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1 three influential ideas
IN machine learning,.



. independent and identically distributed data
. TR

(1) Set aside test examples l

(2) Estimate f using only the training set.
Using the test set is forbidden.

!

- P (3) Measure final performance
using the testing set.

Ideally this happens only once!

* This experimental paradigm has driven machine learning progress.

* The essential assumption is that training and testing data are exchangeable,
e.g., follow the same distribution.



model selection tradeoffs

E(fn) — E(f) = (E(f;‘) — E(f*)) Approximation Error
| + (E(fn) — E(fF)) Estimation Error

Approximation error

-

:F'

How complex a model can you afford with your data?



11l. “Vapnik’s razor”

“ When solving a (learning) problem of interest, do not solve
a more complex problem as an intermediate step. ”

How complex a model can you afford with your data? (again)

* To classify patterns, use a model that outputs a class and nothing else.

* To achieve something more complex,
i. carefully define the problem,
ii. solve the problem and nothing else.



conceptual viewpoints in machine learning

same distribution capacity tradeoff

statistical learning theory yes yes yes
(ERM, SRM, SVM, ...)

Bayesian learning yes yes no (1)

(generative models, priors, ...)

algorithmic learning theory no (2) yes yes
(regret bounds, ...)

1) See the discriminant versus generative debate. On the one hand, some authors see generative
models as an implicit form of regularization. On the other hand, generative models are often
appealing because they easy to combine, unlike strict discriminant classifiers.

2) Online regret bounds express how a learning algorithm performs relative to a class of competitors.
Although they do not depend on i.i.d. assumptions, they lose value when none of the competitors
works well, for instance because the data is too far fromi.i.d..



2 large-scale learning tradeoffs.



statistics and computation

Statistical Perspective

* It is good to optimize an objective function that ensures a fast
estimation rate when the number of examples increases.

Optimization Perspective

* To efficiently solve large problems, it is preferable to choose an
optimization algorithm with strong convergence properties.

Incorrect Conclusion

e To address large-scale learning problems, use the best algorithm to
optimize an objective function with fast estimation rates. *



learning with approximate optimization

We compute f,, = argmin E,, (f) (best training error)
feF
... Which is an approximation of f¢, (best test error in F)
... Which is an approximation of . (best test error)

No need to compute f,, exactly.

Let’s compute an approximate optimum ﬁl such that
En(fn) < Ex(f) + p



error decomposition

E(fn) — E(f*) = E(f%) — E(f*) Approximation error  Eapy
+ E(fn) — E(f7) Estimation error Cest
+ E(fy) — E(fn) Optimization error Eopt

Problem:

Choose F, n, and p to make this as small as possible,

max number of examples n

subject to budget constraints { max computing time T



small-scale learning

The active budget constraint is the number of examples.

e [O reduce the estimation error, take n as large as the budget allows.
e [O reduce the optimization error to zero, take p = 0.

e \We need to adjust the size of F.

Approximation error

Size of F

See Structural Risk Minimization (Vapnik 74) and later works.



large-scale learning

The active budget constraint is the computing time.

e More complicated tradeoffs.
The computing time depends on the three variables: F, n, and p.

e Example.
If we choose p small, we decrease the optimization error. But we
must also decrease F and/or n with adverse effects on the estimation
and approximation errors.

e [ he exact tradeoff depends on the optimization algorithm.

e \We can compare optimization algorithms rigorously.



test error versus training time

\

Test Error

el
Computing Time



test error versus training time

Test Error

10,000 examples

100,000 examples
1,000,000 examples
—————————————————————————— Bayes Limit

.
Computing Time

* Vary the number of examples



test error versus training time

A optimizer a
optimizer b
optimizer ¢

model |
model Il
model Il
model [V

Test Error

10,000 examples

100,000 examples
1,000,000 examples

—————————————————————————— Bayes Limit

.
Computing Time

* Vary the number of examples, the model, the algorithm



test error versus training time

A optimizer a
optimizer b
optimizer ¢

model |
model I
model [l
model IV

Test Error

Good 10,000 examples
combinations

— 100,000 examples
1,000,000 examples
—————————————————————————— Bayes Limit

.
Computing Time

* Optimal combination depends on training time budget.



analysis of a simple case

Fix the family F of functions
e Linearly parameterized, smooth convex loss, ...

Compare four iterative optimization algorithms
1. Gradient descent (GD)
2. Second order gradient descent (2GD)
3. Stochastic gradient descent (SGD)
4. Second order stochastic gradient descent (2SGD)



analysis of a simple case
—“mmm

Time per iteration ~ 1 1
Fareria o | 1 log] 1 1
eration to accuracy p ~ 0g— oclog— — _
P gP 5 gp p p

1 1 1

Time to accuracy p ~ nlog— nloglog— ; ;




analysis of a simple case
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text categorization with a linear svm

e Dataset

— Reuters RCV1 document corpus.
— 781,265 training examples, 23,149 testing examples.
— 47,152 TF-IDF features.

e [ask

— Recognizing documents of category CCAT.

e/ A 5
— Minimize — —w Clwax;, +b. y; .
- ZZ} ( 5 + ( i +b,yi) )

Ol(w x¢ + b, yt))

— Update w <+ w — n V(we, 2, y0) = w — 1y (M’+ Ow

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.



text categorization with a linear svm

e Results: Linear SVM

Oy, y) =maxq{0,1 —yy} A= 0.0001

Training Time

Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%

SVMPerf 66 secs 0.2278 6.03%

SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Uy, y) =log(1 + exp(—yy)) A= 0.00001

Training Time Primal cost Test Error
TRON(LibLinear, ¢ =0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, ¢ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%




text categorization with a linear svm
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the tradeoftfs of large-scale learning

Small-scale learning # large-scale learning

* Large-scale learning involves more complex tradeoffs
that depends on the properties of the optimization algorithm.

Good optimization algorithm # good learning algorithm

* Mediocre optimization algorithms (e.g., SGD)
can outperform sophisticated optimization algorithms
on large-scale learning problems



3- breadth versus accuracy



diminishing returns

1 At some point
we should simply choose
another problem...

Test error

(o)
8.1% 8.01% 8.001%

Optimal Bayes error

[
»

Training set size

* Accuracy improvements cannot justify the computational cost forever.
* Why then use very large training sets ?



Zipf distributed data

* Roughly half of the search queries are unique.

way enough data to train }

( not enough data to train W

Queries sorted in frequency order



doubling the size of the training set

-

v

Diminishing returns
for average accuracy
improvements.

No diminishing returns
on number of queries for
which we can learn
correct answers.



the value of big data in machine learning

Accuracy improvements are subject to diminishing returns.
Breadth improvements are not subject to diminishing returns.

“How accurately do we recognize an object category?”
vs. “How many cateqgories do we recognize well enough?”

Should we optimize a different criterion?

How does this helps if average accuracy
is what we care about ?




identically distributed examples ?

Data collection in traditional machine learning

* Training data collection for real-life machine learning is difficult.
The data distribution must reflect the operational conditions.

* The i.i.d. assumption is not automatically satisfied.
It happens through manual data curation.

Data collection in big data machine learning
* Big data exists because data collection is automated.
* No manual curation to enforce the identical distribution assumption.

* The output of the machine learning system frequently
impacts the distribution of future training data.



dealing with covariate shifts

P(X,Y) = P(Y|X) P(X)

We want to model Y = f(X). We cannot trust P(X).
We must assume that the training We want to train a system
data describes P(Y|X) well enough. robust to P(X) changes.

Minimizing the training set error
e Approximation errors are pushed towards patterns X with low probability.
 What if these patterns occur more frequently at testing time?

Maximize the “diversity” of patterns that are recognized well enough.
* Yields a solution that is more robust to P(X) changes.



scalability opportunities

no need to use all this data to
learn good enough answers

enough data to train

not enough data to train

- >
Queries sorted in frequency order

No need to consider all examples of already known queries.

Best is to focus on queries near the boundary of the known area.
Curriculum learning and active learning come naturally in this context.
Scalability gains across the board.



3. deep learning,
and transfer learning



engineering machine learning

Reading check amounts

— Input X : Scanned check images.
— Qutput Y : Positive numbers with two decimals.

Training a model

— Can we train a model using examples (z1,y1) ... (Tn,yn) € X X Y7
— Possibly (we did not really try.)

— T his would require excessive numbers of labeled examples.

— This would require excessive computation time.



engineering machine learning

Identify subproblems

— Locate amount fields.

— Segment characters in amount fields.

— Recognize isolated characters.

— Translate character strings into an amount.

Define a submodel for each subproblem

— Fairly complicated recognition models
with large parameter vectors.

— Highly engineered location and segmentation models
with only a few adjustable thresholds.

Collect and label data for each subproblem

— Lots of manual work.
— Manual labor is not very expensive. . .



engineering machine learning

Training strategies
— Independent training
Train each submodel separately.

— Sequential trajining (better)
LLabel outputs of submodel n and train submodel n + 1.

— Global training (even better)
Pre-train with sequential training.
Simultaneously train all submodels with examples from X x V.

Issues
— The structure of the global model changes with the data.
e.g. managing field location and segmentation hypotheses.
— The composition of submodels has nontrivial aspects.
e.g. the label-bias problem.



deep learning

Deep learning (simplified)

— Pre-train with sequential unsupervised training
Collect outputs of submodel n
Train submodel n+ 1 with unsupervised criterion

— Tune with global training
Consider all submodels as a single statistical model.
Train with examples from X x V.

The deep learning surprise:

— Generic unsupervised subtasks work remarkably well.

— Little need to define subtasks using engineering knowledge.
— Little need to collect labeled data for all submodels.

Engineering learning systems is easier than we thought!



unsupervised learning

What is a cluster?
— Assumption: the shape of the density reveals the underlying categories.

Bayes decision boundary



unsupervised learning

Input space transforms

||I |'I II| .Ill |II ,'I I||
ﬁ\%ﬁ/ﬁ\\\\ — Categories are invariant.
Y VY wy rY Y — Bayes rate is invariant.

— Clustering is not invariant.

Bayes decision boundary



unsupervised learning

Clustering revisited

— Clustering is the expression
of the prior knowledge
encoded by our choice of

-
[EE R, ——

Unsupervised learning

— Comparable to using
really cheap labels:
“r1 and x5 are close’.
“r1 and x3 are not close’ .

Bayes decision boundary



auxiliary tasks

The price of labels

Interesting task <= Scarce labeled examples.
Uninteresting task <= Abundant labeled examples.

Auxilliary tasks
— “In the vicinity of an interesting task (with expensive labels,)
there often are less interesting tasks (with cheap labels,)

that we can put to good use.”
— Unsupervised learning is just one of them (with trivial labels.)

— Deep-learning, semi-supervised learning, and transfer learning
are three facets of the same thing.
e.g. (Weston et al., 2008)



example — face recognition

Interesting problem
— Recognizing the faces of one million persons.
— How many labeled images per person will we get?

Related but less interesting problem
— Are two face images representing the same person?

— Abundant (but noisy) examples:
¢ Two faces in the same image are likely to be different persons.
¢ Faces in successive frames are likely to be the same person.

(Matt Miller, NECLA, 2006)



example — natural language tagging

Interesting problems
— Standard NLP tagging tasks.

Related but less interesting problem
— Positive examples are legal sentence segments.

— Negative examples are created by substituting the central word
— Ranking loss.

cat sat song the mat
A
w

the cat sat on the mat

(Collobert et al., 2008-2011)



revisiting Vapnik’s razor

“When solving a (learning) problem of interest, do not solve
a more complex problem as an intermediate step. ”

Rationale: how complex a model can we afford with our data?

However, solving a more complex task and transferring features
often allows us to leverage more data of a different nature.

* Lots of implications... (“From machine learning to machine reasoning”, L.B., 2011.)



conclusion

Large-scale changes everything!



