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Data is not flat
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Data is multi-modal, multi-relational, spatio-temporal, multi-media
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shorthand: Graph Data



NEED: ML for Graphs

* Machine Learning



ML for Graphs

Pattern #1: Collective Classification
Pattern #2: Link Prediction

Pattern #3: Entity Resolution
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ML for Graphs

Pattern #1: Collective Classification — inferring labels of
nodes in graph

Pattern #2: Link Prediction — inferring the existence of
edges in graph

Pattern #3: Entity Resolution — clustering nodes that
refer to the same underlying entity



What about Interaction?



ML
Algorithm




What's different about graphs?

Unit of Interaction
Context
Comparison




What's different about graphs?

Unit of Interaction



Pattern #1 & #2: Collective Classification & Link Prediction

Nugget: active surveying — acquire label
anda neighbors

Sharara & Getoor IJCAI 2011; Namata et al., MLG 2012



Most previous work assumes that only the labels are
unobserved (i.e., a fully observed network)




Network structure also often only partially observed




Survey: Acquire the label and ego-network of a node
e.g., personal interview, targeted information gathering
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Survey: Acquire the label and ego-network of a node
e.g., personal interview, targeted information gathering




% Reduction in Required Responders
Active Survey vs Random
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What's different about graphs?

Context



Context
too little: single node
too much: whole grapnh

just right: relational context



D-Dupe: Interactive Entity Resolution Tool
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Kang, Getoor, Shneiderman, Bilgic, Licamele, TVCG 2008
http://www.cs.umd.edu/projects/lings/ddupe



http://www.cs.umd.edu/projects/linqs/ddupe

Pattern #2 & #3: Entity Resolution & Link Prediction

Nugget: Relational Context

Potential Duplicates




Nugget: Relational Context




What's different about graphs?

Comparison



Comparing ML Algorithms

Flat Data: confusion matrix
Graph Data: 7



G-Pare: Graph Comparison
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Sharara, Sopan, Namata, Getoor, VAST 2011
http://www.cs.umd.edu/projects/lings/gpare
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Pattern #1: Collective Classification

Nugget: Node Visualization

Modell @




Pattern #1: Collective Classification

Nugget: Node Visualization
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Nugget: Node Visualization
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Pattern #1: Collective Classification

Nugget: Node Visualization

Color Coding Predicted Label 5';'5::\2 Ag? [?agg
Fill Area Prediction Confidence High Moderate Low
Confidence Confidence Confidence
Eccentricity KL-Divergence T (l) al 1 i;(:) nT
C e Ground Truth ad»
Border Highlighting (Prediction Accuracy) v R ’:]’., ‘x: %




Pattern #1: Collective Classification

Nugget: Node Visualization

B Neutral
[ Positive

* Model 1 prediction: “Positive”
Model 2 prediction: “Neutral”

* Model 1 is more confident in its prediction than Model
2

 Distributions of the two models vary significantly

* Model 1's prediction matches the ground truth



Finding regions of disagreement




Gr

DB: Putting it all together, first steps...

e 0o B .
- Declarative Noisy Netwo

& (& localhost/grdb_demo.html

Declarative Noisy Network Analysis

 Dataset

DBLP Dataset

2 _: Datalog Program

: Suggestions

Eldin Moustafa, Miao, Deshpande, Getoor, SIGMOD Demo 2013
http://www.cs.umd.edu/projects/lings/grdb



Closing

State-of-the-Art: interaction unit, context and comparison
important

Challenges: interaction/ML for complex tasks involving
graphs is hard

Opportunities: creating common abstractions that work for
both interaction for ML and ML for interaction



