
The Impact of Tangled Code Changes
Kim Herzig

Microsoft Research†

Cambridge, UK
kimh@microsoft.com

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-saarland.de

Abstract—When interacting with version control systems, de-
velopers often commit unrelated or loosely related code changes
in a single transaction. When analyzing the version history, such
tangled changes will make all changes to all modules appear
related, possibly compromising the resulting analyses through
noise and bias. In an investigation of five open-source JAVA
projects, we found up to 15% of all bug fixes to consist of multiple
tangled changes. Using a multi-predictor approach to untangle
changes, we show that on average at least 16.6% of all source
files are incorrectly associated with bug reports. We recommend
better change organization to limit the impact of tangled changes.

Index Terms—mining software repositories;tangled code
changes; data quality; noise; bias

I. INTRODUCTION

Many software quality related recommendation and pre-
diction systems are based on mining software archives—
analyzing which changes were applied to a repository, by
whom, when, why, and where. Such mined information can
be used to predict related changes [1], to predict future
defects [2], [3], to analyze who should be assigned a particular
task [4], [5], or to gain insights about specific projects [6].

Most of these studies depend on the accuracy of the mined
information—accuracy which is threatened by noise. Such
noise can come from missing associations between change
and bug databases [7], [8], [9]. One significant source of noise,
however, is tangled changes.

What is a tangled change? Assume a developer is assigned
multiple tasks A, B, and C, all with a separate purpose: A
is a bug fix, B is a feature request, and C is a refactoring
or code cleanup. Once all tasks are completed, the developer
commits her changes to the source code management system
(SCM), such that her changes be visible to other developers
and integrated into the product. However, when committing
changes, developers frequently group separate changes into a
single commit, resulting in a tangled change.

Tangled change sets do not cause trouble in development.
However, they threaten any analysis of the corresponding
history, thereby compromising the accuracy of the analysis.
As the change set contains a bug fix (task A) and may even
state so in the commit message, the tangled commit may be
classified as a bug fix [2]. Consequently, files touched by the
tangled change set will be marked as being fixed, even though
the tangled tasks B and C have nothing to do with the actual

†At the time of this study, Kim Herzig was PhD candidate at Saarland
University. He is now employed at Microsoft Research Cambridge.

bug fix. Likewise, all files will be marked as being changed
together, which may impact recommender systems based on
frequent change patterns (e.g. [10], [11]). Commit messages
such “fixed typo” point to additional minor changes all over
the code even if no specific task is referenced and that will
now be related with each other as well as the tasks. From a
developer’s perspective fixing a typo may be part of the fix
but the refactored code should not be considered as fixed.

How frequent are tangled changes, and how big is their
impact? In this paper, we present an empirical study on five
open-source projects to answer these questions. We manually
classified more than 7,000 change sets as being tangled or
atomic. The result of this manual classification show that
tangled change sets occur frequently, with up to 15% of
all bug fixing change sets applied to the subject projects
being tangled. Using an automated, multi-predictor untangling
algorithm and comparing classic bug count datasets with bug
count datasets derived after untangling tangled code changes,
we show that on average, at least 16.5% of all source files
are incorrectly associated with bug reports when ignoring the
existence of tangled change sets. In terms of impact, this
means that between 6% and 50% (harmonic mean: 17.4%)
of files originally marked as most defect prone do not belong
to this category. To facilitate the analysis of version histories,
we recommend that version control systems and processes be
set up to avoid tangling changes whenever possible.

II. BACKGROUND

A number of researchers have classified code changes,
studied the relations between code changes and noise and bias
in version archive datasets.

A. Classifying code changes

The work presented in this paper is closely related to many
research approaches that analyze and classify code changes
or development activities. In this section, we want to discuss
only the closely related studies.

Untangling changes can be seen as a code change classifica-
tion problem. The untangling algorithm classifies code changes
as related or unrelated. Prior work on code classification
mainly focused on classifying code changes based on their
quality [12] or on their purpose [13], [14]. Kim et al. [12]
developed a change classification technique classify changes
as “buggy” or “clean” with a precision of 75% and a recall of
65% (on average). Despite their good classification results,

their approach cannot be used to untangle code changes.
Comparison of current and past code changes does not help
to determine a possible semantic difference and it would
require a bias free software history. Hindle et al. [13], [14]
analyzed large change sets that touch a large number of
files to automatically classify the maintenance category of the
individual changes. Their results indicate that large change
sets frequently contain architectural modifications and are thus
important for the software’s structure. In most cases, large
commits were more likely to be perfective than corrective.

Störzer et al. [15] used a change classification technique to
automatically detect code changes contributing to test failures.
Later, this work was extended by Wloka et al. [16] to identify
committable code changes that can be applied to the version
archive without causing existing tests to fail. Both approaches
aim to detect change dependencies within one revision but
require test cases mapped to change operations in order to
classify or separate code changes. This will rule out the
majority of change operations not covered by any test case
or for which no test case is assigned.

Williams and Carver [17] present in their systematic review
many different approaches on how to distinguish and charac-
terize software changes. However, none of these approaches is
capable of automatically identifying and separating combined
source code changes based on their different characterization
or based on semantic difference.

B. Refactorings
The combination of refactorings and semantic relevant code

changes can be seen as a special case of the untangling
problem. Murphy-Hill et al. [18], [19] analyzed development
activities to prove, or disprove, several common assumptions
about how programmers refactor. Their results show that de-
velopers frequently do not explicitly state refactoring activities,
which increases the bias potential discussed in this paper, even
further. Later, Kawrykow and Robillard [20] investigated over
24,000 open-source change sets and found “that up to 15.5%
of a system’s method updates were due solely to non-essential
differences [...]”.

C. Change Dependencies
The problem that version archives do not capture enough

information about code changes to fully describe them is not
new. Robbes et al. [21] showed that the evolutionary informa-
tion in version archives may be incomplete and of low quality.
Storing historical data to explicit developer request fails to
store important historic data fragments, while the nature of
version archives leads to a view of software as being simply
a set of files. As a solution, Robbes et al. [21] proposed a
novel approach that automatically records all semantic changes
performed on a system. An untangling algorithm would clearly
benefit from such extra information that could be used to add
context information for individual change operations.

D. Untangling Changes
To the best of our knowledge there exists only one

other study that evaluated an untangling algorithm similar to

the algorithm presented in this paper. In his master thesis,
Kawrykow [22] presented and evaluated an multi-heuristic
untangling algorithm developed in parallel to the approach
presented in this paper. Kawrykow based his untangling al-
gorithm on statement level to retrieve real patches in the end.
In contrast, the approach presented in this paper was developed
in order to show the impact of tangled changes. The untangling
precision of Kawrykow’s change operation lies slightly below
the precision values reported in this paper.

E. Noise and Bias in Version Archive Datasets

In recent years, the discussion about noise and bias in
mining datasets and their effect on mining models increased.
Lately, Kawrykow and Robillard [20] showed that bias caused
by non-essential changes severely impacts mining models
based on such data sets. Considering the combination of
non-essential changes and essential changes as an untangling
problem, their results are a strong indication that unrelated
code changes applied together will have similar effects.

Dallmeier [23] analyzed bug fix change sets of two open
source projects minimizing bug fixes to a set of code changes
that is sufficient to make regression tests pass. He found out
that on average only 50% of the changed statements were
responsible to fix the bug.

The effects of bias caused by unbalanced data sets on defect
prediction models were investigated by various studies [7], [8],
[9]. Bird et al. conclude that “bias is a critical problem that
threatens both the effectiveness of processes that rely on biased
datasets to build prediction models and the generalizability of
hypotheses tested on biased data” [7]. Kim et al. [24] showed
in an empirical study that the defect prediction performance
decreases significantly when the data set contains 20%-35%
of both false positives and false negatives noises. The authors
also present an approach that allows automatic detection and
elimination of noise instances.

III. RESEARCH QUESTIONS

Overall, the research question tackled by this paper is to
determine whether tangled changes impact bug count models
and thus should be considered harmful or whether they do
not impact bug counting models and thus can be ignored. To
achieve our goal, we have to complete three basic steps, each
dedicated to research questions of lower granularity.

A. RQ1: How popular are tangled changes?

First, we check whether tangled changes appear to be a
theoretical problem or a practical one and if tangled changes
do exist. Is the fraction of tangled changes large enough
to threaten bug count models? If only one percent of all
applied code changes appear to be tangled, it is unlikely
that these tangled changes can impact aggregating bug count
models. Further, we investigate how many individual tasks
(blob size) make up common tangled changes. The more tasks
get committed together, the higher the potential number of
modified files and thus the higher the potential impact on
bug count models ignoring tangled changes. Also, the higher

the blob size the more difficult it might be to untangle these
changes.

B. RQ2: Can we untangle tangled changes?

Knowing that there exist tangled changes and that they
might impact quality related models is raising awareness but
is no solution. There are two main strategies to deal with the
issue of tangled change sets.
Removing tangled changes and ignoring these data points in

any further analysis. But this solution makes two major
assumption. First, one must be able to detect tangled
change sets automatically; second, the fraction of tangled
change sets must be small enough such that deleting these
data points does not cause the overall data set to be
compromised.

Untangling tangled changes into separate change partitions
that can be individually analyzed. This strategy not only
assumes that we can automatically detect but also untan-
gle tangled changes sets. But it makes no assumptions
about the fraction of tangled changes and thus should be
the preferred option.

C. RQ3: How do tangled changes impact bug count models?

The last research question targets the actual impact of tan-
gled code changes on bug count models. Although, we would
like to answer this research question before RQ2—if tangled
changes have no impact we do not need to untangle them—
we can only measure the impact of tangled changes once
we are able to compare corresponding models against each
other. Thus, we require two datasets; one dataset containing
bug counts for code artifacts collected without considering the
issue of tangled changes and one dataset with tangled changes
being removed. For removing tangled changes requires us to
untangle them.

IV. EXPERIMENTAL SETUP

To answer our three research questions, we conduct three
experiments described in this section.

A. Measuring Bias caused by Tangled Changes (RQ1)

We conducted an exploratory study on five open-source
projects to measure how many tangled change sets exist in
real world development SCMs. Overall, we manually clas-
sified more than 7,000 individual change sets and checked
whether they address multiple (tangled) issue reports. More
precisely, we classified only those change sets for which the
corresponding commit message references at least one issue
report (e.g. bug report, feature request, etc.) that had been
marked as resolved. If the commit message clearly indicated
that the applied changes tackle more than one issue report we
classified the change set as tangled. This can either be commit
messages that contain more than one issue report reference
(e.g. “Fix JRUBY-1080 and JRUBY-1247 on trunk.”) or a com-
mit message indicating extra work committed along the issue
fix (e.g.“Fixes issue #591[. . .]. Also contains some formatting
and cleanup.”)—mostly cleanups and refactorings. Separate

references to multiple issue reports marked as duplicate to
each were considered as single reference.

To measure the amount of tangled changes, we conducted
a two phase manual inspection of issue fixing change sets.
The limitation to issue fixing change sets was necessary in
order to understand the reason and to learn the purpose of the
applied code changes. Without having a document describing
the applied changes, it is very hard to judge whether a code
change is tangled or not, at least for a project outsider.

1) We pre-selected change sets that could be linked to
exactly one fixed and resolved bug report (similar to
Zimmermann et al. [2].

2) Each change set from Step 1 was manually inspected
and classified as atomic or non-atomic. During manual
inspection, we considered the commit message and the
actual applied code changes. In many cases, the commit
message already indicated a tangled change set and
therefore the change set was marked non-atomic. Only if
we had no doubt that the change set targeted more than
one issue or that additional changes (e.g. clean-ups) were
applied, we classified the change set as tangled. Similar,
only if we had no doubt that the change set is atomic,
we classified it as atomic. Any change set that we could
not strictly mark as atomic or tangled were not classified
and remained undecided.

B. Untangling Changes (RQ2)

To answer RQ2, we developed a prototype of a heuristic-
based untangling algorithm. In general, determining whether
two code changes are unrelated is undecidable, as the halting
problem prevents prediction whether a given change has an
effect on a given problem. Consequently, every untangling
algorithm will have to rely on heuristics to present an approx-
imation of how to separate two or more code changes. The
aim of the presented algorithm is not to solve the untangling
problem completely, but aims to verify whether untangling
code changes is feasible and to evaluate the accuracy of
such an algorithm. With a reasonable good accuracy we may
use the untangling algorithm to reduce the amount of bias
significantly. The untangling algorithm itself is described in
Section V.

In Section VI-A we show that a significant proportion
of change sets must be considered as tangled. To evaluate
any untangling algorithm we cannot rely on existing data to
evaluate our untangling algorithm, simply because we cannot
determine whether a produced change set partition is correct
and if not, how much it differs from an expected result.

To determine a reliable set of atomic and unbiased change
sets—change sets containing only those code changes required
to resolve exactly one issue—we use the manual classified
atomic change sets (Section IV-A) to generate artificial tan-
gled change sets for which we already know the correct
partitioning. As an alternative, we could manually untangle
real tangled change sets to gain knowledge about the correct
partitioning of real world tangled change sets. But manually
untangling tangled change sets requires detailed project and

source code knowledge and a detailed understanding of the
intention behind all change operations applied within a change
set. As project outsiders we know too little project details to
perform such a manual untangling and all wrongly partitioned
tangled change sets added to the set of ground truth would
bias our evaluation set.

In principal, combining atomic change sets into artificially
tangled change sets is straightforward. Nevertheless, we have
to be careful which atomic change sets to tangle. Combining
them randomly is easy but would not simulate real tangled
change sets. In general, developers act on purpose. Thus, we
assume that in most cases, developers do not combine arbitrary
changes, but code changes that are close to each other (e.g.
fixing two bugs in the same file or improving a loop while
fixing a bug). To simulate such relations to some extend,
we combined change sets using the following three tangling
strategies:

Change close packages (pack) Using this strategy we com-
bine only change sets that contain at least two change
operations touching source files that are located in source
directories not more than two directory changes apart not
more than two sub-packages apart.
As an example, assume we have a set of three change
sets changing three classes identified using the full
qualified name: CS1 = {com.prod1.pack1.intern.F1},
CS2 = {com.prod1.pack2.extern.F2}, and CS3 =
{com.prod2.pack1.intern.F3}. Each class is identified
by its fully qualified name. Using this strategy we com-
bine CS1 with CS2 but not CS1 nor CS2 with CS3.1

Frequently changed before (coupl.) This strategy computes
and uses change coupling rules [10]. Two code changes
get only tangled if in history at least two code artifacts
changed by different change sets showed to be frequently
changed together.
For example, let CSi and CSj be a pair of atomic
change sets and let CSi be applied before CSj . CSi

changed file Fs while CSj changed file Ft. First, we
compute all change coupling rules using the approach of
Zimmermann et al. [10] and call this set S. The computed
change coupling rules indicate how frequently Fs and
Ft got changed together before CSi got applied. We
combine CSi and CSj only if S contains a file coupling
rule showing that Fs and Ft had been changed in at least
three change sets applied before CSi. Further we require
that in at least 70% of change sets applied before CSi

that changes either Fs or Ft the corresponding other file
got changed as well.

Consecutive changes (consec.) We combine consecutive
change sets applied by the same author (not neccessarily
consecutive in the SCM). Consecutive change sets are
change set that would have ended up in a tangled change
set if the developer forgot to commit the previous change

1This slightly penalizes CONFVOTERS that use package distances as a
heuristic. However, we favored a more realistic distribution of changes over
total fairness across all CONFVOTERS.

Ground Truth Sets Created PartitionsArtificially Tangled Sets Untangling Algorithm

Comparison

Fig. 1. Artificially tangled change sets are generated using manually classified
atomic change sets to compare created partitions and desired output. In the
example, two change operations are put into a wrong partition, and hence the
success rate is 7

9
= 77.7%.

set before starting a new developer maintenance task.
For technical reasons, we limited all strategies to combine

only atomic change sets that lie no more than 14 days apart.
The untangling algorithm (described in Section V) must be
provided with a code base that must be compilable. Longer
time periods between atomic change sets imply higher proba-
bility that merging change sets will lead to uncompilable code.

such a situation will never occur.
To evaluate the accuracy of our untangling algorithm, we

generate all possible artificially tangled change sets using all
three tangling strategies described above (this may include
duplicate tangled change sets). Since we know the origin
of each change operation, we can compare the expected
partitioning with the partitioning produced by the untangling
algorithm (see Figure 1). We measure the difference between
original and produced partitioning as the number of change
operations that were put into a “wrong” partition. For a set of
tangled change sets B, we define precision as

precision =
correctly assigned change operations

total # change operations ∈ B

As an example for precision, consider Figure 1. In the
tangled change set, we have 9 change operations overall. Out
of these, two are misclassified (the black one in the middle
partition, and the gray one in the lower partition); the other
seven change operations are assigned to the correct partition.
Consequently, the precision is 7/9 = 77.7%, implying that
2/9 = 22.2% of all changes need to be recategorized in order
to obtain the ground truth partitioning.

For each set of tangled change set there exist multiple
precision values. The precision depends on which change set
partition is compared against which original atomic change set.
Precision values reported in this chapter correspond to the par-
tition association with the highest sum of Jaccard indices [25].
The higher the Jaccard index the higher the similarity of the
sets. Thus, by maximizing the sum of Jaccard indices over a
set of association permutations relating partitions with atomic
change sets we chose the association permutation with the
highest similarity of associated pairs. Short, we report the best
precision value over all existing association permutations.

bugs per
file

1

Create file containing
bug counts per file.
(original and untangled)

sort by
original

bug count

sort by
untangled
bug count

2

Copy bug count file
and sort differently.

untangledoriginal

3

Cut off top X% files with the
most bugs.

4

Cutoff_difference: the
percentage of files
not in the intersection

Fig. 2. The cutoff difference for the top x% illustrating the impact of tangled
change sets on quality data models.

The number of individual tasks compiled into a tangled
change set, called blob size, may vary. To check the untangling
performance we generate artificial change sets of blob sizes
two, three, and four (tangled change sets with a bob size larger
than four are rare, see Section VI-A).

C. Measuring the Impact of Tangled Changes (RQ3)

To show the impact of tangled change sets on bug count
models, we compare two different bug count datasets: the
classic sets against untangled sets. For the classic reference
dataset, we associate all referenced bug reports to all source
files changed by a change set, disregarding whether we marked
it tangled or not. For the untangled bug count set, we used our
untangling algorithm to untangle manually classified tangled
change sets. If the tangled change set references bug reports
only, we assigned one bug report to each partition—since we
only count the number of bugs, it is not important which report
gets assigned to which partition. For change sets referencing
not only bug reports we used an automatic change purpose
classification model based on the findings of Mockus and
Votta [26] and Hindle et al. [13], [14] indicating that bug fixing
change sets apply less change operations when compared to
feature implementing change sets. Thus, we classify those
partitions applying the fewest change operations as bug fixes.
Only those files that were changed in the bug fixing partitions
were assigned with one of the bug reports. Both bug count
sets get sorted in descending order using the distinct number
of bug reports associated with the file (see Figure 2).

The most defect-prone file is the top element in each
bug count set. Both sets contain the same elements but in
potentially different order. Comparing the top X% of both file
sets allows us to reason about the impact of tangled change sets
on models using bug counts to identify the most defect-prone
entities. Since both cutoffs are equally large (the number of
source files does not change, only their ranks), we can define
the cutoff difference as:

cutoff difference =
size of cutoff− size of intersection

size of cutoff
The result is a number between zero and one where zero

TABLE I
DETAILS OF PROJECTS USED DURING EXPERIMENTS.

ARGOUML GWT† JAXEN JRUBY XSTREAM

Lines of code 164,851 266,115 20,997 101,799 22,021
History months 150 54 114 105 90
Developers 50 120 20 67 12
Change Sets 16,481 5,326 1,353 11,134 1,756
†GOOGLE WEBTOOL KIT

// fixes a wrong method
// call in line 6 in class C

public class C {
public C() {

B b = new B();
b.bar(5);
A.foo(5f);

}
}

3
4

5
6

7
8

Fig. 3. Example change set printed as unified diff containing two change
operations: one DC deleting the method call b.bar(5) and one AC adding the
method call A.foo(5f).

indicates that both cutoffs are identical and where a value of
one implies two cutoffs with an empty intersection. A low
cutoff difference is desirable.

D. Study Subjects

All experiments are conducted on five open-source JAVA
projects (see Table I). We aimed to select projects that were
under active development and were developed by teams for
which at least 48 months of active history were available.
We also aimed to have datasets that contained a manable
number of applied bug fixes for the manual inspection phase.
For all projects, we analyzed more than 50 months of active
development history. Each project counts more than 10 active
developers. The number of committed change sets ranges from
1,300 (JAXEN) to 16,000 (ARGOUML), and the number of
bug fixing change sets ranges from 105 (JAXEN) to nearly
3,000 (ARGOUML and JRUBY).

V. THE UNTANGLING ALGORITHM

The untangling algorithm proposed in this paper expects
an arbitrary change set as input and returns a set of change
set partitions. Each partition contains code changes that
are related closer to changes in the same partition than to
changes contained in other partitions. Ideally, all necessary
code changes to resolve one issue (e.g. a bug fix) will be in one
partition. The union of all partitions equals the original change
set. Instead of mapping issues or developer tasks to all changed
code artifacts of a change set, one would assign individual
issues and developer tasks to those code artifacts that were
changed by code changes contained in the corresponding
change set partition.

To identify related code changes we use the same model
as Herzig et al. [27] split each change set into a set of
individual change operations that added or deleted method
calls or method definitions. Thus, each change set corresponds
to a set of change operations classified as adding or deleting a

Untangling Algorithm

Distance MeasuresData DependenciesChange CouplingsCall-Graph

Tangled Change Set Change Set Partition

A

B

Confidence Voters

0
1

2
3

4
5

6
7

8
9
10

Fig. 4. The untangling algorithm partitions change sets using multiple,
configurable aspect extracted from source code. Gray boxes represent sets
of change operations necessary to resolve one issue.

method definition (AD, DD) or a method call (AC, DC). Using
an example change set that applied the code change shown in
Figure 3 we derive a set containing two change operations.
One DC deleting b.bar(5) and one AC adding A.foo(5f). Note
that there exists no change operation changing the constructor
definition public C() since the method signature keeps un-
changed. All change operations are bound to those files and
line numbers the definition or call was added to or deleted
from. In our example the DC and AC change operations are
bound to line 6. Rename and move change operations are
treated as deletions and additions. Using this terminology, our
untangling algorithm expects a set of change operations and
produces a set of sets of change operations (see Figure 4).

For each pair of applied change operations, the algorithm
has to decide whether both change operations belong to the
same partition (are related) or should be assigned to separate
partitions (are not related). To determine whether two change
operations are related or not, we have to determine the relation
distance between two code changes such that the distance
between two related change operations is significant lower
than the distance between two unrelated change operations.
The relation between change operations may be influence by
multiple facts. Considering data dependencies between two
code changes, it seems reasonable that two change operations
changing statements reading/writing the same local variable
are very likely to belong together. But vice versa, two code
changes not reading/writing the same local variable may very
well belong together—because both change operations affect
consecutive lines. As a consequence, our untangling algorithm
should be based on a feature vector spanning multiple aspects
describing the distances between individual change operations
and should combine these distance measures to separate re-
lated from unrelated change operations.

A. Confidence Voters

To combine various dependency and relation aspects be-
tween change operations, the untangling framework itself does

not decide which change operation are likely to be related
but asks a set of so called confidence voters (CONFVOTERS)
(see Figure 4). Each CONFVOTER expects a pair of change
operations and returns a confidence value between zero and
one. A confidence value of one represents a change operation
dependency aspect that strongly suggests to put both change
operations into the same partition. Conversely, a return value
of zero indicates that the change operations are unrelated
according to this voter.

CONFVOTERS can handle multiple relation dependency
aspects within the untangling framework. Each CONFVOTER
represents exactly one dependency aspect. Below we describe
the set of CONFVOTERS used throughout our experiments.
FileDistance Above we discussed that change operations are

bound to single lines. This CONFVOTER returns the
number of lines between the two change operation lines
divided by the line length of the source code file both
change operations are applied to. If both change opera-
tions were applied to different files this CONFVOTER will
not be considered.

PackageDistance If both change operations were applied to
different code files, this CONFVOTER will return the
number of different package name segments comparing
the package names of the changed files. This CON-
FVOTER will not be considered otherwise.

CallGraph Using a static call graph derived after applying the
complete change set we identify the modified method def-
initions and calls and measure the call distance between
two call graph nodes. The call graph distance between
two method change operations is defined as the sum of
all edge weights of the shortest path between both nodes.
An edge weight between method m1 and method m2 is
defined as one divided by the number of method calls
between m1 and m2.

ChangeCouplings The confidence value returned by this
CONFVOTER is based on the concept of change cou-
plings as described by Zimmermann et al. [10]. The
CONFVOTER computes frequently occurring sets of code
artifacts that got changed within the same change set. The
more frequent two files changed together, the more likely
it is that both files are required to be changed together.
The confidence value returned by this CONFVOTER in-
dicates the probability that the change pattern will occur
whenever one of the patterns components change.

DataDependency Returns a value of one if both changes read
or write the same variable(s); returns zero otherwise. This
relates to any JAVA variable (local, class, or static) and is
derived using a static, intra-procedural analysis.

We will discuss in Section V-B how to combine the confi-
dence values of different CONFVOTERS.

B. Using Multilevel Graph Partitioning

Our untangling algorithm has to iterate over pairs of change
operations and needs to determine the likelihood that these
two change operations are related and thus should belong to
the same change set partition. Although we do not partition

0
1
2
3
4
5
6
7
8
9
10

for each pair of
change operations

each confidence voter returns a
confidence value between [0,1]

aggregate confidence
values to single score

aggregated value
fills one cell

Distance Matrix

Fig. 5. The procedure to build the initial triangle matrix used within the modified multilevel graph partitioning algorithm.

graphs, we reuse the basic concepts of a general multilevel
graph-partitioning algorithm proposed by Karypis and Ku-
mar [28], [29], [30]. We use a triangle partition matrix to
represent existing untangling partitions and the confidence
values indicating how confident we are that two corresponding
partitions belong together. We will start with the finest granular
partitioning and merge those partitions with the highest merge
confidence value. After each partition merge we delete two
partitions and add one new partition representing the partition
union of the two deleted partition. Thus, in each partition
merge iteration, we reduce the dimension of our triangle
partition matrix by one. We also ensure that we always
combine those partitions that are most likely related to each
other. The algorithm performs the following steps:

1) Build a m × m triangle partition matrix M containing
one row and one column for each change set partition.
Start with the finest granular partitioning of the original
change set—one partition for each change operation.

2) For each matrix cell [Pi, Pj] with i < j ≤ m of M, we
compute a confidence value indicating the likelihood that
the partitions Pi and Pj are related and should be unified
(see Section V-A for details on how to compute these
confidence values). The confidence value for matrix cell
[Pi, Pj] equals the confidence value for the partition pair
(Pj , Pi). Figure 5 shows this step in detail.

3) Determine the pair (Ps, Pt) of partitions with the highest
confidence value and with s 6= t. We then delete the two
rows and two columns corresponding to Ps and Pt and
add one column and one row for the new partition Pm+1,
which contains the union of Ps and Pt. Thus, we combine
those partitions most likely being related.

4) Compute confidence values between Pm+1 and all re-
maining partitions within M. For the presented results,
we took the maximum of all confidence values between
change operations stemming from different partitions:

Conf (Px, Py) = Max{Conf (ci, cj) | ci ∈ P1 ∧ cj ∈ P2}.

The intention to use the maximum is that two partitions
can be related but having very few properties in common.

Without determining a stopping criterion, this algorithm
would run until only one partition is left. Our algorithm can
handle two different stopping strategies: if a fixed number
of partitions is reached (e.g. knowing the partitions from
parsing the commit message) or if no cell within M exceeds
a specified threshold. In this paper, the algorithm is used to

TABLE II
PROPORTION OF TANGLED AND ATOMIC FIX CHANGE SETS. FOR THOSE

CHANGE SETS NOT BEING CLASSIFIED AS TANGLED NOR AS ATOMIC, WE
COULD NOT DECIDE WHETHER THE CHANGE SET IS TANGLED OR ATOMIC.

ARGOUML GWT† JAXEN JRUBY XSTREAM

Number of issue fixes
Total 2,944 809 160 2,977 312
Tangled 170 (5.8%) 68 (8.4%) 13 (8.1%) 276 (9.3%) 37 (11.9%)
Atomic 125 (4.3%) 22 (2.7%) 32 (20.0%) 200 (6.7%) 40 (12.8%)

Number of bug fixes
Total 343 316 31 2,209 148
Tangled 68 (19.8%) 47 (14.9%) 5 (16.1%) 156 (7.1%) 22 (14.9%)
Atomic 116 (33.8%) 27 (8.5%) 26 (83.9%) 64 (1.9%) 18 (12.2%)
†GOOGLE WEBTOOL KIT

untangle manually classified tangled change sets, only. For
each of these change sets we know the number of desired
partitions. Thus, all experiments were carried out by stopping
the untangling algorithm if the desired number of partitions
have been created.

So far, the untangling algorithm represents a partitioning
framework used to merge change operations. This part is gen-
eral and makes no assumptions about code or any other aspect
that estimates the relation between individual operations. It is
important to notice that the partitions do not overlap and that
change operations must belong to exactly one partition.

VI. RESULTS

In this section we present the results of our three experi-
mental setups as presented in Section IV.

A. Tangled Changes (RQ1)

The results of the manual classification process is shown
in Table II. In total, we manually classified more than 7,000
change sets. Row one of the table contains the total number
of change sets that could be associated with any issue report
(not only bug reports). Rows two and three are dedicated to
the total number of change sets that could be associated to
any issue report and had been manually classified as tangled
or atomic, respectively. The numbers show that for the vast
majority of change sets we were unable to decide whether the
applied change set should be considered atomic or tangled.
Thus the presented bias results in this paper must be seen
as lower bound. If only one of the undecided change sets is
actually tangled, the bias figures would only be increased. The

ArgoUML GWT Jaxen

JRuby Xstream Combined

 0

 50

100

150

200

250

 0

 50

100

150

200

250

2 3 4 5 6 7 10 13 2 3 4 5 6 7 10 13 2 3 4 5 6 7 10 13
blob size

oc
cu
rr
en
ce

Fig. 6. Real world blob sized frequencies per project and combined.

last three rows in the table contain the same information as
the upper three rows but dedicated to bug fixing change sets.

The number presented in Table II provide evidence that
the problem of tangled change sets is not a theoretical one.
Between 6% and 12% (harmonic mean: 8.2%) of all change
sets containing references to issue reports are tangled and
therefore introduce noise and bias into any analysis of the
respective change history. The fraction of tangled, bug fixing
change sets is even higher: between 7% and 20% of all bug
fixing change sets are tangled (harmonic mean: 11.9%).

* Up to 16% of all change sets that can be associated
with bug reports address multiple concerns.

Figure 6 shows the blob size of classified tangled change
sets. Tangled change sets of blob size two are the most frequent
ones. Change sets of blob size four or above are rare. Overall
sets, change sets of blob size two make up 73% while 91%
of all tangled change sets have a blob size lower than four.

* 73% of all tangled changes have a blob size of two.

B. Untangling Changes (RQ2)

For RQ2 we evaluate the proposed untangling algorithm
and measure its untangling precision using artificially tangled
change sets. Table III contains the number of generated
artificially tangled change sets grouped by blob size and com-
bination strategy (see Section IV-B). We could only generate a
very small set of artificially tangled change sets for the JAXEN
project. So we excluded JAXEN from this experiment.

The last three rows of the table contain the sum of artificially
tangled change sets generated using different strategies but
across different blob sizes. The number of artificially tangled
change sets following the change coupling strategy (coupl.)

TABLE III
NUMBER OF ARITIFICIALLY GENERATED TANGLED CHANGE SETS SORTED

BY BLOB SIZE AND GENERATION STRATEGY.

Blob size Strategy ARGOUML GWT† JRUBY XSTREAM

pack. 40 110 1,430 32
coupl. 0 20 590 02
consec. 180 30 3,364 30

pack. 13 40 17.3k 133
coupl. 0 0 19.2k 03
consec. 673 70 11.4k 53

pack. 0 40 1.2M 83
coupl. 0 0 81.9k 04
consec. 743 70 695.3k 25

pack. 53 190 1.2M 248
coupl. 0 20 101.1k 0

∑
consec. 1,596 170 710.0k 108

TABLE IV
PRECISION RATES OF THE UNTANGLING ALGORITHM SORTED BY BLOB

SIZE AND GENERATION STRATEGY.

Blob size Strategy ARGOUML GWT† JRUBY XSTREAM x

pack. 0.79 0.67 0.91 0.81 0.80
coupl. — 0.75 0.93 — 0.84
consec. 0.74 0.70 0.91 0.79 0.792

y 0.77 0.71 0.92 0.80 0.80

pack. 0.70 0.63 0.69 0.65 0.67
coupl. — — 0.68 — 0.68
consec. 0.62 0.57 0.70 0.66 0.643

y 0.66 0.60 0.69 0.66 0.66

pack. — 0.58 0.62 0.50 0.57
coupl. — — 0.63 — 0.63
consec. 0.55 0.54 0.64 0.59 0.584

y 0.55 0.56 0.63 0.55 0.58
†GWT = GOOGLE WEBTOOL KIT

is low except for JRuby. The ability to generate artificially
tangled change sets from project history depends on the
number of atomic change sets, on the number of files touched
by these atomic change sets, on the change frequency within
the project, and on the number of existing change couplings.

The precision of our untangling algorithm to untangle these
artificially tangled change sets is shown in Table IV. The
presented precision values are grouped by project, blob size,
and tangling strategy. Rows stating y as strategy contain the
average precision over all strategies for the corresponding
blob size. The column x shows the average precision across
different projects for the corresponding blob generation strat-
egy. The cells (x, y) contain the average precision across all
projects and blob generation strategies for the corresponding
blob size. Table cells containing no precision values cor-
respond to the combinations of blob sizes and generation
strategies for which we were unable to produce any artificially
tangled change sets.

The algorithm performs well on all projects. Projects with
higher number of generated artificially tangled change sets also
show higher untangling precision. Overall, the precision values
across projects show similar ranges and most importantly

 0

10

20

30

40

50

top 5% top 10% top 15% top 20%
cutoff

cu
to

ff
di

ffe
re

nc
e

(a
s

%
)

Fig. 7. The cutoff differences caused by real world tangled change sets.

similar trends in relation to the chosen blob size. For all
projects, the precision is negatively correlated with the used
blob size. The more change operations to be included and
the more partitions to be generated, the higher the likelihood
of misclassifications. Figure 6 shows that tangled change
sets with a blob size of two are most common (73%). The
results in Table IV show that for the most popular cases
our untangling algorithm achieves precision values between
0.67 and 0.93—–the harmonic mean lies at 79%. When the
blob size is increased from two to three the precision drops
by approximately 14%, across all projects and from 80%
to 66% on average. Increasing the blob size further has a
negative impact on precision. For each project and blob size
the precision values across different strategies differ at most
by 0.09 and on average by 0.04.

We can untangle
* artificially tangled change sets with a mean precision

between 0.58 (blob size four) and 0.79 (blob size two),
* any two artificially tangled change sets with a precision

between 0.67 and 0.93.

C. The Impact of Tangled Changes (RQ3)

Remember that we untangled only those change sets that
we manually classified as tangled change sets (see Table II).
The fraction of tangled change sets lies between 6% and
15%. Figure 7 shows that untangling these few tangled change
sets already has a significant impact on the set of source
files marked as most defect prone. The cutoff differences for
the top 5%, 10%, 15%, and 20% of files with the highest
distinct number of associated bug reports. The impact of
untangling lies between 6% and 50% (harmonic mean: 17.4%).
Cutoff difference and the fraction of tangled change sets is
correlated. JRUBY has the lowest fraction of blobs and shows
the smallest cutoff differences. JAXEN has the highest tangled

change set fraction and shows the highest cutoff differences.
We can summarize that untangling tangled change sets impacts
bug counting models and thus are very not unlikely to impact
more complex quality models or even bug prediction models
trained on these data sets.

We further observed that in total between 10% and 38%
and on average (harmonic mean) 16.6% of all source files we
assigned different bug counts when untangling tangled change
sets. Between 1.5% and 7.1% of the files originally associated
with bug reports had no bug count after untangling.

Tangled change sets severely impact bug counting models.
* Between 6% and 50% (harmonic mean: 17.4%) of the

most defect prone files do not belong in this category.
* On average at least 16.6% of all source files are

incorrectly associated with bug reports.

VII. THREATS TO VALIDITY

Empirical study of this kind have threats to their validity.
We identified the following noteworthy threats.

The change set classification process involved manual code
change inspection. The classification process was conducted
by software engineers not familiar with the internal details of
the individual projects. Thus, it is not unlikely that the manual
selection process or the pre-filtering process misclassified
change sets. This could impact the number and the quality
of generated artificially tangled change sets and thus the
untangling results in general.

The selected study subjects may not be representative and
untangling results for other projects may differ. Choosing
CONFVOTERS differently may impact untangling results.

The untangling results presented in this paper are based
on artificially tangled change sets derived using the ground
truth set which contains issue fixing change sets, only. Thus,
it might be that the ground truth set is not representative for
all types of change sets. The process of constructing these
artificially tangled change sets may not simulate real life
tangled change sets caused by developers.

Internally our untangling algorithm uses the partial program
analysis tool [31] by Dagenais and Hendren. The validity of
our results depends on the validity of the used approach.

VIII. CONCLUSION AND CONSEQUENCES

Tangled changes introduce noise in change data sets: In this
paper, we found up that up to 20% of all bug fixes to consist of
multiple tangled changes. This noise can severely impact bug
counting models: When predicting bug-prone files, on average,
at least 16.6% of all source files are incorrectly associated with
bug reports due to tangled changes. These numbers are the
main contribution of this paper, and they demand for action.

What can one do to prevent this? Tangled changes are natu-
ral and from a developer’s perspective, tangled changes make
sense and should not be forbidden. Refactoring a method name
while fixing a bug caused by a misleading method name should
be considered as part of the bug fix. Therefore, version archive
miners should be aware of tangled changes and their impact.

Untangling algorithms similar to the algorithm proposed in this
paper may help to untangle changes automatically and thus to
reduce the impact of tangled changes on mining models.

In our future work, we will continue to improve the quality
of history data sets. With respect to untangling changes, our
work will focus on the following topics:

Automated untangling. The automated algorithms sketched
in this paper can still be refined. To evaluate their effec-
tiveness, though, one would require substantial ground
truth—i.e., thousands of manually untangled changes.

Impact of change organization. Our results suggest that
extensive organization of software changes through
branches and change sets would lead to less tangling and
consequently, better prediction. We shall run further case
studies to explore the benefits of such organization.

To learn more about our work, visit our Web site:

http://softevo.org/untangling changes

Acknowledgments. Sascha Just, Jeremias Rößler provided
constructive feedback on earlier versions of this work. We
thank the reviewers for their constructive comments.

REFERENCES

[1] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the 26th
International Conference on Software Engineering. IEEE Computer
Society, May 2004, pp. 563–572.

[2] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
Eclipse,” in Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, ser. PROMISE ’07. IEEE
Computer Society, 2007.

[3] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limitations,
new approaches,” Automated Software Engg., vol. 17, pp. 375–407,
December 2010.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing. ACM, 2006, pp. 361–370.

[5] P. Bhattacharya, “Using software evolution history to facilitate de-
velopment and maintenance,” in Proceeding of the 33rd international
conference on Software engineering. ACM, 2011, pp. 1122–1123.

[6] P. L. Li, R. Kivett, Z. Zhan, S.-e. Jeon, N. Nagappan, B. Murphy, and
A. J. Ko, “Characterizing the differences between pre- and post-release
versions of software,” in Proceeding of the 33rd international conference
on Software engineering. ACM, 2011, pp. 716–725.

[7] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced? Bias in bug-fix datasets,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC/FSE ’09. ACM, 2009,
pp. 121–130.

[8] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 97–106.

[9] T. H. Nguyen, B. Adams, and A. E. Hassan, “A Case Study of Bias
in Bug-Fix Datasets,” in 2010 17th Working Conference on Reverse
Engineering. IEEE Computer Society, 2010, pp. 259–268.

[10] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the 26th
International Conference on Software Engineering, ser. ICSE ’04. IEEE
Computer Society, 2004, pp. 563–572.

[11] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using
multivariate time series and association rules to detect logical change
coupling: An empirical study,” in Proceedings of the 2010 IEEE
International Conference on Software Maintenance, ser. ICSM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.
[Online]. Available: http://dx.doi.org/10.1109/ICSM.2010.5609732

[12] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Trans. Softw. Eng., vol. 34, pp. 181–
196, March 2008.

[13] A. Hindle, D. M. German, and R. Holt, “What do large commits tell
us? A taxonomical study of large commits,” in Proceedings of the 2008
international working conference on Mining software repositories, ser.
MSR ’08. ACM, 2008, pp. 99–108.

[14] A. Hindle, D. German, M. Godfrey, and R. Holt, “Automatic classication
of large changes into maintenance categories,” in Program Comprehen-
sion, 2009. ICPC ’09. IEEE 17th International Conference on, may
2009, pp. 30–39.

[15] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip, “Finding failure-inducing
changes in java programs using change classification,” in Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations
of software engineering, ser. SIGSOFT ’06/FSE-14. ACM, 2006, pp.
57–68.

[16] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-commit analysis to
facilitate team software development,” in Proceedings of the 31st In-
ternational Conference on Software Engineering, ser. ICSE ’09. IEEE
Computer Society, 2009, pp. 507–517.

[17] B. J. Williams and J. C. Carver, “Characterizing software architecture
changes: A systematic review,” Information and Software Technology,
vol. 52, no. 1, pp. 1–51, 2010.

[18] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” Software Engineering, International Conference on, vol. 0,
pp. 287–297, 2009.

[19] E. Murphy-Hill and A. Black, “Refactoring tools: Fitness for purpose,”
Software, IEEE, vol. 25, no. 5, pp. 38 –44, sept.-oct. 2008.

[20] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceeding of the 33rd international conference on Soft-
ware engineering, ser. ICSE ’11. ACM, 2011, pp. 351–360.

[21] R. Robbes, M. Lanza, and M. Lungu, “An approach to software evolution
based on semantic change,” in Fundamental Approaches to Software
Engineering, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2007, vol. 4422, pp. 27–41.

[22] D. Kawrykow, “Enabling precise interpretations of software change
data,” Master’s thesis, McGill University, August 2011.

[23] V. Dallmeier, “Mining and checking object behavior,” Ph.D. dissertation,
Universität des Saarlandes, August 2010.

[24] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proceeding of the 33rd international conference
on Software engineering, ser. ICSE ’11. ACM, 2011, pp. 481–490.

[25] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des Alpes et des Jura,” Bulletin del la Société Vaudoise des Sciences
Naturelles, vol. 37, pp. 547–579, 1901.

[26] A. Mockus and L. G. Votta, “Identifying reasons for software
changes using historic databases,” in Proceedings of the International
Conference on Software Maintenance (ICSM’00), ser. ICSM ’00.
Washington, DC, USA: IEEE Computer Society, 2000, pp. 120–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=850948.853410

[27] K. Herzig, S. Just, and A. Zeller, “It’s not a Bug, It’s a Feature: How
Misclassification Impacts Bug Prediction,” Tech. Rep., August 2012,
accepted for ICSE 2013.

[28] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,”
in Proceedings of the 1995 ACM/IEEE conference on Supercomputing,
ser. Supercomputing 1995. ACM, 1995.

[29] ——, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM J. Sci. Comput., vol. 20, pp. 359–392, December
1998.

[30] ——, MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Version 2.0, 1995. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376

[31] B. Dagenais and L. Hendren, “Enabling static analysis for partial Java
programs,” in Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, ser.
OOPSLA ’08. ACM, 2008, pp. 313–328.

TODO LIST

http://softevo.org/untangling_changes
http://dx.doi.org/10.1109/ICSM.2010.5609732
http://dl.acm.org/citation.cfm?id=850948.853410
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376

	I Introduction
	II Background
	II-A Classifying code changes
	II-B Refactorings
	II-C Change Dependencies
	II-D Untangling Changes
	II-E Noise and Bias in Version Archive Datasets

	III Research Questions
	III-A RQ1: How popular are tangled changes?
	III-B RQ2: Can we untangle tangled changes?
	III-C RQ3: How do tangled changes impact bug count models?

	IV Experimental Setup
	IV-A Measuring Bias caused by Tangled Changes (RQ1)
	IV-B Untangling Changes (RQ2)
	IV-C Measuring the Impact of Tangled Changes (RQ3)
	IV-D Study Subjects

	V The Untangling Algorithm
	V-A Confidence Voters
	V-B Using Multilevel Graph Partitioning

	VI Results
	VI-A Tangled Changes (RQ1)
	VI-B Untangling Changes (RQ2)
	VI-C The Impact of Tangled Changes (RQ3)

	VII Threats to Validity
	VIII Conclusion and Consequences
	References

