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ABSTRACT
Accurate prediction of changing web page content improves
a variety of retrieval and web related components. For exam-
ple, given such a prediction algorithm one can both design
a better crawling strategy that only recrawls pages when
necessary as well as a proactive mechanism for personaliza-
tion that pushes content associated with user revisitation
directly to the user. While many techniques for modeling
change have focused simply on past change frequency, our
work goes beyond that by additionally studying the use-
fulness in page change prediction of: the page’s content;
the degree and relationship among the prediction page’s ob-
served changes; the relatedness to other pages and the sim-
ilarity in the types of changes they undergo. We present an
expert prediction framework that incorporates the informa-
tion from these other signals more effectively than standard
ensemble or basic relational learning techniques. In an em-
pirical analysis, we find that using page content as well as
related pages significantly improves prediction accuracy and
compare it to common approaches. We present numerous
similarity metrics to identify related pages and focus specifi-
cally on measures of temporal content similarity. We observe
that the different metrics yield related pages that are quali-
tatively different in nature and have different effects on the
prediction performance.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries; I.5.4 [Pattern Recognition]: Applications
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Web Change Prediction, Web Dynamics, Web Crawling

1. INTRODUCTION
In many retrieval frameworks, web pages are often treated

as static documents. However, in reality, pages are dynamic
channels whose contents change with time. Some pages, like
news entry points, change on a daily basis with regularity.
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While others, like faculty home pages, may be updated with
far less frequency and regularity. These changes may in-
volve significant changes in content, the addition or deletion
of hyperlinks, or the addition of hyperlinks to previously
unknown web pages. Furthermore, these changes in content
drive changes in the query distribution that lead to a page,
and impact the relevance of a page to the query.

The ability to predict key types of changes can be used in
a variety of settings. For example, accurate prediction of a
significant change in page content enables an improved in-
cremental crawling strategy that only recrawls pages when
necessary [18]. Similarly, accurate prediction of a new hyper-
link to a previously unknown (i.e., non-indexed) web page,
enables one to efficiently discover pages that should be in-
dexed. In a personalized retrieval setting, accurate predic-
tion of re-visitation to a page with new content enables one
to push new content to a user.

When modeling any variable of interest as a function of
time, it is natural to consider the past observed values as a
basic means of prediction [8]. For example, in this setting,
when predicting whether a page will change, we can simply
predict based on the change frequency for the page observed
over some past historical window. However, there are other
signals that provide information beyond change frequency.

In particular, the content of a page enables better predic-
tion of its change [4, 24, 23]. It provides a finer distinction
of the degree of change that a page is undergoing, and the
relationship among these changes. For example, in a series
of ten days, a page may experience small changes on ev-
ery day or large changes. These changes in content might
be similar to each other or vastly dissimilar. For a page
that experiences vastly dissimilar changes on a regular ba-
sis, the changes may be considered more significant (since
the content change implies a need for reindexing). On the
other hand, similar changes with the same regularity may
be considered less significant. To distinguish these cases,
the appropriate features need to be encoded.

Pages that are related to the prediction page may also
change in a similar, although not necessarily, synchronous
fashion [24, 23, 9, 12, 13]. These pages would then provide
a useful signal for determining whether the prediction page
will change. The strength and the type of the relationship
between those pages is likely to be indicative of how well
one can predict the change of the other. In the web setting,
natural choices of relationship types include: distance in the
web graph, similarity in content, and similarity in temporal
change pattern. We explore all of these relationship types
and evaluate their relative contributions over the page’s con-
tent alone. In particular, our exploration of similarity in
content over time through the use of cross-correlation and
the dynamic time warping (DTW) algorithm is especially



novel. Both of these provide more robust computation of
similar temporal change patterns by dealing with the case
where content between two pages may be correlated in time
but slightly out of phase.

Additionally, even after identifying other related informa-
tion sources, there is a question as to how to best incorpo-
rate this information into a machine learning algorithm. We
develop an expert combination approach where the experts
are selected according to their degree of “relatedness” and
demonstrate the superiority of this modeling choice to other
combination and relational learning techniques.

This paper is organized as follows: In Section 2 we de-
scribe the related work. In Section 3, we present the formal
problem description and outline the challenges and research
questions. We then present a general characterization of the
types of information sources available when predicting page
change using past history (Section 4.1). Using this char-
acterization, we develop specific feature sets that capture
aspects of each of these information sources in a useful way
for modeling change (Section 4.2). In particular, in addition
to the past history of a page’s change, we also incorporate
features based on the page content of the page as well as
the content of related pages. For each information source
we provide several algorithms to combine the information
in a learning setting. In particular, we present a novel al-
gorithm to combine the information in an expert prediction
framework (Section 5). We examine techniques for identify-
ing related pages, including pages that are close in the web
graph, pages with similar content, and pages with correlated
content across time – where the last two prove to be espe-
cially effective (Section 6). Finally, in an empirical study,
we not only demonstrate the effectiveness of our methods,
but also explore alternative modeling choices, analyze the
qualitative differences in the expert selection methods, and
present the superiority of our prediction methods in a crawl-
ing application, which strives to maximize the freshness of
its index (how many pages in the index remain up-to-date
as compared with the online web copies).

2. RELATED WORK
Attempting to predict the probability of a web page chang-

ing is not a new problem and has been studied by a variety
of researchers [9, 8, 4, 24, 23]. This has primarily been
motivated by the incremental web crawling setting [18]. In
this setting, recrawling a web page is linked to the probabil-
ity of its change, and the goal is to maximize some tradeoff
between freshness and coverage of a web index. A crawl pol-
icy that optimizes this tradeoff usually focuses only on the
probability of change for pages that do not change too often
or very rarely. The reason for this is that, under certain
assumptions, recrawling pages that change very frequently
dominates crawl resources and actually hurts the overall util-
ity of a crawl by ensuring only these very frequently changing
pages are kept fresh [10, 7, 22]. In line with these studies,
we restrict our study to pages above a minimum threshold
of change and below a maximum threshold.

However, while freshness may be one metric for measur-
ing the utility of recrawling a web page, it may not reflect
impact on the user of a search engine. As a result, Wolf
et al. [25] look at minimizing embarrassment – the prob-
ability a search engine user clicks on a result URL whose
live page doesn’t match the query. This introduces a no-
tion of the negative utility a user may experience but not
what gains may be experienced from crawling. Therefore,
Pandey & Olston [19] consider a user-centric utility. This

Figure 1: Fully observed setting. Each square repre-

sents a page, where wi are the page contents. (1) 1D

setting (2) 2D setting [3, 6] (3) 3D setting

utility weights each page by: (1) an observed query load on
a search engine, and (2) the impact that downloading a new
copy of the page has on the search ranking (as estimated
via previous change). Similarly, Ali & Williams [3] measure
the impact under a specific query load of several simple pre-
diction schemes. They found that simply recrawling pages
whose previous two observed snapshots changed by more
than (approximately) 20 words significantly reduced crawl-
ing compared to recrawling all recently changed pages. This
policy also maintained effective ranking as measured under
the query load. In line with these, we restrict ourselves to
predicting significant changes to a search page. In our case,
we define this as cases where the page’s change relative to
the last observed snapshot is above a significance threshold
(as defined in Equation 1).

In terms of methods of predicting change, several works
[6, 11, 7] use past change-frequency and change-recency of
a page, typically together with an assumption of a Poisson
process, in order to predict whether the page will change.
This is essentially equivalent to our baseline model described
in Section 5.1. Both Barbosa et al. [4] and Tan & Mitra [23]
demonstrate that using content-based features can improve
prediction over just change-frequency alone [6]. The first of
these works primarily uses static features (content features,
such as file size available from a single snapshot) in addition
to change history, while the second also considers dynamic
features (features that change between two snapshots, such
as the cosine similarity between the page contents). In our
work, we focus on dynamic content features since we are
concerned with predicting significant content change, and as
argued by Ali & Williams [3], many of those static features
are usually predictive of any type of change (e.g., new adver-
tisements, images, etc.), that are usually uninteresting or do
not impact indexing. Nevertheless, our methods are general
and could easily incorporate such additional features.

Fetterly et al. [13] note that not only is the previous de-
gree of content change a good predictor of future change, but
that change is also correlated at the top-level domains of web
pages. Cho & Ntoulas [9] exploited this type of correlation
structure at the website level by using a sample of webpages
from a website to estimate the change probability of any
page from the website. Tan et al. [24, 23] extend this idea
to the more general case by clustering pages based on static
and dynamic content features into clusters that are more
homogeneous in terms of change patterns before conducting
the sampling based approach. Both of these can be viewed



as methods of identifying related pages. We also identify
related pages, but use them to directly predict the probabil-
ity of change without having sampled from the current time
slice. Additionally, we investigate directly estimating relat-
edness via temporal content similarity – which could easily
be used to cluster in a sampling based approach.

In contrast to previous work: (1) we focus on the task of
predicting significant changes rather than any change to a
web page; (2) we develop a wide array of dynamic content-
based features that may be useful for the more general tem-
poral mining case beyond crawling; (3) we explore a wide
variety of methods to identify related pages including con-
tent, web graph distance, and temporal content similarity –
where the last is both especially novel and effective; (4) we
derive a novel expert prediction framework that effectively
leverages information from related pages without the need
for sampling from the current time slice.

3. PROBLEM FORMULATION
We consider the general setting where we want to estimate

a function h for each page. This h can indicate several types
of page change (Section 3.1). This function can be estimated
using different information types (Section 3.2), which have
different observability when estimating h (Section 3.3).

3.1 Types of Web Page Change
Let O be a finite set of pages, and let h : O × T → R be

a temporal goal function, that provides information about
the state of a page o ∈ O at time t ∈ T, where T is a
discrete representation of time. Depending on the targeted
application, a function h can be defined in numerous ways.
For example, the change may be:

1. Whether the page o ∈ O changed significantly. This
can be used to identify when a page is stale enough to
be recrawled.

2. Whether the change in page o ∈ O corresponds to a
change from non-relevant previous content to relevant
current content for some specified query load. The
function not only indicates whether the page is stale,
but also that the change will result in the page being
surfaced for a query.

3. Whether there is a new out link from page o ∈ O.
This helps indicate when recrawling a page will lead
to discover a new portion of the web graph, discover
new anchor text, or impact link analysis metrics.

We focus on page changes of type 1, although our approach
is readily applicable to the other change types. We consider
a significant page change to be a change in content between
the content vector at time t and the content vector at time
t + 1 whose word distribution is different in a statistically
significantly sense (as measured by a chi-squared test) from
that of the previous day. That is, the p-value produced by
performing the test satisfies:

pχ
2

(ContentDist(t),ContentDist(t+ 1)) < 0.05 (1)

3.2 Information Sources
As we discussed before, when estimating h for each page,

we can consider several types of information. In many pre-
vious studies [6, 11, 7, 3], only information about the chang-
ing object was used, e.g., the change rate of the specific
page. We propose a general-unifying framework (formally
discussed in Section 4.1) of the possible information types,

Figure 2: Partially observed setting.

ranging from only information about the changing object
to information about all the other related objects. We di-
vide the information types into the following information
settings:

1. 1D setting: In this setting, only information about h
of the page itself in previous time-stamps is used to
estimate h. For example, only information involving
the rate of the page change itself is used to estimate
future page change. This setting was explored in the
past [11, 7], and we consider it as one of the baselines.

2. 2D setting: In this setting, a wider range of informa-
tion about the page h itself is used to estimate h. We
consider the page as an entity with features which can
be used to understand its future h, e.g., future change
rate. This setting was explored by several works [3, 6],
and we consider it as one of the baselines as well.

3. 3D setting: In this setting, not only is the information
about the specific page used, but also the relations
to the other pages are considered in determining the
probability of a future h value of a page, e.g., the future
change of a page.

3.3 Information Observability
In a fully-observed scenario, at each time stamp t, all the

above information from the previous n time stamps is avail-
able. This is a scenario, where, given a set of k periodically
observed pages over a period of n, the goal is to induce a
function h that can be used to estimate page changes within
this group in the following time-stamp. Figure 1 illustrates
the three information settings in the fully-observed scenario.

The more general scenario, is a partially-observed sce-
nario, where only partial information about the objects in
previous times is given. That is, at each time stamp t,
only the information about some subgroup is available to
the learner. This is an online scenario, where, for example
a crawling system doesn’t observe the information about
non-crawled pages. It only crawls pages it believes to have
changed, and therefore only information about those crawled
pages is given to the learner to induce an approximation of
h. The three information settings in the partially-observed
scenario are illustrated in Figure 2.

In this work we focus on the fully-observed setting and
provide algorithms based on the 1D, 2D and 3D settings.
We wish to derive insights and understanding of this set-
ting before generalizing to the partially-observable scenario.
Additionally, in Section 8.3 we empirically show a simple ap-
plication of our algorithms for the partially-observed setting,



where the objects are iteratively sampled to gain more infor-
mation. Section 4.1 formalizes the problem from a machine
learning perspective, and Section 5 outlines our algorithmic
solution to the problem.

4. SOLUTION FRAMEWORK
In this section, we formalize the learning problem and pro-

vide an algorithmic framework for predicting change. Unlike
standard learning algorithms that assume a static feature set
and a single object type, we present a formalism that han-
dles temporal features, derived from both single and multiple
objects over time. We then discuss the specific features for
page change prediction that we build using this framework.

4.1 Formal Framework
Let O be a set of objects. Let C ⊆ O be a goal concept. In

our problem, O is the set of pages and C is the set of chang-
ing pages. In the traditional (binary) supervised learning
setup, we define the goal function h : O → {0, 1}, where
h(o) = 1 ↔ o ∈ C. Let E = {〈o1, h(o1)〉, ..., 〈oK , h(oK)〉},
where oi ∈ O and h(oi) ∈ {0, 1}, be a set of training ex-
amples. To extend the basic setup to include classes and
features that dynamically change over time, we assume T =
{0, 1, ...,∞} to be a discrete representation of time. We de-
fine h : O × T→ {0, 1} to be a temporal goal function, and
E = {〈〈o1, t1〉, h(o1, t1)〉, ..., 〈〈oK , tn〉, h(oK , tn)〉} to be a set
of temporal training examples, where oi ∈ O, tj ∈ T and
h(oi, tj) ∈ {0, 1}.

The basic algorithm for predicting page change, as cur-
rently used in many applications [6, 11, 7], is prediction
based on the h(oi, tj) of past training examples of oi. Using
the previous notation, we call this information setting the
1D setting, as it only utilizes the class (in our case, page
change) behavior.

Let F = {f1, ..., f|F |} be a set of feature functions, where
fi : O → Im(fi). A traditional learning algorithm takes E

and F as input and produces a hypothesis ĥ which is a good
approximation of h. We define F = {f1, ..., f|F |} to be a set
of temporal feature functions, where fi : O × T → Im(fi).
That is, fi(o, t) is the value of the feature i of object o at
time t. A temporal learning algorithm receives as input E

and F and produces a temporal hypothesis ĥ.
Traditionally in machine learning, the building blocks of a

classifier ĥ(o) are the features of the object f1(o), . . . , f|F |(o),
e.g., changes in a page might depend only on its features,

e.g., its terms. In our extended framework, ĥ(o, t) can use, in
addition to fi(o, t), also fi(o, t

′) for t′ < t. For example, the
page change might depend on the change direction values
over the last several days. Using the previous notation, we
call this information setting a 2D setting, as it only utilizes
the features of the page itself.

Alternatively, in our framework, ĥ(o, t) can use features
of other objects, fi(o

′, t′) for o′ 6= o, t′ < t. For example,
changes in other pages from previous observable times. We
also assume a relation function Ri : O × O ← R between
the objects. These functions can also be considered as a

weighted graph structure over the objects. Thus, ĥ(o, t) can
use features of only related objects using metrics over the

structure of relations Ri. In the most general setup, ĥ(o, t)
can combine the above two approaches and use fi(o

′, t′) for
t′ < t and o′ 6= o. For example, to determine whether a
certain page will change tomorrow, the classifier can use
various parameters of other pages over the last week. A
more extended view of the features fi, are those that take
into account several objects in an aggregated feature, i.e.,

fi : OK → Im(fi). For example, a feature that determines
the content similarity of the predicted page o with the other

objects that are fed as input to produce ĥ(o, t). In the pre-
vious notation, we call this setting a 3D setting, as it utilizes
the features of the page itself and other pages as well.

4.2 Framework Implementation
The previous section discussed the formal framework of

the information sources. We now discuss the specific features
that we implement for content change prediction.

4.2.1 2D Features
Given the time of classification t, the goal is to predict

whether page A will change at time t + σ, where σ is the
prediction interval. We denote the representation of a page
to be classified at time t as A(t). Let l be the regression pa-
rameter, i.e., the window size from which features are gen-
erated. For example, for l = 2 we create page features using
its behavior over the last 2 time stamps (not to be confused
with the number of examples n, which is the number of ob-
jects usually fed into a classifier). We define the following
features for learning page change:

1. Frequency of change in page A during the window l.
This feature is equivalent to the information captured
by the baseline in Section 5.1.

2. Term unigram probability distribution of the words in
page A(t): { ci,A(t)∑

j cj,A(t)
} where ci,A(t) is the number of

occurrences of the considered term (wi) in page A(t),
and the denominator is the sum of number of occur-
rences of all terms in page A(t), that is, the size of the
document A(t). These features are meant to capture
the intuition that particular words on a page might be
predictive of page change. For example, on a local or-
ganization’s page the words“upcoming meeting”might
be predictive of a change that notes of the meeting will
soon be posted.

3. Features representing the magnitude of the change vec-
tor between the content at every time point in the win-
dow and the content of the page at time t. Formally,
a set of l features representing how big of a change
A experienced compared to each previous day in the
window: {||A(t) − A(t − i)|||i ∈ [1 . . . l]}. Intuitively,
the magnitude of change in content between the last
observed content (t) and the content on any given day
in the window may be predictive of change. For ex-
ample, a stable set without change may increase the
chance of no change. While a series of small changes
may presage an upcoming update. This will be depen-
dent on the particular page and these features provide
the expressiveness to learn such behaviors.

4. For each pair of prediction-interval separated timesteps
in the window, we define features measuring the mag-
nitude of the change vector in page content in a single
timestep. Formally, a set of l features representing how
big of a change A was experiencing compared to previ-
ous days in the window: {||A(t− i)−A(t− i−σ)|||i ∈
[1 . . . l]}. Intuitively, this captures the magnitude of
change typically seen given the prediction interval size.

5. Features representing whether the page changed on ev-
ery time in the window. We define change of page at
time t as:

change(A(t)) =

{
1 if A(t) changed
0 if A(t) did not change



We consider the following features:
change(A(t− 1)), . . . , change(A(t− l)) representing
whether the page changed significantly on the days
before the prediction. Intuitively, these features are
useful when an upcoming change might be predicted
by any change (or lack thereof) a fixed number of days
in the past or a regularity of change/stability might
indicate a continuation of the pattern.

4.2.2 3D Features
Additionally, we can incorporate features of other pages

B on the web. Their change and features might also reflect
on the change in page A. The first five types of features
we define are exactly analogous to those defined in Section
4.2.1, and they are meant to capture similar motivations
but with the shift that if the feature types from the same
page are useful, then the same ones from a related page may
prove useful. We also add two new feature types targeted
at representing the relationship between the two pages. We
define the following set of features for each page B:

1. Frequency of change in page B during the window l.

2. Term unigram probability distribution of the words in
page B(t): { ci,B(t)∑

j cj,B(t)
}.

3. A set of l features representing how big of a change B
experienced compared to previous days in the window:
{||B(t)−B(t− i)|||i ∈ [1 . . . l]}.

4. A set of l features representing how big of a change
B was experiencing compared to previous days in the
window: {||B(t− i)−B(t− i− σ)|||i ∈ [1 . . . l]}.

5. Feature changet−σ−1(B), . . . , changet−l(B) represent-
ing whether the page changed significantly on the days
before the prediction.

6. A set of l features representing the similarity of page B
to the prediction page A: cos(A(t), B(t)). Intuitively,
the degree of content similarity of the pages at time
t ∈ [t . . . t− l] may indicate the strength of predictivity
between the pages.

7. A set of l features representing the similarity in change
of page B to the content of page A. Formally, let
δ(B)i = B(t)−B(t− i), and i ∈ [1 . . . l], thus this fea-
ture is defined as: cos(δ(B), A). Intuitively, not only
may the degree of content similarity be indicative of
the relationship strength, but also the similarity be-
tween the content of B that changed and A’s full con-
tent. We also consider a set of l features representing
the similarity of the changes of page B to the changes
of the prediction page A: cos(δ(B(t − i)), δ(A(t − i))
for i ∈ [1 . . . l].

5. LEARNING ALGORITHMS
In this section we outline the specific algorithms based on

the solution framework we described in the previous section.

5.1 Baseline Algorithm
The basic algorithm for predicting page change, as cur-

rently used in many applications [6, 11, 7], is prediction
based on the probability of the page to change significantly
based on the past training examples. That is, h(oi, tj) = 1
with probability:

p(h(oi, tj) = 1 | h(oi, tk) ∈ E where tk < tj and (tj − tk) ≤ l).

The parameter l is typically referred to as a window size and
is a user-specified parameter.

5.2 Single Expert Algorithm
The single expert is an algorithm that represents the pages

with a set of features. GivenM time stamps, we create train-
ing examples with the features described in Section 4.2.1.
For example, if we want to predict for 5 days in the future
(σ = 5) and we have a total of 300 days for training, we can
prepare training objects for a learner. Each object is made
of features of l days, where l is the regression parameter.
For example, for l = 3 a total of 300 − σ − l + 1 = 293 ex-
amples are created to train a learner with. Given prediction
interval σ, each example is labeled with the h value of the
page in σ time stamps, i.e., h(o, t + σ). Those E examples
are used to train a classifier C. In our experiments we use
SVM classifiers for this purpose.

During prediction, the set of the above features is ex-
tracted for the test instance and given as input to C. In
our example, we are given another set of consecutive 21 days
(separate from training period), from which 21−σ−l+1 = 14
testing objects are created, on which the learner will be
tested. In this work we consider the case where σ = 1 and
l = 1, i.e., we observe the page as it is today and predict
how it will be tomorrow. We then output the prediction of
the classifier.

5.3 Algorithms Using Related Objects
In this section we discuss algorithms that consider both

the page’s features and features of other pages. We first
present a novel algorithm that models the related pages as
experts, and follows a voting scheme (Section 5.3.1) In or-
der to investigate whether this framework is in fact advanta-
geous we also investigate several alternative mechanisms for
incorporating information from related pages: an algorithm
that collects the information of the other sources into a sin-
gle expert (Section 5.3.2), and algorithms that use multiple
models to boost performance (Section 5.3.3).

5.3.1 Multiple-Experts Algorithm
In this section we propose a novel algorithm, that per-

forms a temporal relational choice of experts. By temporal
experts we mean related pages that predict change. The
novel algorithm we present here takes into consideration the
structure of the object-relations network, and builds rela-
tional experts. Each page will be considered an expert, and
will include the features described in Section 4.2.1 and Sec-
tion 4.2.2 (features are calculated in respect to page A(t) –
the object of classification). Each expert is trained with the
target function, h, of the relevant page. Intuitively, each ex-
pert can predict based on the changes it experienced, its con-
tent and similarity to page A at time t and previous times,
whether page A will experience a change in the future. For
example, if we wish to predict a change in an Information
Retrieval professor’s page, we might train a classifier based
on the features of the WSDM page, where the label would
be whether the professor’s page changed or not.

While the combination of the pages decision can be done
using any ensemble combination method we use weighted
majority voting (see weighting techniques in Section 6). For-
mally, given prediction interval σ, for each object o ∈ O train
a classifier using examples (with the features described in
Section 4.2.2) and labeled with the h value of the page A in
σ time stamps, i.e., h(o, t+ σ). Those examples are used to
train a classifier C (in our experiments we use SVM classi-
fiers for this purpose). Eventually O classifiers are trained.



During prediction, for each classifier Ci (corresponding to
an object oi), the set of the above features is extracted for
the test instance and given as input to Ci. We then out-
put the combined prediction of the classifier by selecting the
majority weighted vote. See full algorithm in Figure 3.

Procedure Multiple Experts(WeakLearner,O, otarget)
Train:
Foreach oj ∈ O
E(oj) = { 〈f t1(oj , ti), . . . , f

t
n(oj , ti)〉, h(otarget, ti + σ)|}

Call WeakLearner with E(oj),
and receive the hypothesis classifier hj

Add hj to the ensemble, ξ
Test: Given an unlabeled instance otarget at time t

Evaluate the ensemble ξ = {h1, . . . , h|O|} on otarget(t)

Let Vt,j =

{
Ri(otarget, oj) if ht picks class cj
0 otherwise

be the vote given to class cj by classifier ht
Obtain total vote received by each class

Vj =
∑T
t=1 vt,j for j ∈ {0, 1}

Return the class that receives the highest total vote.

Figure 3: Temporal experts algorithm. The inputs are

a weak learner, the pages O and the page to be classified

otarget. Ri is a weighting of the relation between two

objects. The prediction interval is σ.

5.3.2 Relational-Union Algorithm
In many relational learning scenarios relational features

are created by collecting features over related objects, which
are then fed into a classifier. This type of prediction has been
used widely on the web [15]. One such example is the ad-
click prediction problem [21]. Here the nodes are the ads,
bids and queries, and the edges are the relations between
the three. The goal is to predict a certain click on an ad.
Similarly here, the nodes are the pages and the edges are
the hyperlinks. The goal is to predict a certain page change.

Given M time stamps, we create training examples with
the features described in Section 4.2.2. Given prediction
interval σ, each example is labeled with the h value of the
page of prediction in σ time stamps, i.e., h(o, t+σ). Those E
examples are used to train a classifier C. In our experiments
we use SVM classifiers for this purpose. During prediction,
the set of the above features is extracted for the test instance
and given as input to C, which provides the prediction.

5.3.3 Relational-Stacking Algorithms
Stacking methods use multiple models to improve predic-

tion over just a single model. Stacking algorithms, similar
to the previous models, combine many features from related
objects, and then train several “base” models either by bag-
ging or reweighting the example distribution (boosting) be-
fore combining these models in the final model output.

Bagging [5] is one such method, where randomly sampled
examples from the training set are used to train different
base models. The base models predictions are then com-
bined, where every model has an equal weight. Let k be the
number of base models and let E be the set of examples as
in Section 5.3.2. Given a training set of size |E|, this method
generates k new training sets, each of size |E|, by sampling
examples from the original training set uniformly and with
replacement. A model is trained for each of the k training
sets, and combined by majority voting. This method was
shown to be useful in improving many linear models [5].

An extension of this idea, is Boosting. Intuitively, in-
stead of randomly choosing instances, the ensemble model is
built incrementally, where every new base model is trained
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Figure 4: DTW finds the best alignment between time

series A and B by maintaining the illustrated cost matrix

C(i, j).

with the training instances that previous models did not
perform well on. Let E be the examples (as mentioned in
Section 5.3.2), k number of base models, and let C be a clas-
sifier. AdaBoost [14] defines a vector of weights W for each
example in E. It is first initialized as: W0(j) = 1

|E| . The al-

gorithm performs k iterations, at each iteration reweighing
the examples and retraining a classifier Ci with the weighted
examples. The examples are reweighed in the following way:

Wi+1(j) =
Wi(j) exp(−αtyjCi(xj))

Zi

where Zi is a normalization factor, Ci(x) is the prediction of
the classifier at iteration i for example x, and αi = 1

2
ln 1−εi

εi
is the weighted error rate at iteration i, where

εi =
∑|E|
j=1Wi(j)[yj 6= ht(xj)] is the error rate at iteration i.

The output of the ensemble model is a combination of the
k base models created at the end of each iteration weighted
by the error αi they experienced.

6. EXPERT SELECTION
The number of pages on the web, and therefore the num-

ber of temporal experts (or number of 3D features as used
by the relational algorithm), is extremely large. Due to this
computational considerations, only a subset of the pages in
O can be considered and monitored for every page. Based
on our formalism from Section 4.1, we assumed a relation
function Ri : O×O between the objects. We explore several
such functions that choose the experts to monitor for every
page – what we refer to as the Expert Selection problem.

Let p be the page whose h value is being predicted, and
let e be a candidate expert. Given a predefined constant
k of pages the system is capable of monitoring, the goal of
an expert selection algorithm is to find the k experts such
that the prediction accuracy of page h values is the high-
est. Notice that simple cross validation is a hard task due
to its computation complexity (selecting all possible set of
experts). We next present several heuristic algorithms for
estimation of these experts.

6.1 Graph Distance KNN
We hypothesize that pages that are linked to one another

in the web graph have higher probability of experiencing



similar changes. In this case, we identify the experts for a
page by using in-links and out-links and finding the closest
neighbor using a single step using an undirected representa-
tion of the links. In other words, the experts are selected us-
ing a K-nearest-neighbors procedure in the web graph, and
we weight each page equally (Ri(o, neighbor(o) = 1). We
used a web graph based on a sample of 22 million web pages
(reached from good reputation sites seed) and 345 million
edges, extracted from a web crawl performed in 2006 (for
more information see [17]), at the same time the content
crawling was performed.

6.2 Content Similarity KNN
We hypothesize that content similarity is a potential cat-

alyst of mutual page changes. As the expert and the page
discuss similar topics, a change in one might lead to a change
in the other. Each page can be represented in some vector
space with a predefined distance metric, and then a k near-
est algorithm can be applied to find the most similar experts
in content. In this work, we represent each page as a bag of
words and the distance metric chosen is the cosine similarity
(i.e., Ri(o, neighbor(o) = cos(text(o), text(neighbor(o))).

6.3 Temporal Content Similarity KNN
The above mentioned approaches can be considered as

finding k nearest neighbors in some static snapshot (either
the web graph or web content). In this section, we also
leverage the content change dynamics of the pages. The
change patterns of the expert and the page over time are
essential information to understand their mutual temporal
behavior. Intuitively, a good predictive expert of change
will have some correlation in content not just at a static
time, but also will tend to trend in change together with the
predicted page across a range of time – although one may
lag/lead the other. Furthermore, the change correlation will
be in similar topics. That is, the temporal correlation of the
content-similarity of the change behavior of the two pages
is high. We explore the monitoring of content similarity
using cross-correlation and dynamic time warping (DTW).
Similar temporal semantic modeling techniques have been
used successfully in the past to improve semantic relatedness
tasks [20]. Cross-correlation is a measure of similarity of two
time series as a function of some time-lag applied to them,
and defined as∑

i[(ts1[i]− E(ts1)) · (ts2[i− d]− E(ts2))]

N · σts1σts2
,

where d = 1 . . . N is a possible delay, N is the minimal time
series length, σ is the time series variance, and E is the
means of the corresponding series. The delay with the best
correlation is chosen as the similarity. DTW (see Figure
5), on the other hand is a measure of similarity of two time
series as a function of both time-lag and speed. For example,
DTW will give high score to the similarity of page A and
page B, even if A changes more than B, but they still have
a similar change pattern, i.e., B is influenced by some of the
changes in A. DTW is a dynamic programming algorithm,
that tries to find an optimal match of the time series by
stretching and compressing section of those time series. It
holds a cost matrix C, where C(i, j) is the minimum distance
between two points of the time series i and j (see illustration
in Figure 4). Cross-correlation can be thought of a simple
case of DTW, where only diagonal steps are allowed in the
matrix.

We define temporal content similarity over time as the
weighted combination of the correlation over the words in

Procedure DTW(ts1, ts2, C)
n←Min(|ts1|, |ts2|)
dtw(ts1, ts2)← new [|ts1| × |ts2|]
For i = {1 . . . n}
dtw(i, 1)← dtw(i− 1, 1) + C(i, 1)
dtw(1, i)← dtw(1, i− 1) + C(1, i)

For i = {1 . . . n}
For j = {1 . . . n}
dtw(i, j) = |ts1(i)− ts2(j)|+

Min(dtw(i− 1, j), dtw(i, j − 1), dtw(i− 1, j − 1))
Return dtw(n, n)

Figure 5: Dynamic time warping algorithm (DTW)

the two documents. Let a document d be represented by a
sequence of words w1, . . . , wm. Let t1, . . . , tT be a sequence
of consecutive discrete time points (e.g., days). We define
the dynamics of a word w in a document d to be the time
series of its frequency of appearance in d:

Dyn(w, d) = 〈tfidf(w, d(t0)), . . . , tfidf(w, d(tT )〉

where d(ti) us the snapshot of document d at time ti.
Let Q be a correlation function between time series (such

as DTW or cross-correlation). We define a distance metric
between p and e as follows:

Distance(p, e) =

k∑
i=1

ω(wi)[Q(Dyn(wi, p),Dyn(wi, e))]

where ω(wi) is a weighting function for every word, which
can represent how dominant the word was in past changes,
how many times it changed, etc. In our work we consider a
simple version where the function represents the significance
of the word for the document in the last snapshot of page:
ω(wi) = tfidf(wi, p(T )). As before, the closest k experts can
now be selected using the distance metric Distance, and the
weights are the values of their correlation.

7. EXPERIMENTAL SETUP
We implemented the 1D, 2D and 3D algorithms and con-

ducted a variety of experiments to test their performance,
compared to the state of the art in the prediction literature.

7.1 Dataset
We evaluate our method on a real-world data collection.

The data consists of 54,816 pages crawled on an hourly
basis for a 6 months period (2007-06-30 till 2007-12-31).
We collected URLs from the logs of logged-in users of the
Microsoft Live Search toolbar. The pages to crawl were
not random, but rather driven by user visitation patterns.
We are interested in pages whose change is going to af-
fect the satisfaction of many users, and therefore we sam-
pled pages from those visited by 612,000 people for a five
week period. For more information see the work by Adar
et al. [2]. In order to prevent trivial predictions, we fil-
tered out pages that exhibit a constant behavior, e.g., pages
that either change all the time or don’t at all. Addition-
ally, for pages below a change frequency threshold (whose
change patterns appear to be random), one can recrawl
them on an infrequent schedule paying an amortized cost
for having a stale copy. Let change(o, t) = 1 if the page o
changes at time t, and change(o, t) = 0 otherwise. We re-
quire |{t| change(o, t) 6= change(o, t+ 1)}| ≥ α, where in our
experimentation α = 0.3, i.e., that page changes behavior at
least in 30% of the data.



1D features [11, 7] 2D features [3, 6] 3D features
(Baseline) (Single Expert) (Multiple Experts)
54.84% 62.93% 72.72%

Table 1: Prediction accuracy average on a sliding win-

dow. Results statistically significant using a t-test (p <

0.05) when compared to Multiple Experts.

Relational Relational Stacking Multiple
Union Boosting Bagging Experts
62.91% 63.44% 63.58% 72.72%

Table 2: Prediction accuracy using different relational

algorithms. Results statistically significant using a t-test

(p < 0.05) when compared to Multiple Experts.

7.2 Empirical Methodology
In order to perform correct statistical evaluations of the

algorithms over sufficient data, the empirical evaluation over
each dataset is performed as follows:

• In each prediction, for each algorithm, we use the pre-
vious n days as training examples (we experimented on
several n values). We construct each example where
the task is to predict what happens on the following
day (σ = 1). In order to construct each example the
two days previous are used for the dynamic change
features (l = 1).

• We repeated the predictions |O| (number of pages)
times. Each time, a different page was used as the
target of prediction.

For each training set of size n and the consecutive test day,
all algorithms train on all but last time point in the training
set, and classify oi with the resulting classifier. The classifier
always takes as input the last (l = 1) time points. We use the
same SVM polynomial classifier (degree=3) to implement
all of the learning approaches to control for variance. All
parameters of the learning algorithm were calibrated on the
training data. The accuracy of a prediction algorithm for
a page is averaged over all sliding windows (i.e., over tn −
(t1 + σ) predictions).

8. RESULTS
In this section we discuss the different experiments we

have conducted. We first start with the main result showing
that the use of information found in other pages provides
higher precision for page change prediction. We then pro-
ceed with different analysis experiments of our algorithm.

8.1 Main Result
The accuracy results of all algorithms are presented in Ta-

ble 1, with k = 20 experts selected using the cross-correlation
method, trained with training size of n = 50. These partic-
ular values, as well as the number of experts and selection of
cross-correlation as the primary temporal selection method,
were chosen over a small sample of data. We investigate sen-
sitivity of performance of these methods to varying choices
of the amount of history used (n) as well as the number of
experts selected (k) in Sections 8.2. Each value in the table
represents an average performance over all objects. The re-
sults provide evidence that the temporal experts outperform
the single experts and baseline, and that the single experts
outperform the baseline (both results are statistically signif-
icant, as measured by a paired t-test).
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We further experiment with different training sizes (Fig-
ure 6). There was a statistical significant difference in all pe-
riods of times in favor of the multiple expert approach, and
the single expert approach outperformed the baseline over
all training sizes. The behavior of the algorithm exhibits
almost constant behavior over the different training sizes,
indicating that a crawler only monitoring the last 30 days
of every page can perform with high accuracy. All learn-
ing algorithms performed poorly with less than 30 training
examples, and therefore are not shown in the graph.

8.2 Parameter Selection Analysis
In this section we analyze the different multiple experts

algorithms, the different expert selection method and how
the number of experts affects performance.

8.2.1 Different Expert Algorithms
The accuracy results of all algorithms are presented in

Table 2, with 20 experts selected using the cross-correlation
method, trained with a training size of 50. We observe that
the multiple experts algorithm we have suggested in this
paper reaches the highest performance (significant as mea-
sured by a paired t-test), providing evidence that this type
of mechanism is appropriate for combining information from
multiple sources. We conclude that, although all algorithms
were trained using the same set of features, just combining
the features without the taking into account the structure,
whether one trains a simple classifier, bags, or boosts, is not
enough.

8.2.2 Expert Selection Methods
In this section we present the results for the different ex-

pert selection methods (see Table 3). We performed a paired
t-test on the results, and found statistical significance dif-
ference between the cross-correlation approach and the non-
temporal approaches with p-value p < 0.05. However, we
found no statistical significance between the different tem-
poral content approaches. All expert selection algorithms
show statistically significantly higher performance than the
performance of methods using 2D and 1D features.

The results provide an interesting viewpoint on the change
behavior and its indicators. Although graph distance may
seem an intuitive measure for the web, it provides little im-
pact for change prediction. Correlation over time in the
same topics is the more beneficial approach in those cases.



Graph Content Temporal Content Similarity
Distance Similarity Cross-Correlation DTW
64.40% 67.27% 72.72% 70.33%

Table 3: Prediction accuracy average of multiple experts

using the different selection algorithms. Results statisti-

cally significant using a t-test (p < 0.05) when compared

to DTW.
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8.2.3 Number of Selected Experts
In this section we investigate the performance of the multi-

ple expert algorithm as a function of the number of selected
experts. We show the results in Figure 7. While there is
some sensitivity in performance to the number of experts
selected, the gains over the single expert using the 2D fea-
tures is robust across a range of values for number of experts.
Up to 20 experts it seems the system gains more precision
by the addition of more experts. However, after reaching
this performance peak the addition of other features seems
to be adding unnecessary noise to the system. Addition-
ally, we see that even a small number of experts has enough
predictive power for predicting page content change.

8.3 Application to Crawling:
Maximizing Freshness

We show an application of our work to a crawling task
in which the goal is to maximize the freshness of the in-
dexed pages. It is standard practice to assume that the set
of crawled pages is fixed and to assume a maximum crawl
rate r [18]. We set a crawling limit of 10% of the total
number of pages to simulate a setting where the number of
pages to be crawled far exceeds the crawling resources, and
adopt a scheduling policy that targets to re-visit pages as
closely as possible to their change frequency by flipping a
biased coin based on the estimated change probability. This
probability is estimated by fitting logistic regression models
(Platt recalibration [1]) to the outputs of the SVM classifier
for the multiple and single experts, and for the baseline it is
estimated based on the page frequency. We follow a batch
crawling scenario, therefore the classifiers are not re-trained
during the crawling period. Once a page is selected to be
crawled it is used to update the training of all the meth-
ods. We compare the overall freshness of the index using
different methods of estimating this probability as a func-
tion of the number of days the crawl was performed. Figure
8 shows the performance according to average freshness as a
function of the number of observed crawling days (i.e., the
amount of data available to train the classifier). Both the 2D
and 3D methods improve over the baseline with significant
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gains in freshness occurring after observing 50 days of crawl
data. The 3D method shows performance on par with the
2D method after 80 days with superior and significant per-
formance after 100 days of crawl data. Overall, the results
show the superiority of the 3D algorithm over the baseline
after a small number of days were sampled and over the 2D
approach after a moderate number of days, showing that the
approach is also applicable for when some of the features are
missing (as presented in the partially-observed setting).

9. DISCUSSION
In this section we give some qualitative examples to pro-

vide insight into the multiple experts and expert selection
algorithms. We then also discuss how our methods can be
efficiently calculated and scaled.

9.1 Qualitative Examples
In this section we provide some qualitative examples of

the prediction results.
An example where related page expert selection outper-

forms the 1D and 2D approaches is for the URL http://

www.thekirkreport.com/archives.html. This is a URL irregu-
larly giving updates on stock trading. The content similarity
KNN method (Section 6.2) chose the page of the American
first credit union http://www.amerfirst.org/, that provides
updates on rates, credits and loans. And indeed, in many
of the times that the kirkreport had changes, it followed a
significant update of all the rates on the amerfirst site. How-
ever, using simple content similarity pages as experts might
also yield unsatisfactory result for change prediction. For
example, the experts selected for the Southern Methodist
university (http://smu.edu/, were other university sites such
as the university of Windsor http://www.uwindsor.ca, and
the university of Vermont http://www.uvm.edu/. Although all
the above university pages change frequently, their change is
usually due to updating university news, such as awards and
local news. Therefore using those experts as indicators for
the change in smu was unhelpful. As we use the page itself
as an expert of its own change, in this case the ensemble
algorithm weighted the smu page very high, yielding similar
results to the 2D approach.

Those type of errors were easily fixed by the temporal
content similarity method using cross-correlation (Section
6.3), that not only takes content into account, but also the
actual correlation across time. For example, the best cor-
relating pages for http://www.boxofficeindia.com were http:

//www.musicnmovies.com and http://www.bollywoodworld.com,
as the pages experience change in the same topics when a
new movie comes out to the theater.

The graph distance similarity (Section 6.1) usually se-



lects pages with no clear connection to the temporal dy-
namics; therefore the experts extracted using this method
are not satisfactory. For example, for the URL http://www.

mtv.com/music/video the experts selected were relevant pages
such as a radio site http://www.ksidradio.com, but also irrel-
evant pages, such as a wrestling site http://prwrestling.

com. For comparison, the cross-correlation experts for this
same URL were http://www.mtv.com/ontv/dyn, http://www.

imdb.com/Sections/Quotes and http://www.newsoftheworld.co.

uk/story_pages. The first URL is an aggregate of new con-
tent in MTV, the second indicates a new popular movie that
indicates new YouTube films about it, the last one is a cor-
relation indicating that after specific news events there will
be a new YouTube movie.

9.2 Efficient Calculation
In this work we showed that information from related

pages strongly contributes to better page change detection.
We investigated numerous ways of identifying such related
pages – either by graph distance, content similarity or tem-
poral content similarity. We have showed empirically that
the temporal content similarity methods outperform the first
two. However, identifying those related pages can be com-
putationally expensive. Fortunately, several methods have
been proposed in the literature, that can be used to speed
up identifying such pages in an efficient way. For example,
Keogh and Pazzani [16] discuss several ways of efficiently
identifying similar time series in a large database. The
method reduces the size of every time series by providing
a method to divide it into frames, on which a time-series
similarity algorithm can later be performed. The algorithm
was applied using DTW algorithm, but the extension to the
application of cross-correlation is similar.

Additional concern in such large scale prediction tasks
is that storing snapshots from multiple iterations is pro-
hibitively expensive. However, the cross-correlation method
for finding temporal experts, that had the best performance
in our empirical study, can be computed online without the
need to actually store the previous snapshots. As more in-
formation arrives the correlation can be updated with only
the correlation of the new snapshot. We saw in the empiri-
cal study that gains in performance asymptote after 30 days
of historical data. Some classifiers can be trained online as
well, preventing the need to keep the last snapshots. Addi-
tionally, in our experiments the object used for prediction is
composed of only the past two snapshots (l = 1), and we did
not see a significant higher gain when using bigger l values.
This result is akin to the result by Ali & Williams [3], that
showed that simply using only the previous two snapshots
of a page to determine when to recrawl significantly reduces
crawling compared to recrawling all recently changed pages.

10. CONCLUSIONS
In this paper we tackled the problem of predicting signif-

icant content change on the web. Our results shed light on
how and why content changes on the web, and how it can
be predicted. We explored several information sources that
can be used to predict such change – the commonly used
frequency of change, the page content and related pages con-
tent. We have seen that the addition of the page content im-
proves prediction when compared to simple frequency-based
prediction. Additionally, the addition of information of re-
lated pages content improves over the usage of page’s content
alone. We experimented with several methods for selecting
related pages, and have shown that related pages that corre-
late over time in their content change contain valuable infor-

mation for page content change prediction. We have inves-
tigated several ways of combining information from related
pages, and proposed a novel algorithm that outperformed
the common learning mechanisms.
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