showing a different
document in the top position than was in either input.

Finally, the middle columns describe the optimization prob-
lem solved in more detail: The columns ∆i each represent
one constraint of the optimization problem. For instance,
the columns ∆2 show the values of δ1 +δ2 for each Li. Here,
we see that to ensure that in expectation there is no credit
from a randomly clicking users given linear credit, the value
of pi in the top four rows must add up to 60% (thus en-
suring that in expectation ranker RA gets credit equal to
2×60% while ranker RB in expectation gets identical credit
in expectation, equal to 3×40%). The column labeled s(Li)
shows the sensitivity of each ranking.

5. EMPIRICAL EVALUATION
We finally turn to evaluation based on real user data. To

be able to compare all the algorithms in a realistic setting
without implementing and running all five at large scale, we
devise a log-based approach that allows repeatable compar-
ison of interleaving algorithms. Intuitively, we find queries
where a sufficient number of distinct rankings was previ-
ously shown that we can imagine that two particular rank-
ings were being interleaved, and take the rankings actually
shown to measure the outcome of any interleaving algorithm
that would have shown some subset of these rankings.

5.1 Log Collection Details
We would like to simulate the online case offline: Have two

rankers providing rankings of documents, and observe these

rankings interleaved using different algorithms. Hence we
need a log of rankings shown to users and their responses.
However, the Web is constantly changing, with new and
ephemeral content. Many documents are ranked very few
times, particularly lower down in query results. To get a
suitable offline collection, we thus take all queries and all
sets of top four results shown by a commerical search engine
over the first six weeks of 2012. As Web search users most
often click at top positions, these documents include most
clicked documents. We keep all queries with at least four
such distinct rankings, each shown at least 10 times, and
with at least one user click on one of the top four documents
each time5. Additionally, we require the distinct rankings not
to have been the product of Web search personalization.

As interleaving involves a comparison of two rankings, for
each query we must call two rankings A and B. We take the
most frequent top-4 ranking as A, and the most dissimilar
ranking (i.e. with a difference at the highest position) which
was shown at least ten times as B. In the event of a tie
in dissimilarity, the most frequent most dissimilar ranking is
selected as B. For example, for the query beef barley soup we
take A = (d1, d2, d3, d4) and B = (d1, d3, d2, d4), where d1 is
a document on cooks.com, d2 is a document on southernfood.
about.com, d3 is a document on allrecipes.com and d4 is on
foodnetwork.com.

Next, we further filter the logs, restricting ourselves to
queries where all possible rankings produced by Team Draft
interleaving were shown to users at least ten times, as well as
both possible rankings produced by Balanced interleaving.

We end up with 64,251 distinct queries6. These can be
interpreted as having run Balanced, Team Draft and Opti-
mized interleaving by reweighting actual rankings shown to
real users7. We can also evaluate Probabalistic interleaving
over the subset of possible rankings that were shown.

Table 2 shows an example of the rankings observed for one
particular query. On the left, we see which two rankings were
selected as A and B. The four rankings produced by Team
Draft interleaving, and two produced by Balanced interleav-
ing, are included. For example, the row with (A) (B) in the

5These queries had some amount of instability in the top 4
positions due to changes in the Web, different rankers pro-
viding users with results, and potentially other reasons.
6As can be expected, all queries in this dataset are frequent.
Further, we must assume that the intent of the queries does
not change during data collection.
7For just one query there was no solution for the Inverse
Rank credit function optimization since sufficient rankings
were not shown to users. We considered this query a tie.



Table 3: Pearson correlation and directional agreement be-
tween each pair of interleaving algorithms.

Pearson correlation
Bal. TD. Prob. Opt:Linear Opt:Inv

Balanced - 0.94 0.90 0.93 0.84
Team Draft 0.94 - 0.92 0.93 0.91

Probabilistic 0.90 0.92 - 0.91 0.92
Opt:Delta 0.93 0.93 0.91 - 0.88

Opt:Inverse 0.84 0.91 0.92 0.88 -

Directional agreement
Bal. TD. Prob. Opt:Linear Opt:Inv

Balanced - 94% 87% 94% 92%
Team Draft 94% - 88% 93% 91%

Probabilistic 87% 88% - 88% 89%
Opt:Delta 94% 93% 88% - 95%

Opt:Inverse 92% 91% 89% 95% -

Team Draft column would be generated by Team Draft if
RA won the first coin toss, and RB won the second coin
toss. These rankings also include those produced by Prob-
abilistic interleaving 63% of the time. We also see the solu-
tion produced by our optimization approach for two credit
functions presented earlier. Both credit functions result in
a different set of four rankings being shown to users than
are selected by Team Draft interleaving, and these rankings
are not shown equally often. In particular, A and B are not
shown to users as they have low sensitivity (see Sec. 3.3.1).

5.2 Scoring Each Query
To compute the interleaving score of each query, we weight

each observed ranking with the appropriate probability for
each algorithm. We then sample the actually observed click
patterns for the ranking, calculating a mean score that would
have been observed per query had the query had been shown
to many users (assuming the log data is representative).

5.3 Evaluation Results
We compare our optimization approach to previous inter-

leaving algorithms, measuring agreement and sensitivity.

5.3.1 Correlation of Interleaving Algorithms
We first measure the agreement in the scores of the in-

terleaving algorithms across queries. We would expect this
to be high, as Team Draft and Balanced interleaving have
been shown to both be reliable in previous online evalua-
tions [7, 13, 1, 12]. Table 3 shows the Pearson correlation,
as well as directional agreement of each pair of algorithms.
As expected, both are very high.

The most interesting cases for further analysis are those
where the algorithms disagree. The following four queries
have the highest disagreement (most negative product of
scores) between Balanced or Team Draft, and an Optimized
algorithm. For each, we show the A and B rankings, which
was preferred by each algorithm, and a manual assessment.

Balanced vs Optimized: Linear Rank Cost
query shrimp stir fry with vegetables

A (1) cooks.com; (2) chinesefood.about.com;
(3) myrecipes.com; (4) allrecipes.com

B (4) allrecipes.com; (1) cooks.com;
(2) chinesefood.about.com; (3) myrecipes.com;

Preference All algorithms prefer ranker A, except Balanced

Notes This is a classic case of Balanced bias, as ranking B
just promotes the previously fourth result to the top

Correct Team Draft, Probabilistic, Opt:Linear and
Opt:Inverse

Balanced vs Optimized: Inverse Cost
query siberian rhubarb extract

A (1) drozfans.com; (2) herbalmenopauseremedy.com;
(3) ezinearticles.com; (4) bizrate.com

B (2) herbalmenopauseremedy.com; (3) ezinearticles.com;
(4) bizrate.com; (4) herbalmenopausremedy.com

Preference All algorithms prefer ranker A, except Balanced
Notes Also a breaking case for Balanced, with ranking B

removing the top result from ranking A.
Correct Team Draft, Probabilistic, Opt:Linear and

Opt:Inverse

Team Draft vs Optimized: Linear Rank Cost
query trutv originals

A (1) trutv.com homepage; (2) hollywoodreporter.com;
(3) trutv.com/videos/originals; (4) closinglogos.com

B (2) hollywoodreporter.com; (3) trutv.com/videos/origin-
als; (1) trutv.com homepage; (4) closinglogos.com

Preference All algorithms except Team Draft prefer A
Notes This is the breaking case discussed for Team Draft in

Section 2.3: Most clicks are on result (3)
Correct Balanced, Probabilistic, Opt:Linear and Opt:Inverse

Team Draft vs Optimized: Inverse Credit
query publix.org oasis

A (1) yoomk.com; (2) publix.org; (3) publix.com; (4)
publix.com (sub-page)

B (2) publix.org; (3) publix.com; (4) publix.com (sub-
page); (5) answers.yahoo.com

Preference Balanced and Team Draft prefer ranker A, the
others prefer ranker B

Notes Most clicks are on publix.org, although a sufficient
number are on yoomk.com when shown first to change
the outcome for Balanced and Team Draft.

Correct Probabilistic, Opt:Linear and Opt:Inverse

Summary
To summarize these four most extreme cases, we see that
Balanced was correct once, Team Draft twice, and Proba-
bilistic, Optimized:Inverse and Optimized:Linear in all four.

5.3.2 Agreement with Expert Judgments
Although the previous four cases are informative, we must

consider the agreement with expert judgments to have a
generalized estimate of the correctness of the interleaving
algorithms. We thus take all the queries in our log based
set, and intersect them with a large set of previously judged
queries. We find 1,664 queries in the intersection.

Table 4 shows the fraction of queries for which each inter-
leaving algorithm agrees directionally with DCG@4, a pop-
ular judgment-based relevance metric [11], and the corre-
lation between interleaving and DCG@4 values. Agreement
and correlation of the algorithms is similar, but all the agree-
ment values are low, in the mid-50% range. While at first
surprising, note that we restrict ourselves to queries with
some amount of instability, which is more likely for ambigu-
ous queries. Easy-to-judge queries are often navigational,
where the ranking produced by a commercial search engine
is likely more stable. One way to bound the agreement is



Table 2: Data for one example query, hrc. d1 is a webpage on http://www.hrc.army.mil/, d2 is on http://www.hrc.org/, etc.

Generated By Frequency Optimization Solution
Label Team Draft Balanced Probabilistic Ranking Actually Shown Delta Credit Inverse Credit
RA (A) (A) (A) 11.8% d1, d2, d3, d4 >1000 - -

(A) (B) 9.9% d1, d2, d4, d3 14 17% 23%
9.9% d1, d2, d4, d5 46 33% 27%

(B) (A) 11.8% d2, d1, d3, d4 19 33% 38%
(B) (B) (B) 9.9% d2, d1, d4, d3 14 17% 12%

RB 9.9% d2, d1, d4, d5 179 - -

Table 4: Directionary agreement and Pearson correlation be-
tween interleaving algorithms and manual judgments. The
differences are not statistically significant. The correlations
of Optimized:Linear and Optimized:Inverse are statistically
significantly greater than zero (p<0.01).

Directional Pearson
Algorithm Agreement Correlation
Balanced 52.0% 0.020

Team Draft 52.4% 0.046
Probabilistic 54.2% 0.039

Optimized:Linear 53.1% 0.078
Optimized:Inverse 53.2% 0.065

All algorithms 40.2%
Any algorithm 63.2%

to consider the fraction of queries where any of the inter-
leaving algorithms agree directionally with DCG@4: This
is 63.2% of queries. In fact, the following queries are those
with highest average interleaving preference (across all five
algorithms) yet disagreeing with judgments:

tw Judgments prefer the Wikipedia page about Taiwan.
User prefer to click on the Twitter homepage.

tea Judgments prefer pages about the drink. Users prefer
the Texas Education Agency.

att webmail Judgments also give credit to the main AT&T
homepage, which is rarely clicked by users.

mail Judgments prefer mail.com, users prefer mail.yahoo.com.

torrent Judges assign some relevance to results about the
BitTorrent protocol, while users almost only click on
download sites.

y Judgments prefer the Wikipedia page for the letter Y,
while users prefer yahoo.com.

We see that in all cases the interleaving evaluation may be
correct, suggesting that the judgments used may not always
reflect user needs for ambiguous queries.

5.3.3 Bias Analysis
We notice that our chosen (most frequent) ranking A is

preferred for 53 to 58% of queries, ranking B is preferred for
37% to 41% of queries, with the two rankings tied for 4% to
8% (depending on the algorithm): With all five algorithms,
ranking A is preferred on average. This provides a way to
evaluate the bias of the different interleaving algorithms.

We summarize the queries by pattern, assigning a letter
to each Web document such that A is always (a, b, c, d). We
can then describe ranking B in terms of these letters8. For

8The first document not returned by ranker A but returned
by ranker B is assigned e, then f and so forth.
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Figure 2: Per-pattern aggregate preference of different inter-
leaving algorithms for selected patterns, showing the relative
credit given to different ranking changes.

example, in our dataset, ranker B is (a, c, b, d) for 18,262
queries and (a, b, e, c) for 9,494 queries.

Figure 2 shows the mean interleaving preference for some
example patterns. For instance, across all queries where
ranker B mapped to (c, a, b, d) – i.e. the first document re-
turned by ranker B is the same as the third document re-
turned by ranker A, etc – Balanced interleaving generates
a mean preference of 0.242. For each ranking pattern, each
algorithm generates a preference in favor of ranker A (up)
or ranker B (down). Because the most frequent ranking is
most often best in our dataset, we expect all points to lie
above zero. However, each interleaving algorithm encodes
a different relative preference for each pattern, depending
on the (previously implicit) credit function. For example,
the bias in Balanced interleaving means that (b, c, a, d) is
biased against ranker A, and (c, a, b, d) is biased for ranker
A. We also see the relative magnitude of different changes.
As expected, inserting an originally lower result at higher
positions tends to cause a bigger preference.

5.3.4 Sensitivity Analysis
Finally, we compare the sensitivity of the different inter-

leaving algorithms. Following [12, 4], we measure the sen-
sitivity of each algorithm by sampling different numbers of
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Figure 3: Fraction of bootstrapped simulations that prefer
ranker A over ranker B for each interleaving algorithm, as
a function of the number of queries sampled.

queries from our log9 10,000 times, and observing the frac-
tion of samples for which ranker A is preferred overall. If
one of the algorithms reliably prefers A with fewer impres-
sions, it is more sensitive on this collection. Figure 3 shows
that the optimized algorithms have comparable sensitivity
to previous interleaving algorithms. In particular, we see
that the Optimized algorithm with Linear Rank Credit is
similarly sensitive to Balanced interleaving, while we showed
above that it is less biased. We also note that the apparent
poor sensitivity of Probabilistic interleaving may be caused
by the nature of our dataset: Only a specific small fraction
of the possible rankings that would have been produced by
Probabilistic interleaving were present in our dataset, po-
tentially disadvantaging this algorithm. Moreover, in op-
position to other algorithms, probabalistic interleaving can
make a probabilistic preference from even single-impression
queries, where our evaluation technique cannot be applied.

6. CONCLUSION
In this paper we have presented a new approach to online

evaluation with interleaving. We show that it is possible to
postulate the requirements of interleaving by making explicit
the assumptions about the value of user clicks, and solving
for the rankings that should be shown to users.

Our key theoretical contribution is to show how to invert
the question of obtaining interleaving algorithms: Starting
with the desirable properties, we essentially solve for the
algorithm. We then show that our interleaving algorithms
are an improvement over previous ones. Empirically, we
achieve similar correlation with judgments, and sensitivity
only second to Balanced interelaving, which is known to be
biased in some cases. We also avoid showing users poorer
rankings than necessary while making it possible to optimize
sensitivity of the algorithm directly.

Our work leaves open a number of questions. First, fur-
ther theoretical analysis is necessary to show what further
restrictions on the credit function optimized must exist to
ensure there is always a solution to the optimization prob-
lem. Second, futher empirical evaluations by implementing
this interleaving algorithm are required to confirm the sen-
sitivity improvements. Finally, by making the credit func-

9As the query set is already skewed away from a natural
query distribution, queries were sampled uniformly.

tion a parameter of the optimization framework, we leave its
choice as an important parameter. A better understanding
of the best credit function to use is clearly necessary.
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