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Assertion 1: Humans can be modeled with statistical
learning theory

I Unifying math behind cognitive science and machine learning



Example 1a: Human Rademacher Complexity
(grenade, A), (meadow, A), (skull, B), (conflict, B), (queen, B)

I “learning random labels” (x1, σ1) . . . (xn, σn)
I Rademacher complexity (similar to VC dimension)

Radn(F ) ≈

∣∣∣∣∣ 2n
n∑
i=1

σif̂(xi)

∣∣∣∣∣
. . . of our mind!

I Larger Rademacher complexity → worse generalization error
bound (overfitting) [ZRG NIPS09]
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Example 1b: Human Semi-Supervised Learning

I Humans learn supervised first, then

I . . . decision boundary shifts to distribution trough in test data

I Can be explained by a variety of semi-supervised machine
learning models [GRZ ToCS13]
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Example 1c: Human Active Learning

[CKNQRZ NIPS08]

Passive learning inf θ̂n supθ∈[0,1] E[|θ̂n − θ|] ≥ 1
4

(
1+2ε
1−2ε

)2ε
1

n+1

Active learning supθ∈[0,1] E[|θ̂n − θ|] ≤ 2

(√
1
2 +

√
ε(1− ε)

)n
noise ε = 0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.4

Human
Passive

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1

Human
Active

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1

10 20 30 40
−1

−0.5

0

0.5

1



Assertion 2: There is a theoretically optimal way to teach

Human teaches machine (interactive ML)
Machine teaches human (education)



Example 2: 1D threshold function

I Passive learning (xi, yi)
iid∼ p, risk ≈ O( 1

n)

I Active learning risk ≈ 1
2n

I Minimum teaching: n = 2. (teaching dimension)

I Alternatively: easy to hard (curriculum learning, fading,
parentese)



A formula for optimal teaching

1. World: p(x, y | θ∗), loss function `(f(x), y)

2. Learner: makes prediction f(x | data)

3. Teacher:
I clairvoyant, knows everything above
I can only teach by examples (x, y)
I goal: choose the least-effort teaching set D = (x, y)1:n to

minimize the learner’s future loss (risk):

min
D

Eθ∗ [`(f(x | D), y)] + effort(D)

I if the future loss approaches Bayes risk, D is a teaching set
and n is the (generalized) teaching dimension

[KZM NIPS11, Z arXiv13]



Assertion 3: Even when human teachers are not optimal,
they are not iid

. . . and machine learners should take advantage of that
non-iidness.



Example 3: Feature Volunteering (Interactive ML)

[JZSR ICML13]



Example 3: Sampling with Reduced Replacement
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Three Assertions

1. Humans can be modeled with statistical learning theory.

2. There is a theoretically optimal way to teach.

3. Even when human teachers are not optimal, they are not iid.



Capacity

VC-dimension

I F : a family of binary classifiers

I VC-dimension V C(F ): size of the largest set that F can
shatter

I With probability at least 1− δ,

sup
f∈F

R(f)−Rn(f) ≤ 2

√
2
V C(F ) log n+ V C(F ) log 2e

V C(F ) + log 2
δ

n
.

I R(f): error of f in the future

I Rn(f): error of f on a training set of size n



Capacity

Rademacher complexity

I σ1, . . . , σn : P (σi = 1) = P (σi = −1) = 1
2

I Rademacher complexity

Radn(F ) = Eσ,x

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
)
.

I With probability at least 1− δ,

sup
f∈F
|Rn(f)−R(f)| ≤ 2Radn(F ) +

√
log(2/δ)

2n
.



Machine learning → human learning

I f : you categorize x by f(x)

I F : all the classifiers in your mind

I Rn(f): how did you do in class

I R(f): how well can you do outside class
I Capacity: can we measure it in humans?

I V C(F ): too brittle (find one dataset of size n) and
combinatorial (verify shattering)

I Others may behave better, e.g., Radn(F )



Overfitting indicator
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I e test set error, ê training set error
I generalization error bound holds
I actual overfitting tracks bound (nice but not predicted by

theory)

The study of capacity may

I constrain cognitive models
I understand groups differ in age, health, education, etc.



Human semi-supervised learning, the other way around
Human unsupervised learning first
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Human teacher behaviors

strategy boundary curriculum linear positive

“graspability” (n = 31) 0% 48% 42% 10%
“lines” (n = 32) 56% 19% 25% 0%


