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Discovering Structure

Dramatic increase in both computational power and the amount of data
available from web, video cameras, laboratory measurements.
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Discovering Structure

Dramatic increase in both computational power and the amount of data
available from web, video cameras, laboratory measurements.
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* Discover underlying structure, semantic relations, or invariances from data.
* Robust, adaptive models models that can deal with missing measurements,

nonstationary distributions, multimodal data.
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* Discover underlying structure, semantic relations, or invariances from data.
* Robust, adaptive models models that can deal with missing measurements,

nonstationary distributions, multimodal data.



Research Directions

* Deep Learning

* Learning More Structured Models:
Transfer and One-Shot Learning

* Multimodal Learning



Example: Deep Boltzmann Machines
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(Salakhutdinov & Hinton, AlStats 2009, Neural Computation 2012)



Example: Deep Boltzmann Machines

Highe.r—le\{el features:  Learn hierarchies of nonlinear features.
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Example: Deep Boltzmann Machines

Highe.r—le\{el features:  Learn hierarchies of nonlinear features.
Combination of edges * Unsupervised feature learning — no need

! to rely on human-crafted input features.

1 Bottom-up + Top-down
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Input: Pixels

(Salakhutdinov & Hinton, AlStats 2009, Neural Computation 2012)



Deep Generative Model

Reuters dataset: 804,414

newswire stories: unsupervised
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Deep Generative Model
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Deep Generative Model
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Netflix dataset:
480,189 users

17,770 movies
Over 100 million ratings

N ETIELIX

(Salakhutdinov et. al. ICML 2007 )



Deep Generative Model

\ Learned features: ‘genre”

G @ Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
@ O O @ The People vs. Larry Flynt Con Air

Canadian Bacon Men in Black Il
ﬁ @ La Dolce Vita Men in Black
@ O O O O @ Friday the 13th Scary Movie
The Texas Chainsaw Massacre Naked Gun
ﬁ @ Children of the Corn Hot Shots!
Child's Play American Pie

. The Return of Michael Myers Police Academ
Netflix dataset: Y y

480,189 users

17,770 movies
Over 100 million ratings

N ETIELIX

State-of-the-art performance
on the Netflix dataset. (Salakhutdinov et. al. ICML 2007 )



Deep Generative Model

* Speech Recognition: Spoken Query

Detection: For each keyword, estimate
ﬁ @ utterance’s probability of containing

that keyword.
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25 ms windowed frames

(Zhang, Salakhutdinov, Chang, Glass, ICASSP, 2012)



Deep Generative Model

* Speech Recognition: Spoken Query

Detection: For each keyword, estimate

utterance’s probability of containing

ﬁ @ that keyword.
(@le)ele) \ y

[OOOOOO] Learning Algorithm AVG EER
ﬁ @ GMM Unsupervised 16.4%
_ DBM Unsupervised 14.7%
25 ms windowed frames
DBM (1% labels) 13.3%
DBM (30% labels) 10.5%
DBM (100% labels) 9.7%

(Zhang, Salakhutdinov, Chang, Glass, ICASSP, 2012)



Research Directions

* Deep Learning

* Learning More Structured Models:
Transfer and One-Shot Learning

* Multimodal Learning



Face Recognition

Yale B Extended Face Dataset
4 subsets of increasing illumination variations

Subset 1

Due to extreme illumination variations, deep models
perform quite poorly on this dataset.



Deep Lambertian Model

Consider More Structured Models: undirected + directed models.
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Combines the elegant properties of the Lambertian model with the
Gaussian DBM model.

(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)



Deep Lambertian Model
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Deep Lambertian Model

Transfer Learning

Gaussian Deep

Albedo DBM:
Pretrained using
Toronto Face Database
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Inference: Variational Inference.

. . L acRP, NeRPX3 recR3
Learning: Stochastic Approximation
(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)



Face Relighting

One Test Image

Inferred
Observed 3ipedo Face Relighting




Face Relighting

One Test Image

Inferred What about building
structured models for
transfer learning?

Observed j|pedo




Transfer Learning

Background Knowledge
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Transfer Learning
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Learning Category Hierarchy

Learning to share the knowledge across many visual categories.

\
Deep Boltzmann
Machine using
Learned higher-level 4 million images
features
y
Learned low-level (Salakhutdinov et. al., PAMI 2012, Srivastava and

generic features Salakhutdinov, 2013)



Learning Category Hierarchy

Learning to share the knowledge across many visual categories.
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Research Directions

* Deep Learning

* Learning More Structured Models:
Transfer Learning

* Multimodal Learning



Data — Collection of Modalltles

pacificocean, :

* Multimedia content on the web - kst

image + text + audio.

* Biomedical Imaging You
,,,,,,,,,, B flickr Google

;;;;;;;;;;;

‘‘‘‘‘‘‘‘‘‘‘

fMRI PET Scan EEG

* Robotics applications.

Touch sensors%
-
Vision f % Audio

Motor control




Shared Concept

“Modality-free” representation
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Multimodal DBM
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(Srivastava and Salakhutdinov, NIPS 2013)



Multimodal DBM
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Multimodal DBM
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Text Generated from Images

Given Text

pentax, k10d,
pentaxda50200,
kangarooisland, sa,
australiansealion

Image

mickikrimmel,
mickipedia,
headshot

< ho text>

unseulpixel,
naturey, crap

Text generated by the model

beach, sea, surf, strand,
shore, wave, seascape,
sand, ocean, waves

portrait, girl, woman, lady,
blonde, pretty, gorgeous,
expression, model

night, notte, traffic, light,
lights, parking, darkness,
lowlight, nacht, glow

fall, autumn, trees, leaves,
foliage, forest, woods,
branches, path



Multimodal DBMs

Samples drawn after
every 50 steps of
Gibbs updates

l

Sample at step 0

wool wool

blume blume
closeup closeup
locomotive locomotive
sun sun

delete3 delete3
negative negative
sardegna sardegna
Sphotosaday 5photosaday
nb nb

D



Impact of Deep Learning

B Microsoft

* Speech Recognition

Google

* Computer Vision
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* Recommender Systems S
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* Beginning: Drug Discovery and Medical
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Thank you



Knowledge Transfer by Shared Priors

Tree-based priors
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