.
B Facul
Sumrt%/it

Microsoft Research

2013

=" Microsoft

-volving the architecture of a
DBMS tfor modern hardware

Daul Larson .n

Principal researcher
Microsoft Research

soft Res

Facu\ty Summit

Time travel back to circa 1980
Typical machine was VAX 11/780

1 MIPS CPU with 1KB of cache memory Query engine
8 MB memory (maximum)
80 MB disk drives, 1 MB/second transfer rate

$250K purchase price!

Buffer pool

Basic DBMS architecture established

Rows, pages, B-trees, buffer pools, lock manager,

Still using the same basic architecture!

But hardware has evolved dramatically

US$ per GB of PC class memory

Source: www.jcmit.com/memoryprice.htm
1000000 No of cores/socket over time

100000 _\‘\"ﬁ
10000 \

1000 \I\GJV

100 v .\A‘,\\‘
10

1

=
o

B Mainstream
B High end
ol IEIE

2004 2005 2006 2007 2008 2009
Year of introduction

Cores per socket
o N N (o)} (0]

1990 1995 2000 2005 2010

Shrinking memory prices More and more cores

How to evolve SQL Server’s architecture?

Apollo column store

Column store technology integrated into SQL Server
Targeted for data warehousing workloads
First installment in SQL 2012, enhancements in SQL 2014

Hekaton main-memory engine

Main-memory database engine integrated into SQL Server
Targeted for OLTP workloads
Will ship in SQL 2014

Hekaton architectural pillars

Main-Memory
Optimized

Designed for High T-SQL Compiled to Integrated into
Concurrency Machine Code SQL Server

Optimized for in-
memory data

Indexes (hash, range)
exist only in memory
No buffer pool
Stream-based storage
(log and checkpoints)

* Multi-version optimistic * T-SQL compiled to Integrated queries &
concurrency control with machine code via C transactions
full ACID support code generator and VC Integrated HA and
« Core engine using lock- * Invoking a procedure is backup/restore
free algorithms just a DLL entry-point Familiar manageability
» No lock manager, latches » Aggressive optimizations and development
or spinlocks @ compile-time experience

Steadily declining
memory price

L]

Many-core processors Stalling CPU clock rate Total Cost of Ownership

Non-blocking execution
Goal: highly concurrent execution, full CPU utilization

No thread switching, waiting, or spinning during execution of a transaction

Lead to three design choices

Use only latch-free data structure
Multi-version optimistic concurrency control
Allow certain speculative reads (with commit dependencies)

Result: great majority of transactions run up to final
log write without ever blocking or waiting

[In-memory data organization

Timestamps | Chain ptrs | Name City Row format Range index
on City
Hash inde /
on Name N
J [200, oo e—+—John Beijing — = @
S= ;2

\ | 100,200 | o John Paris
90,150 | ¢ Susan | Beijing |

/ 50, oo Jane | Prague |

70, 90 Susan | Brussels |

D

Rows are multi-versioned
Each row version has a valid time range indicated by two timestamps
A version is visible if transaction read time falls within version’s valid time e

Why MV optimistic concurrency control?

Readers don't block writers and vice versa
No lock manager, no deadlocks
ighly parallel

A single synchronization point: get transaction end timestamp

L ower isolation level => |ess work

Snapshot Isolation: no validation, minimal overhead

Performs well even under high contention
Handles long read-only transaction well

Scalability under extreme contention

(1000 row table, core Hekaton engine only)

- Work load
2 o-MV/0 80% read-only txns (10 reads/txn)
230 + 1)L /,'ﬁ 20% update txns (10 reads+ 2 writes/txn)
g : o . .
/ Serializable isolation level
2.0

5X

1.5 : Processor: 2 sockets, 12 cores
1.0 -
x-\."'*\._. Standard locking but optimized

0.5 for main memory

Throughput (tx/sec)

0.0

0 6 12 18 24 1V/L thruput limited by lock thrashing

Threads

Hekaton components and SQL integration

SQL Server

SQL Components Hekaton

. Metadata
Security :
Compiler

Query optim
Metadata

Query Interop RUNt;
.. untime
Query optimizer

Transactions
Query processor : — Storage
High availability engine

Storage
9 Storage log

Query and transaction interop

Reqular SQL queries can access Hekaton tables like
any other table

Slower than through a compiled stored procedure

A guery can mix Hekaton tables and SQL tables
A transaction can update both types of tables

Throughput under high contention

System throughput
40,000 o

Throughput improvements
g 30,000

5 2500 Converting table but using interop:

g 15000 3.3X higher throughput

8 o Converting table and stored procedure:

£ 15.7X higher throughput

B Number of cores 2 4 6 8 10 12

B SQL with contention 984 1,363 1,645 1,876 2,118 2,312

M SQL without contention 1,153 2,157 3,161 4,211 5,093 5,834

H |nterop 1,518 2,936 4,273 5,459 6,701 7,709

¥ Native 7,078 13,892 20,919 26,721 32,507 36,375
Workload: read/insert into a table with a unique index
Insert txn (50%): append a batch of 100 rows

Read txn (50%): read last inserted batch of rows .

Initial customer experiences

Bwin — large online betting company
Application: HTTPS session state

Current max throughput: 15,000 requests/sec
Throughput with Hekaton: 250,000 requests/sec

EdgeNet — provides up-to-date inventory information

Application: rapid ingestion of inventory data from retailers
Current max ingestion rate: 7,450 rows/sec

Hekaton ingestion rate: 126,665 rows/sec
Enables moving to continuous, online ingestion from once-a-day batch ingestion

=" Microsoft

© 2013 Microsoft Corporation. All rights reserved. Microsoft, Windows and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on
the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

