Learning Large-Scale Hierarchical Models

Russ Salakhutdinov

Department of Computer Science and Statistics University of Toronto

Discovering Structure

Dramatic increase in both computational power and the amount of data

available from web, video cameras, laboratory measurements.

Images & Video

Product Recommendation amazon

Relational Data/ **Social Network** facebook

Discovering Structure

Dramatic increase in both computational power and the amount of data available from web, video cameras, laboratory measurements.

- Discover underlying structure, semantic relations, or invariances from data.
- Robust, adaptive models models that can deal with missing measurements, nonstationary distributions, multimodal data.

Discovering Structure

Dramatic increase in both computational power and the amount of data available from web, video cameras, laboratory measurements.

- Discover underlying structure, semantic relations, or invariances from data.
- Robust, adaptive models models that can deal with missing measurements, nonstationary distributions, multimodal data.

Research Directions

Deep Learning

 Learning More Structured Models: Transfer and One-Shot Learning

Multimodal Learning

Example: Deep Boltzmann Machines

(Salakhutdinov & Hinton, AlStats 2009, Neural Computation 2012)

Example: Deep Boltzmann Machines

Higher-level features: Combination of edges

Image

- Learn hierarchies of nonlinear features.
- Unsupervised feature learning no need to rely on human-crafted input features.

Low-level features:

Edges

Input: Pixels

(Salakhutdinov & Hinton, AlStats 2009, Neural Computation 2012)

Example: Deep Boltzmann Machines

Higher-level features: Combination of edges

- Learn hierarchies of nonlinear features.
- Unsupervised feature learning no need to rely on human-crafted input features.

Bottom-up + Top-down

Input: Pixels

(Salakhutdinov & Hinton, AlStats 2009, Neural Computation 2012)

Reuters dataset: 804,414

newswire stories: unsupervised

Netflix dataset: 480,189 users

17,770 movies

Over 100 million ratings

Netflix dataset:
480,189 users
17,770 movies
Over 100 million ratings

Learned features: ``genre''

Fahrenheit 9/11
Bowling for Columbine
The People vs. Larry Flynt
Canadian Bacon
La Dolce Vita

Friday the 13th
The Texas Chainsaw Massacre
Children of the Corn
Child's Play
The Return of Michael Myers

Independence Day
The Day After Tomorrow
Con Air
Men in Black II
Men in Black

Scary Movie Naked Gun Hot Shots! American Pie Police Academy

State-of-the-art performance on the Netflix dataset.

(Salakhutdinov et. al. ICML 2007)

25 ms windowed frames

Speech Recognition: Spoken Query
 Detection: For each keyword, estimate utterance's probability of containing that keyword.

Speech Recognition: Spoken Query
 Detection: For each keyword, estimate utterance's probability of containing that keyword.

Learning Algorithm	AVG EER
GMM Unsupervised	16.4%
DBM Unsupervised	14.7%
DBM (1% labels)	13.3%
DBM (30% labels)	10.5%
DBM (100% labels)	9.7%

(Zhang, Salakhutdinov, Chang, Glass, ICASSP, 2012)

Research Directions

Deep Learning

Learning More Structured Models:
 Transfer and One-Shot Learning

Multimodal Learning

Face Recognition

Yale B Extended Face Dataset
4 subsets of increasing illumination variations

Subset 1

Subset 2

Subset 3

Subset 4

Due to extreme illumination variations, deep models perform quite poorly on this dataset.

Deep Lambertian Model

Consider More Structured Models: undirected + directed models.

Combines the elegant properties of the Lambertian model with the Gaussian DBM model.

(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)

Deep Lambertian Model

Deep Lambertian Model

Inference: Variational Inference.

Learning: Stochastic Approximation

$$\mathbf{a} \in \mathbb{R}^D$$
, $\mathbf{N} \in \mathbb{R}^{D \times 3}$, $\ell \in \mathbb{R}^3$

(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)

Face Relighting

One Test Image

Observed albedo

Face Relighting

Face Relighting

One Test Image
Inferred
Observed albedo

Transfer Learning

Background Knowledge

Millions of unlabeled images

Some labeled images

Bicycle

Dolphin

Elephant

Tractor

Learn to Transfer Knowledge

Learn novel concept from one example

Transfer Learning

Background Knowledge

Millions of unlabeled images

Some labeled images

Bicycle

Elephant

Dolphin

Tractor

Learn to Transfer Knowledge

Learn novel concept from one example

Test: What is this?

Learning Category Hierarchy

Learning to share the knowledge across many visual categories.

Learning Category Hierarchy

Learning to share the knowledge across many visual categories.

Research Directions

Deep Learning

Learning More Structured Models:
 Transfer Learning

Multimodal Learning

Data – Collection of Modalities

- Multimedia content on the web image + text + audio.
- Biomedical Imaging

pacificocean,

• Robotics applications.

Shared Concept

"Modality-free" representation

"Modality-full" representation

Multimodal DBM

(Srivastava and Salakhutdinov, NIPS 2013)

Multimodal DBM

(Srivastava and Salakhutdinov, NIPS 2013)

Multimodal DBM

(Srivastava and Salakhutdinov, NIPS 2013)

Text Generated from Images

Image

Given Text

Text generated by the model

pentax, k10d, pentaxda50200, kangarooisland, sa, australiansealion

beach, sea, surf, strand, shore, wave, seascape, sand, ocean, waves

mickikrimmel, mickipedia, headshot portrait, girl, woman, lady, blonde, pretty, gorgeous, expression, model

< no text>

night, notte, traffic, light, lights, parking, darkness, lowlight, nacht, glow

unseulpixel, naturey, crap

fall, autumn, trees, leaves, foliage, forest, woods, branches, path

Multimodal DBMs

Impact of Deep Learning

Speech Recognition

Computer Vision

Recommender Systems

- Neuroscience
- Beginning: Drug Discovery and Medical Image Analysis
 MERCK

U NOVARTIS

Thank you

Knowledge Transfer by Shared Priors

