
How to Run POSIX Apps in a Minimal Picoprocess

Jon Howell, Bryan Parno, John R. Douceur
Microsoft Research, Redmond, WA

Abstract
We envision a future where Web, mobile, and desktop

applications are delivered as isolated, complete software
stacks to a minimal, secure client host. This shift im-
bues app vendors with full autonomy to maintain their
apps’ integrity. Achieving this goal requires shifting
complexity out of the client platform and replacing the
required behavior inside the vendors’ isolated apps. We
ported rich, interactive POSIX apps, such as Gimp and
Inkscape, to a spartan host platform. We describe this
effort in sufficient detail to support reproducibility.

1 Introduction

Numerous academic [5, 13, 15, 17, 21, 24, 27–30, 32]
and deployed systems [1–3, 25] have started pushing to-
wards a world in which Web, mobile, and desktop ap-
plications are strongly isolated by the client kernel. A
common theme in this work is that guaranteeing strong
isolation requires simplifying the client, since complex-
ity tends to breed vulnerability.
Complexity evicted from the client kernel takes up res-

idence in the apps themselves. This shift is beneficial: it
lets each app vendor decide independently which com-
plexity is worth the risk of vulnerability, and one ven-
dor’s decision in favor of complexity does not undermine
another’s decision to favor security. Of course, requiring
each app vendor to implement a complete software stack
is impractical, so we expect this complexity to migrate
to app frameworks that app vendors can choose amongst,
just as web developers choose amongst an ever evolving
set of app frameworks on the server.
This minimal-client model must simultaneously

achieve two properties: richness and security [6]. First,
the model must support applications as rich as desktop
productivity apps. New client application models often
fail due to the burden of migrating every app–and ev-
ery library–to run under a new model. Thus, we argue
that shifting app delivery to a minimal-client model re-
quires an inexpensive app migration path from complex-
host frameworks such as POSIX and Windows.
Second, the model must support richness while keep-

ing the isolation interface tiny and well-specified, to ad-
mit a correct client implementation. The web’s current
client execution interface has repeatedly failed to achieve
strong app isolation, due to an interface bloated with
HTML, DOM, JPG, PNG, JavaScript, Flash, etc. in pur-
suit of richness.

The recent Embassies system provides a concrete ex-
ample of how to achieve both security and richness si-
multaneously [18]. It pushes the minimal client host in-
terface to an extreme, proposing a client host without
TCP, a file system or even storage, and with a UI con-
strained to simple pixel blitting (i.e., copying pixel arrays
to the screen). In support of rich apps, Embassies’s mini-
mal interface specifies execution of native binary code.
Native code is an important practical choice, because,
we assert, it is the lack of native code that has forced
each prior system based on language safety to evolve a
complex trusted interface that provides access to native
libraries [9, 11, 12, 19, 22]. This complexity undermines
any claims to provide strong security.
While native code is a target that every compiler can

hit, it seems daunting to port arbitrary POSIX apps to
such a minimal interface. Such apps expect to run on a
complex host with hundreds of system calls and dozens
of system services, all implemented over the course of
decades.
However, our experience suggests this task is far eas-

ier than you might expect. Interactive apps use rela-
tively little of the complexity available in modern host
platforms. More importantly, rather than alter the app,
the functions that are required can often be emulated be-
hind the POSIX interface. This technique works with-
out even recompiling the source of the hundreds of li-
braries involved. The emulation work can be shared eas-
ily across many applications, making the porting work
scalable. The broad selection of rich apps that our sys-
tem supports (see Table 1) demonstrates the generality of
the approach.

Contributions. This paper demonstrates just how
tractable it is to port rich POSIX apps to a minimal en-
vironment, thus enabling them to run on a multitude
of minimal client hosts [15, 18, 20, 24, 32]. We give
a full accounting of the porting task, including which
functionality is required and where corners can be cut.
This includes low-level details, such as an exhaustive
list of syscalls handled, in order to eliminate any am-
biguity about complexity hidden under the hood, and
to enable reproducibility. Ultimately, we hope that this
will expedite other efforts to adopt these techniques and
hence achieve rich applications atop minimal, strongly-
isolating client kernels.

Application Function Num. Libraries Example Libraries
Abiword word processor 63 Pango,Freetype
Gimp raster graphics 55 Gtk,Gdk
Gnucash personal finances 101 Gnome,Enchant
Gnumeric spreadsheet 54 Gtk,Gdk
Hyperoid video game 6 svgalib
Inkscape vector drawing 96 Magick,Gnome
Marble 3D globe 73 KDE, Qt
Midori HTML/JS renderer 74 webkit

Table 1: A variety of rich, functional apps transplanted to run in a minimal native picoprocess.

2 Background: Minimal Client Facilities

In this work, we aim to transplant apps from a rich
POSIX interface to a minimal client kernel. To ground
the discussion, we target the minimal Embassies pico-
process interface [18], since it takes minimality to an
extreme. If we can port an app to Embassies, we can
certainly port it to a client with a richer interface.
The Embassies application binary interface (ABI) pro-

vides execution primitives that support an app’s internal
computation, cryptographic primitives to facilitate pri-
vacy and integrity, primitives for IPC and network com-
munication, and user interface (UI) primitives for user
interaction.
Execution. The execution primitives include:

• Calls to allocate memory and free memory.
To simplify the specification and to make the ABI
portable to most host environments, the app speci-
fies only the amount of memory required; it has no
control over the addresses returned by the allocator.

• create thread accepts only the thread’s initial
program counter and stack pointer; the application
provides the stack and any execution context.

• exit thread destroys the current thread.

• A simplified futex-like [7] synchronization schedul-
ing primitive, the zutex. zutex wake is a race-
free scheduling primitive that supports app-level ef-
ficient synchronization primitives. The correspond-
ing zutex wait is the only blocking call in the
ABI; it allows an app to yield the processor.

• clock returns a rough notion of wall-clock time.

• set timer sets a timer, in clock coordinates, that
wakes a zutex on its expiration. Each picoprocess
has only one timer; the app must multiplex it.

• get alarms returns a list of three distin-
guished zutexes representing external events, one
for each of receive packet, ui event, and
timer expired. Waiting on these zutexes is how
threads block on external activity.

Crypto infrastructure.

• random provides a supply of cryptographically
strong entropy.

• app key provides a machine-specific, application-
specific secret. Apps use this key, along with cryp-
tographic libraries, to store and recover private in-
formation despite starting from a public binary.

Communication. All communication outside the pro-
cess, whether IPC to another process on the local ma-
chine, or remote to an Internet host, follows IP seman-
tics: data is transferred by value (a logical copy), so that
the suspicious recipient needn’t worry about concurrent
modification; addressing is non-authoritative; delivery
admits loss and duplication; packet privacy and integrity
are not guaranteed. Just like servers on the Internet’s
high seas, apps build up integrity and privacy themselves
using cryptography. To underscore these semantics, all
communication in Embassies–remote or local–is actually
done via IP.

• get addresses assigns the process one IPv4
and one IPv6 address.

• allocate packet allocates memory for
send packet; this allocation is distinguished from
allocate memory to enable zero-copy packet
transfer.

• send packet delivers a packet, interpreting its
argument as an IP header and payload.

• receive packet dequeues and returns a packet,
returning NULL if the queue is empty.

• free packet frees a received packet.

User Interface.

• ui event dequeues and returns a UI event
(keystroke or pointer motion), returning NULL if
the queue is empty.

• Some calls that manage viewports, letting them be
transferred among applications, or letting one ap-
plication sublet a region of its viewport to another
application. In every case, even where nested, each
viewport is owned by a single app; no app can in-
spect or modify the pixels of another app’s view-
port. Viewport management is beyond scope, the
details elided here.

• map canvas allocates a framebuffer to back a
viewport. This allocation is distinguished from
allocate memory to enable fast pixel blitting.

2

• update canvas informs the client kernel that a
region of the framebuffer has been updated, and that
its pixels should be blitted to the display.

These comprise the entire Embassies ABI; all of the
functionality described in the rest of the paper is imple-
mented in terms of these primitives.

3 The POSIX Emulator

A conventional POSIX application composes dozens
of libraries, access to a rich system call interface, and by
way of those system calls, access to other rich services,
such as the X server’s graphics functions and the dbus
desktop configuration object broker.
Our POSIX-emulator loads and runs applications ex-

pecting this rich POSIX environment by cleverly repur-
posing existing libraries and programs on top of the min-
imal services the execution environment provides (§2).
Figure 1 gives an overview of how emulator maps the
entire POSIX interface down to the picoprocess interface
that Embassies provides.
Below, we describe the emulation in detail, starting

with application launch.

3.1 Application Launch
Embassies provides minimal support for app launch.

The application vendor specifies a single bit string called
the boot block. The host maps the boot block into an ad-
dress space at an arbitrary address, provides it a minimal
stack, and places in a register the address of a dispatch
table for the Embassies ABI (§2).
Thus, when it starts, our POSIX emulator’s first steps

are to relocate its own symbols (since it is loaded at an
arbitrary offset) and to allocate an adequate stack. Then,
it establishes a virtual file system (§3.3) and a dispatch
function that emulates the Linux POSIX syscall inter-
face.
Next, the emulator must load the app and its libraries

into memory. Rather than implement this functionality
from scratch, the emulator repurposes the standard Linux
loader, ld-linux.so.
In Linux, a POSIX application is specified as an ELF

binary. To launch it, the kernel interprets the ELF for-
mat to map the binary into memory, and also maps in
the loader, ld-linux.so, to “interpret” the app bi-
nary. The loader gets control first, enumerates dynamic
library references from the app, maps those libraries into
memory, links the whole jumble together, and jumps to
the app’s entry point.
Embassies, however, does not provide a file system

from which to map files, much less a kernel willing to
parse ELF binaries. Instead, our emulator includes a
copy of ld-linux.so. Besides functioning as an in-
terpreter, ld-linux.so can accept the app path name
as an argument and map the app itself; this is how the

emulator invokes it. Of course, this only succeeds be-
cause the ld-linux.so’s POSIX calls are serviced by
the emulator (§3.2).
To call the loader, the emulator creates a suitable

argv (naming the ELF executable), an envp (e.g.
pointing DISPLAY at 127.0.0.1:6), and an auxv (a few
constants that soothe libraries into thinking they are run-
ning on Linux).

3.2 Intercepting System Calls
The loader, as well as other libraries in the glibc suite,

are at the bottom of the library stack; these are the li-
braries that make actual POSIX syscalls. In principle,
other libraries could also include direct syscall instruc-
tions, but in practice, we have never seen it; instead, they
simply use libc’s syscall symbol.
We want to exploit the functionality of the glibc suite,

but glibc’s system calls will fail in an Embassies process;
they must be intercepted and replaced with calls to the
syscall emulation layer. In principle this can be achieved
by creating an alternate “sysdep” personality for glibc.
In practice, at least for the x86 architecture, we found
it easiest to apply a binary rewriting pass to each of the
libraries in the glibc suite, patching every system call in-
vocation (i.e., each occurrence of int $0x80) with a
call to a dispatch function that we inserted at the end of
the library.
The dispatch function in each library must, in turn, be

patched dynamically to call into the emulator’s syscall
dispatcher. To identify libraries in need of such dynamic
patching, we modified the libraries’ ELF headers to label
the dispatch function. As libraries are mmaped into the
app’s address space, a filter file system in the VFS layer
(§3.3) detects the modified ELF signature and transpar-
ently updates the dispatch function to point at the emula-
tor’s syscall dispatcher.

3.3 Virtual File System
Much of the POSIX ABI concerns file naming and file

descriptors, which provide access to a variety of func-
tions. Thus, like a Unix POSIX implementation, the em-
ulator contains a virtual file system (VFS) abstraction.
VFS components include a read-only app image, a

RAM-based writable temporary filesystem (tmpfs) that
replaces the function of the POSIX /tmp scratch direc-
tory, and named pipes (Unix-domain sockets). The
writable tmpfs directories provide the namespace for
the Unix-domain sockets. There are also the virtual
files that emulate POSIX special files. These com-
prise the /proc files of Section 3.8.1 and an emulated
/dev/random which passes entropy up from the client
kernel’s random facility.
The emulated VFS contains an overlay mount table to

weave these file systems together.

3

Figure 1: The POSIX Emulator. To Embassies, the emulator (the large, solid, orange boundary) is a binary string whose entry
point is its first byte, and which may call back into a set of low-level interfaces provided by the Embassies ABI. Internally, the
emulator loads the app’s read-only image, maps it into a virtual filesystem, and calls into a copy of ld-linux.so. That loader,
using the emulated POSIX ABI, reads the app executable and additional ELF libraries into memory. The glibc libraries’ syscalls
are redirected to the emulator’s POSIX interface. Non-POSIX hooks provide connections for UI and TCP services implemented
outside of the emulator (Figure 2).

3.3.1 The Read-Only Application Image
The most important VFS component is the read-only

binary image, from whence libraries and data files are
fetched.
A Linux app expects to fetch its libraries and read-only

data files by name from a (shared) file system via read
and mmap. In Embassies, such files come from a private
app image whose integrity has been verified.
To support this, the developer packages every file the

app requires into a single tar-style image file. The em-
ulator fetches this file from an untrusted cache on the
local machine, delegating to the cache the complexity
of fetching the image from an upstream cache or origin
server and exploiting commonality with other apps [16].
The reply appears in memory as a single (jumbo) IP
packet. The emulator ensures integrity by comparing the

image’s hash to a constant hash value embedded in the
boot block.
The image file transmission protocol supports partial

fetches, so that the app can start with only a subset of
the image, and then later page in further-required com-
ponents.

3.3.2 Supported Interfaces
POSIX defines a wide, complex interface for interact-

ing with the file system, so implementing the entire in-
terface would be quite labor intensive. Fortunately, to
support the varied applications from Table 1, it has suf-
ficed for the VFS to support the following functions.
First, there is the core interface open, close,

ftruncate, and ftruncate64; and the metadata
interface stat, lstat, fstat, and access. VFS

4

accept recvfrom
bind recvmsg
connect send
getpeername sendmsg
getsockname sendto
getsockopt setsockopt
listen shutdown
recv socket

Table 2: These socket calls plumb through the VFS inter-
face to either the Unix named pipes implementation or the TCP
stack.

file descriptors track file pointers for read, write,
writev, and lseek. Directory functions mkdir,
getdents, getdents64, (hard) link, and unlink
are only implemented in the tmpfs. The socket calls
(Table 2) are routed through the VFS to the Unix pipe
and TCP (§4.2) implementations.
The emulator also implements file handle functions

dup, dup2, pipe, and pipe2. Pipe connects two
file descriptors with a blocking pipe, but has no pres-
ence in the VFS namespace. Functions fsync and
fdatasync are no-ops. Most of fcntl and fcntl64
are no-ops, except F DUPFD, which calls the dup imple-
mentation.

3.4 Mmap Support
POSIX mmap is versatile, but in practice it is used in

only a few idiomatic ways.
First, mmap(MAP ANONYMOUS) is used to allocate

blank memory at a target address of the kernel’s choos-
ing. The emulator transforms these calls into Embassies
memory allocations.
Second, apps use mmap explicitly to map in non-

executable data files. These calls also give the emulator
freedom to choose the target address, so the emulator al-
locates fresh memory and uses a memcpying read im-
plementation to simulate the effect of the mmap.
Finally, apps use mmap implicitly when they dynam-

ically link executable libraries, either at load time via
ld-linux.so or at runtime via dlopen. Some of
these calls do expect to control the resulting data place-
ment, a degree of control that Embassies does not pro-
vide when allocating memory.
Fortunately, the loader does not really care where a

given library ends up; it just requires that the data seg-
ment of the library appears at the correct offset from
the text segment. To this end, the loader’s first mmap
call does not specify a target address; instead, it speci-
fies a length sufficient to reserve enough address space
to cover all the segments in the file. The loader’s subse-
quent mmap calls (e.g., for the data segment) do specify
a target address, but the target address is always within
the memory range allocated by the initial mmap call.

Thus, the emulator can support this final class of mmap
calls by simply using the Embassies interface to allo-
cate the initial memory region (which does not specify a
particular address), and then confirming that subsequent
mmaps (that do specify an address) fall within the initial
memory allocation. As long as they do, the emulator can
take the appropriate action, e.g., it can fill the specified
region with zeroes for the binary’s .bss section or copy
in the contents of the mmaped file.
This approach is clearly “less portable”, in the sense

that a POSIX app could in theory call mmap with an ad-
dress outside of any preexisting allocation. Fortunately,
we have not yet encountered any applications that rely on
this functionality.

3.4.1 Fast mmap
The approach above is adequate for correct POSIX

emulation, but for the apps we tested, where the bulk
of the image comprises mmap-loaded libraries, it incurs
many megabytes of memcpys, adding noticeable delay
(150 ms) to the app start time. We corrected this perfor-
mance problem by page-aligning mmapable libraries in
the image tar file (§3.3.1), and servicing mmap requests
by yielding the memory region from the VFS to the app.
Of course, this means that the region can not be read

or mmaped later in the program’s execution; if a program
needs to map a file multiple times, we either store mul-
tiple copies in the image file (often worth the space), or
mark the region “precious”, inhibiting the optimization.
Fast-mmap files must be stored in the image in their

in-memory layout, not their on-disk ELF layout, includ-
ing necessary blank space to position the data and bss
segments. The blank spaces are, of course, easy to com-
press during transmission.

3.4.2 Other Memory Calls
Most POSIX memory allocations appear as anony-

mous mmap calls. The emulator tracks such requested re-
gions, freeing the underlying Embassies allocation once
the entire region has been munmapped.
Embassies provides no read/write/execute memory

protections, so the emulator simply ignores mprotect,
madvise, and msync. It also rejects mremap.
Unfortunately, ld-linux.so and libc both make

initial memory allocations with the ancient brk inter-
face. Why? We cannot say; the best solution would be to
eradicate these vestigial calls. Instead, as a workaround,
the emulator assumes that virtual memory is free, gener-
ously over-allocates on the initial brk(0) call, and ser-
vices each subsequent brk extension by releasing more
of the initial allocation.

3.5 Clock and Timers
The emulator provides the various flavors of POSIX

time: time, gettimeofday, and clock gettime.
It translates all of these from the nanosecond precision

5

clock supplied by the client kernel. That clock provides
rate but no offset information; hence all of our apps think
the current time is 2011. We use ntpdate to acquire a
clock offset, although we have not yet attended to the
security implications.
Embassies supplies the process with a single timer.

It fires a zutex, and hence can be reset in a race-free
way. The emulator has the responsibility to multiplex
this one timer into as many alarms as it needs to imple-
ment POSIX timeout interfaces. It does so using a tree
of upcoming deadlines, for scalability. Making the mul-
tiplexer race-free was tricky; a careful test framework is
advised.

3.6 Synchronization Primitives
The Embassies client kernel provides a single uni-

fied synchronization abstraction, the zutex, that is used
both for internal waiting on other threads and waiting on
external events (the network or the clock). This central
abstraction is a simplified futex [7]. Like the futex,
the zutex is actually a race-free scheduling primitive in
support of efficient synchronization.
The basic POSIX futex maps readily onto the

zutex, with the emulator folding in timeout behav-
ior (§3.5). Many of the extra POSIX behaviors are
neutered. For example highly concurrent servers use
FUTEX CMP REQUEUE to avoid convoys, but our
emulator simply wakes the requested threads and lets
them requeue themselves. The emulator rejects FU-
TEX WAKE OP and FUTEX WAIT BITSET with an
error, alerting libpthread to fall back to the basic be-
havior.
The nanosleep call and POSIX multiple-wait prim-

itives select, newselect, and poll are all mapped
into zutex wait operations, again with timeout behav-
ior constructed by the emulator. POSIX blocking oper-
ations, like a read on an empty pipe, wait on zutex-
signaled events.

3.7 Network Multiplexing
Embassies provides each process with a single zutex

to signal the arrival of IP traffic. Thus, the emulator must
collect incoming IP packets and multiplex them inside
the app. The emulator itself consumes IP to fetch its im-
age (§3.3) and for querying time servers (§3.5). The em-
ulator’s network stack demultiplexes IP and UDP.

3.8 Threads
POSIX uses clone to express both thread creation

and process fork (§3.9). The emulator pattern-matches
the thread-create idiom and sets up the new thread’s
initial thread-local store (TLS). Because Embassies’
create thread conveys only a stack pointer, the em-
ulator constructs a stub stack to pass the POSIX parame-
ters, and the caller’s designated stack, to the new thread.

It records metadata about the new thread to correctly
implement CLONE CHILD CLEARTID upon POSIX’s
thread-exit call.
The POSIX process-exit call exit group signals

the zone host (§4) that a zone has exited.

3.8.1 Supplying the Stack Address
Several applications rely on garbage collection li-

braries that need to know the address of the top of the
current thread’s stack. This is exposed in Linux POSIX
through pseudofiles in /proc.
For example, Libwebkit’s JavaScriptCore garbage col-

lector queries libpthreads for the stack base (the
bottom of the stack), and adds RLIMIT STACK to it.
libpthreads, in turn, queries /proc/self/maps
to learn the stack top from the kernel, and subtracts
RLIMIT STACK from that to produce the stack bottom.
So, as it turns out, the value of RLIMIT STACK is imma-
terial; it cancels out. But libpthreads still sanity-checks
the call to getrlimit, so some plausible value must
be supplied. We used 8 MB.
The stack top value returned by /proc/self

/maps, on the other hand, does matter: it is how a con-
servative garbage collector learns the extent of the stack.
Another garbage collector, libgc, looks for the stack
top in /proc/stat/self. We install special VFS
nodes at those names which return the appropriate stack
top value for the current thread.
To identify which thread is querying the interface, the

emulator snoops the app’s thread-local store TLS regis-
ter; that is, it uses grey-box assumptions about how glibc
manages the TLS. To know where each thread’s stack
resides, the emulator records each stack as its thread is
created by the clone syscall. This works for all but the
main thread; fortunately, that stack is known because the
emulator allocated it (§3.1).

3.9 Fork
Some apps employ the fork/exec pattern; e.g.,

Inkscape uses it for its plug-in modules. This pattern
does not translate well to the minimal Embassies envi-
ronment, since Embassies’s memory management facili-
ties are far too simple. The current emulator implemen-
tation does not support fork at all, leaving Inkscape’s
plug-ins inoperative.
An expedient possibility, if the code is sufficiently id-

iomatic, is to emulate the fork with a thread, and perhaps
intercept and neuter close calls from the child “pro-
cess” preparing to exec. Then exec call launches a
new zone, or if fault-containment is desired, a new pico-
process.
Alternatively, the idiom is usually implemented in

a widely-used library, such as glib’s g spawn, where
the semantics are well-defined and map cleanly onto a
create-zone or create-picoprocess operation.

6

chmod sched setparam
chown sigaction
fchmod sigprocmask
rename and umask
sched get priority max
sched get priority min
sched setscheduler

Table 3: Failure-oblivious calls return -EINVAL or
-ENOSYS, which the caller handles gracefully.

fchown set tid address
flock setitimer
fstatfs setpriority
inotify init setrlimit
inotify init1 shmget
ioctl statfs
ipc sysfs
readlink times
sched getaffinity xi sched yield
set robust list xi timer create
xi sched rr get interval

Table 4: No-op calls simply return 0 (success).

3.10 Neutered System Calls
The remaining syscalls are either unused by interactive

apps, or can be simply rejected or neutered. This section
identifies such syscalls in the interest of completeness.
Many calls (Table 3) can be rejected, returning

ENOSYS or EINVAL, and the libraries that call them ei-
ther handle the failure gracefully, fall back to an alternate
POSIXmechanism, or ignore the result and trundle along
obliviously [26].
Other syscalls can be neutered with brazen lies: when

the caller actually checks the return code, we may need
to return 0 (“success”) even if we don’t actually emu-
late the promised semantics (Table 4). Other functions
require slightly more credible lies: the emulator fills in
some plausible constant values to satiate the caller (Ta-
ble 5). For instance, the clock getres call should
provide some information about clock quality (§3.5), but
we just claim a 500 ms resolution. As another exam-
ple, we found no software that used chdir, so getcwd
simply returns “/”.

3.11 Additional Program Requirements
Emulating the POSIX ABI is minimally intrusive to

the apps, but a few conflicts remain.

3.11.1 Address Freedom
We have already seen that Embassies’s refusal to let

apps specify specific locations for memory allocations
requires the boot block to relocate itself (§3.1) and re-
quires a delicate hand in servicing mmap (§3.4).

getegid getppid
getegid32 getresgid32
geteuid getresuid32
geteuid32 getrusage
getgid getuid
getgid32 getuid32
getpgrp sched getparam
getpid uname
sched getscheduler

Table 5: Deluded calls return a slightly fancier lie than simply
returning 0.

It also means that every executable must be relocat-
able or position independent. Every Linux shared li-
brary is relocatable, but for no discernible reason, ex-
ecutables are not relocatable by default. We address
this by rebuilding each app’s top-level executable with
the -pie (“position-independent executable”) compiler
flag. Although this requires tampering with the app’s
build system (§6.1), it is required only for the top-level
application, not any libraries; and in most cases, passing
DEB CFLAGS=-pie to dpkg-buildpackage does
the job. The change is nowhere near as invasive as trying
to change to static linkage.

3.11.2 The TLS Register
On the architecture we experimented on, the horrific

x86-32 architecture, a paucity of general-purpose regis-
ters leads POSIX compilers to press a disused segment
register %gs into service as a thread-local storage (TLS)
pointer. This usage gets compiled into every library and
application binary. Since the idiom has no security-
sensitive semantics, we opted to provide a store-gs
call in the x86-32 Embassies ABI; the emulator uses it to
implement set thread area.
A better solution would be to either recompile or bi-

nary rewrite every binary to eliminate %gs references.

4 Zones: Programs as Libraries

Besides kernel services, POSIX apps often expect ac-
cess to higher-level services provided by daemon pro-
grams like X windows, a window manager, or the dbus
desktop bus. We satisfy such apps by including these
services inside the apps that need them, rather than add
them to the client kernel’s TCB (which would make them
a part of every app’s TCB).
X, twm, and dbus are designed as independent

POSIX processes. Rather than modify them into li-
braries, the expedient path was to create a general mecha-
nism for loading multiple programs into a single picopro-
cess. This is easier than it sounds, since the programs al-
locate memory and emulated file descriptors separately,
carving the resource namespaces into interleaving parti-
tions. We call such partitions “zones” (Figure 2).

7

Figure 2: Multiple POSIX apps coexist in one picoprocess
as zones. Each zone comprises a noncontiguous partition of
the address space. Each has its own copies of libraries, like
libc, and its own stack and heap allocations. Programs that
expect POSIX pipe IPC, such as an X session, see the same
behavior within the picoprocess.

Embassies’s refusal to allow memory allocations at
specific addresses works to our advantage when imple-
menting zones, since it precludes zones from demanding
overlapping allocations. It is zones that use the emulated
Unix pipes (§3.3). For example, the X zone listens on
/tmp/.X11unix/X0, and the xlib client library in the
main application zone binds to it there.
The vestigial brk interface (§3.4.2), however,

presents a hurdle. Two threads in different zones may
concurrently extend different brk heaps. The brk inter-
face assumes hidden per-process state, which becomes
per-zone state. The good news is that we can infer
which zone is making the request, and hence which per-
zone state to consult, because each request should appear
within the address space set aside for that zone’s brk.
The bad news is that, on 32-bit hardware, virtual

address space is scarce enough to warrant preserving,
which means allocating only appropriately-sized brk re-
gions for each zone. This is tricky because the initial
call from each zone is a stateless brk(0), from which
the emulator cannot infer the identity of the calling zone.
Our expedient solution forces the zones to start up syn-
chronously. A more elegant solution would identify the
calling zone by its TLS or stack pointer, or (better yet)
eliminate brk calls from libc.

4.1 Example Zones
Because the goal of Embassies is to minimize the

client kernel’s TCB, the complex security boundary of
X is intolerable. While we do add an X zone in apps
that require a display, we do not make use of its security-

sensitive multiplexing functions. Instead, X is used to
rasterize the app’s display, and the rendered frame buffer
is blitted to the user’s display through Embassies’s pixel-
level UI interface.
Some apps, like Gimp, use a plethora of palettes. For

expediency, we add a twm window manager zone into
such apps, to allow manipulation of the palettes within
the surface of the app’s single display region. With more
effort, one could coordinate multiple windows via Em-
bassies’s window management, perhaps using a tech-
nique like Nitpicker’s [10].
Gnome desktop apps expect to connect to the dbus

daemon to find other components and learn configura-
tion settings. This tight coupling among applications has
no cost in a trusted-everything system, but is too risky
for mutually-untrusting apps. Hence we do not repro-
duce the connected dbus; instead, we link a copy of the
daemon into each app to expediently satiate the client
library. With more effort, one could strip the dbus de-
pendencies out of each app.

4.2 Extension Hooks
The emulator sits below libc, and hence cannot ex-

ploit libc. To preserve our sanity, we push some func-
tionality out of the emulator into layers above. To facili-
tate this modularity, the emulator exports four hooks via
unused syscall numbers.
Specifically, as alluded to above, we use an X zone

to translate app user interfaces into easily blitted pixel
regions. A modified X server within the zone supplies
the graphical user interface. It uses one extension hook,
ex get dispatch table, to gain access to the raw
Embassies UI functions. It uses a second extension hook,
ex open zutex as fd, to wrap the UI notification
zutex in a POSIX file descriptor, enabling the extension
to smoothly integrate into X’s existing poll loop.
All unhandled IP traffic, including TCP traffic, is

handed off to a TCP stack based on lwIP [8] that re-
sides in the zone host. The lwIP stack is a loadable
module, attaching to the emulator’s IP multiplexer via
ex add default handler and servicing requests
for SOCK STREAM sockets via ex mount vfs.

5 Debugging Strategies

The key premise of this work is that most apps use
only a fraction of POSIX functionality. This paper cata-
logs these functions in detail precisely because the chal-
lenge is in discovering which functions matter.
Most of the effort in emulating the right subset of

POSIX involves figuring out why a segfault occurred in
a library dozens of layers below the app. To assist the
practitioner who wishes to extend this approach, this sec-
tion identifies the most valuable debugging strategies we
used.

8

Obviously, it is important to plumb error messages out
of the picoprocess. Our insecure debug-mode Embassies
monitor offers an extended ABI with debug channels that
record to files. The emulator routes stdout and stderr to
such channels.
Since almost all of our changes occur behind the

POSIX interface, it is very effective to compare system
call traces; divergences often identify root causes. We
capture a reference trace in Linux with strace, and
add a corresponding debug facility at the emulator’s en-
try point. It emits a trace file using another debug output
channel.
Of course, a debugger is invaluable. Our debug-mode

monitor runs apps as Linux processes. It routes Em-
bassies syscalls out through a pipe to a coordinating pro-
cess, but leaves the conventional POSIX syscall interface
intact. That means we can connect gdb to it.
However, gdb is not immediately useful, because it

has no access to symbols. The emulator does not use
POSIX mmap to map in ELF files, so gdb’s inspec-
tion of Linux-provided metadata in /proc/pid/maps
is fruitless. To bridge this gap, the emulator records a
trace of file open and mmap operations via another de-
bug channel. A script transforms the trace into a gdb
add-symbol-file script, solving the symbol prob-
lem.
Similarly, gdb’s usual mechanism for discovering

new threads fails when thread creation is handled by the
emulator. Thus, the debug monitor provides another ex-
tension by which the emulator signals thread creation,
and the debug monitor generates the appropriate trap
(int $0x3) to alert gdb.
We haven’t yet implemented gdb stubs for our secure

monitors, because once an app runs correctly in the de-
bug monitor, it rarely fails in the secure monitors. In the
rare failure cases, we have found it sufficient to study a
core file (a snapshot at the moment of failure). Each se-
cure monitor has a debug mode in which a picoprocess
exception triggers the generation of an ELF-format core
dump.
The debug monitor also provides an extension to query

CPU time (POSIX times()), and a sampling profiler,
for diagnosing performance problems. An example dis-
covery was that the emulator was returning bogus stat
values, causing a font library to deem its cache file in-
valid, causing it to re-scan thousands of individual font
files at app start.
Finally, gathering the appropriate file set for the read-

only app image is tedious. To expedite, the emulator can
start in “gullible mode”, where rather than fetch an im-
age, it passes every open request path out to a lookup
server located on the development machine where the
original POSIX app is installed. That server hashes the
corresponding file, injects the file contents into the cache,

and returns the path to the emulator. By this means, the
emulator demand-loads the app’s required files; it also
captures a trace of these loads which serve as a manifest
for generating the app image.

6 Discussion

6.1 Dynamic vs. Static Linking
We could have avoided the need for ld-linux.so

by statically linking the applications; certainly that fits
well with the app distribution model. However, that ap-
proach would require relinking every app to all of its li-
braries statically. Our experience with Xax [15] was that
modifying a package’s build system was often a night-
mare, generally much harder than modifying the source
code and using the package’s build system to remake it.
The expedient of using dynamic linking means that we

can use almost every library in binary form; we need not
even recompile the source.

6.2 Inter-Application Protocols
This paper focuses on the challenge of moving apps

from a rich, trusting shared environment to the isolated
picoprocess. However, interesting apps still communi-
cate with the outside world. Some inter-application com-
munication is already based on IP: the apps we used dis-
cover printers and send jobs with the Internet Printing
Protocol [14]; printing just worked correctly without any
special support.
However, how should apps replace communication

patterns once done locally? For example, if every web
site brings its own HTML renderer, how does the back
button work, and how does one app draw in the IFRAME

of its parent? In large strokes, we expect such com-
munications, once supplied by a complex trusted plat-
form (e.g. the browser), to be replaced by IP-based pro-
tocols. Just as in the Internet, IP-based protocols are
bilateral: both participants have the opportunity to de-
cide how much of the protocol they are willing to imple-
ment, and to select vulnerability-resistant implementa-
tions. The Embassies paper [18] addresses this question
in much greater detail.

7 Evaluation

The most salient proof of effectiveness for our tech-
niques is in the results: we are able to run many rich
apps without even recompiling them (Figure 3). Instead,
we binary-rewrite glibc to redirect the POSIX interface,
use libraries as unmodified binaries, and relink the top-
most executable to make it relocatable. That such non-
invasive techniques are successful with eight interactive
apps built on divergent library stacks is strong evidence
that the technique will generalize easily to most interac-
tive apps.

9

Figure 3: POSIX emulation handles diverse, rich applications, including the Midori Web renderer, Gimp, Marble, Inkscape,
and Gnumeric. Not shown are Abiword, Gnucash, and Hyperoid.

component SLOC
emulator 29156
zone host 1328
lwIP patches 477
X patches 660
twm patches 0

Table 6: Lines of code in the system components and patches.

Table 6 shows lines of code [31] in the components
and patches to existing programs. Most of the effort is in
the VFS implementation in the emulator.
We do not evaluate performance, since, in practice, we

do not observe any delays when interacting with the apps
we have ported, and the Embassies paper [18] provides
detailed performance results.

8 Related Work

8.1 Application Models
Java was offered as an alternative to the clunky mid-

1990s web programming interface [11]. Absent native
code, Java had to either rewrite every framework an app
could want, or import and abstract existing frameworks
as native libraries. Practically demanded applying the
latter technique; even the early UI toolkit AWT [34] ab-

stracted over the host UI at a high level. The result was
a Java client with a complex implementation that shared
the host’s vulnerabilities, and isolation that depended on
a hopelessly complex security interface [23].
While Java largely failed to replace the HTML web

app model, HTML continued to thrive. It evolved a no-
tion of isolation [17, 33] fundamental to web apps, but
pressure to enhance functionality has grown client com-
plexity without bound, and that complexity undermines
the promise of isolation [18].
The Slinky system proposed distributing POSIX apps

as static binaries, enabling app developers to precisely
specify their dependencies [4]. They extended the Linux
kernel to detect and exploit implicit page sharing while
preserving the semantics of static executables. Their ap-
proach treats shared libraries as a configuration problem.
It inspired our work; we extend the Slinky insight to
autonomy-preserving isolation against adversarial neigh-
boring apps. This requires not only avoiding late-bound
library sharing, but also demands eliminating the com-
plex shared graphics stack (X or an HTML DOM ren-
derer). Since simplicity is a priority, we eliminate even
the shared buffer cache, requiring an implementation to
sharing different than that used in Slinky [16].

10

8.2 Porting Applications
Several years ago, our Xax project [15] demonstrated

that rich stacks of libraries could be readily transplanted
from a conventional operating system environment to
provide useful functionality even from inside a pico-
process attached to a web browser. This paper reports
on a more thorough implementation that supports com-
plete, rich interactive applications. Xax gave a high-level
overview of the porting effort, enumerating five cate-
gories of techniques used to emulate the missing OS or
trigger alternative behavior in the transplanted library.
Despite the overview, colleagues often described the ef-
fort as a one-off “miracle”. This paper aims to demystify
the process.
The Drawbridge effort demonstrated that similar tech-

niques could be used for code based on the Windows
commodity OS stack [24]; that project required intro-
ducing additional techniques, such as hoisting the GDI
graphics rasterizing library from the OS kernel to be-
come a library inside the picoprocess. The Drawbridge
system assumes a non-minimal host that includes a file
system, buffer cache, and TCP stack.
The task at hand is reminiscent of the Exoker-

nel’s motto: “exterminate all operating system abstrac-
tions” [20]. Like Exokernel, Embassies minimizes
abstractions in the host platform; but where the pa-
per evicted abstractions to expose new performance
opportunities, Embassies aims to produce a simple,
rarely-changing host with minimal vulnerability surface.
Therefore, Exokernel techniques such as those for shar-
ing storage do not translate well to Embassies apps.
The Native Client team has ported dozens of libraries,

but have not moved up the stack to complete interactive
applications. The difference in target assumption–that
applications will run as web plug-ins, rather than replac-
ing web apps altogether–has led the NaCl team to a dif-
ferent ABI, security model, and execution model. These
choices led to the requirement to require a modified C
compiler, which in turn requires fussing with libraries’
build environment (§6.1), a task we found difficult to
scale. However, once those issues are resolved, the ap-
proach presented here should readily enable the adapta-
tions of POSIX apps to NaCl plug-ins.

9 Conclusion

This paper showed how to support rich POSIX appli-
cations on top of a minimal picoprocess interface. Such
support can be achieved by providing a POSIX emula-
tion layer and by binding existing programs, like lwIP,
X, and twm into the application itself. The POSIX em-
ulation layer is not nearly as complicated as a conven-
tional POSIX implementation (e.g., Linux); in fact, this
paper exhaustively lists every syscall emulated and every
program adaptation required. Such emulation is possible

in part because many POSIX functions exist to support
scalability and performance more relevant to server ap-
plications (e.g., databases and web servers) and hence are
unused by interactive apps. Thus, not only is it feasible to
adapt POSIX applications to a sparse environment, it is
reproducible. We anticipate these results will encourage
others to adapt the word of rich existing POSIX-based
applications to even the most minimal of client execu-
tion environments.

References

[1] ANDROID OS. http://www.android.com/.
[2] APPLE. iOS6, 2013. http://www.apple.

com/iphone/.
[3] BARTH, A., JACKSON, C., REIS, C.,

AND THE GOOGLE CHROME TEAM.
http://www.adambarth.com/papers/
2008/barth-jackson-reis.pdf, 2008.

[4] COLLBERG, C., HARTMAN, J. H., BABU, S.,
AND UDUPA, S. K. Slinky: static linking reloaded.
In USENIX ATC (2005).

[5] COX, R. S., GRIBBLE, S. D., LEVY, H. M., AND
HANSEN, J. G. A safety-oriented platform forWeb
applications. In IEEE Symp. on Security & Privacy
(2006).

[6] DOUCEUR, J. R., HOWELL, J., PARNO, B., WAL-
FISH, M., AND XIONG, X. The web interface
should be radically refactored. In HotNets (2011).

[7] DREPPER, U. Futexes are tricky. Tech. rep., Red
Hat, Nov. 2011.

[8] DUNKELS, A. lwIP - a lightweight TCP/IP
stack. http://savannah.nongnu.org/
projects/lwip/, 2013.

[9] ECMA. Standard ECMA-262: EC-
MAScript language specification. http:
//www.ecma-international.org/
publications/standards/Ecma-262.
htm, June 2011.

[10] FESKE, N., AND HELMUTH, C. A Nitpicker’s
guide to a minimal-complexity secure GUI. In Pro-
ceedings of the Annual Computer Security Applica-
tions Conference (ACSAC) (2005).

[11] FLANAGAN, D. Java in a Nutshell. O’Reilly, 1996.
[12] GOSLING, J., JOY, B., AND STEELE, G. Java™

Language Specification. Addison-Wesley, 1996.
[13] GRIER, C., TANG, S., AND KING, S. T. Secure

web browsing with the OP web browser. In Sympo-
sium on Security and Privacy (2008).

[14] HASTINGS, T., HERRIOT, R., DEBRY, R., ISAAC-
SON, S., AND POWELL, P. Internet Printing Pro-
tocol/1.1: Model and Semantics. RFC 2911 (Pro-
posed Standard), Sept. 2000. Updated by RFCs
3380, 3382, 3996, 3995.

11

[15] HOWELL, J., DOUCEUR, J. R., ELSON, J., AND
LORCH, J. R. Leveraging legacy code to deploy
desktop applications on the web. In OSDI (2008).

[16] HOWELL, J., ELSON, J., PARNO, B., AND

DOUCEUR, J. R. Missive: Fast appliance launch
from an untrusted buffer cache. In submission to
USENIX ATC (2013).

[17] HOWELL, J., JACKSON, C., WANG, H. J., AND
FAN, X. MashupOS: Operating system abstrac-
tions for client mashups. In HotOS (May 2007).

[18] HOWELL, J., PARNO, B., AND DOUCEUR, J. Em-
bassies: Radically refactoring the web. In NSDI (to
appear) (2013).

[19] JANG, D., VENKATARAMAN, A., SAWKA, G. M.,
AND SHACHAM, H. Analyzing the crossdomain
policies of Flash applications. In IEEE Web 2.0 Se-
curity and Privacy Workshop (W2SP) (2011).

[20] KAASHOEK, M. F., ENGLER, D. R., GANGER,
G. R., NO, H. M. B., HUNT, R., MAZIÈRES, D.,
PINCKNEY, T., GRIMM, R., JANNOTTI, J., AND
MACKENZIE, K. Application performance and
flexibility on Exokernel systems. In SOSP (1997).

[21] MICKENS, J., AND DHAWAN, M. Atlantis: Ro-
bust, extensible execution environments for Web
applications. In SOSP (2011).

[22] MICROSOFT. Silverlight. http://www.
microsoft.com/silverlight/.

[23] NEVILLE, P. S. Mastering java security policies
and permissions. http://www2.sys-con.
com/itsg/virtualcd/java/archives/
0501/neville/index.html, 2004.

[24] PORTER, D. E., BOYD-WICKIZER, S., HOWELL,
J., OLINSKY, R., AND HUNT, G. C. Rethink-
ing the library OS from the top down. In ASPLOS
(2011).

[25] REIS, C., AND GRIBBLE, S. D. IsolatingWeb Pro-
grams in Modern Browser Architectures. In ACM
EuroSys (2009).

[26] RINARD, M., CADAR, C., DUMITRAN, D., ROY,
D. M., LEU, T., , AND BEEBEE, JR., W. S.
Enhancing server availability and security through
failure-oblivious computing. In OSDI (2004).

[27] TANG, S., MAI, H., AND KING, S. T. Trust and
Protection in the Illinois Browser Operating Sys-
tem. In OSDI (2010).

[28] WANG, H. J., FAN, X., JACKSON, C., AND HOW-
ELL, J. Protection and communication abstractions
for web browsers in MashupOS. In SOSP (Oct.
2007).

[29] WANG, H. J., GRIER, C., MOSHCHUK, A.,
KING, S. T., CHOUDHURY, P., AND VENTER,
H. The multi-principal OS construction of the
Gazelle web browser. In USENIX Security Sym-
posium (2009).

[30] WANG, H. J., MOSHCHUK, A., AND BUSH, A.
Convergence of desktop and web applications on
a multi-service OS. In USENIX HotSec Workshop
(2009).

[31] WHEELER, D. A. SLOCCount. Software
distribution. http://www.dwheeler.com/
sloccount/.

[32] YEE, B., SEHR, D., DARDYK, G., CHEN,
J. B., MUTH, R., ORMANDY, T., OKASAKA, S.,
NARULA, N., AND FULLAGAR, N. Native client:
A sandbox for portable, untrusted x86 native code.
In IEEE Symposium on Security & Privacy (2009).

[33] ZALEWSKI, M. Browser security hand-
book: Same-origin policy. Online hand-
book. http://code.google.com/p/
browsersec/wiki/Part2.

[34] ZUKOWKSI, J. Java AWT Reference. O’Reilly,
1997.

12

