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What is Big Data used For?

Reports, e.g.,

» Track business processes, transactions 


Diagnosis, e.g.,

» Why is user engagement dropping?

» Why is the system slow?

» Detect spam, worms, viruses, DDoS attacks


Decisions, e.g.,

» Personalized medical treatment

» Decide what feature to add to a product

» Decide what ads to show 


Data is only as useful as the decisions it enables




Data Processing Goals

Low latency (interactive) queries on historical 
data: enable faster decisions

» E.g., identify why a site is slow and fix it


Low latency queries on live data (streaming): 
enable decisions on real-time data

» E.g., detect & block worms in real-time (a 

worm may infect 1mil hosts in 1.3sec)


Sophisticated data processing: enable “better” 
decisions

» E.g., anomaly detection, trend analysis




One Reaction

Specialized models for some of these apps

» Google Pregel for graph processing

» Impala for interactive queries

» Iterative MapReduce

» Storm for streaming


Problem:

» Don’t cover all use cases

» How to compose in a single application?




Our Goals


Batch


Interactive
 Streaming


One !
stack to 


rule them all!


Support batch, streaming, and interactive computations…

… and make it easy to compose them




Easy to develop sophisticated algorithms




Approach: Leverage Memory

Memory bus >> disk & SSDs


Many datasets fit into 
memory

» The inputs of over 90% of jobs 

in Facebook, Yahoo!, and Bing 
clusters fit into memory

» 1TB = 1 billion records @ 1 KB


Memory density (still) grows 
with Moore’s law

» RAM/SSD hybrid memories at 

horizon 







High-end datacenter node


16-24 cores


10-30TB


128-512GB


1-4TB


10Gbps


0.2-1GB/s

(x10 disks)
 1-4GB/s


(x4 disks)


40-60GB/s




Approach: Increase Parallelism

Reduce work per node à 
improves latency


Techniques:

» Low latency parallel scheduler 

that achieve high locality

» Efficient recovery from failures 

and straggler mitigation

» Optimized parallel 

communication patterns (e.g., 
shuffle, broadcast)
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Spark: Interactive & Iterative Comp.


Achieve sub-second parallel job execution

Enable stages & jobs to share data efficiently

How?

» Resilient Distributed Datasets (RDDs): in-memory 

fault-tolerant storage abstraction 

» Low latency scheduler

» Efficient communication patterns
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How to ensure fault tolerance?

RDDs: restricted form of shared memory

» Immutable, partitioned sets of records

» Can only be built through coarse-grained, 

deterministic operations (map, filter, join, …)


Use lineage

» Log one operation to apply to many elements

» Recompute any lost partitions on failure


Resilient Distributed Datasets (RDDs)




filter(h)
group-by( g)
map( f )


RDD Recovery


Input file
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Generality of RDDs

Surprisingly, RDDs can express many parallel 
algorithms

» These naturally apply the same operation to many items


Unify many current programming models

» Data flow models: MapReduce, Dryad, SQL, …

» Specialized models for iterative apps: Pregel, iterative 

MapReduce, GraphLab, …


Support new apps that these models don’t




PageRank Performance
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Spark: Narrow Waist of BDAS
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Existing Streaming Systems

Continuous processing model

» Each node has long-lived state

» For each record, update state & 

send new records


State is lost if node dies!


Making stateful stream 
processing fault-tolerant is 
challenging


mutable state


node 1


node 3


input 
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Spark Streaming

Run a streaming computation as a series of very small, 
deterministic batch jobs


Spark


Spark

Streaming


batches of X 
seconds


live data 
stream


processed 
results


Divide live stream into batches of X 
seconds 


Spark treats each batch of data as 
RDDs 


Return results in batches




How Fast Can It Go?

Can process over 60M records/s (6 GB/s) on!
100 nodes at sub-second latency




Maximum throughput for latency under 1 sec
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How Fast Can It Recover?

Two second batches

Recovers from faults/stragglers within 1 second




Shark: Hive over Spark

Up to 100x faster when data in memory 

Up to 5-10x faster even when data on disk
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What Is Next?

Trade between result accuracy 
and response time

Why? 

» In-memory processing doesn’t 

guarantee interactive processing

•  E.g., ~10’s sec just to scan 512 

GB RAM!

•  Gap between memory capacity 

and transfer rate increasing





512GB


16 cores


40-60GB/s


doubles every 
18 months


doubles every 
36 months




BlinkDB: Approximate Computations
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Key Insight


Input often noisy: exact computations do not 
guarantee exact answers

Error often acceptable if small and bounded


Don’t always need exact answers


Best scale

± 0.5lb error 


Speedometers

± 2.5 % error

(edmunds.com)


OmniPod Insulin Pump

± 0.96 % error

(www.ncbi.nlm.nih.gov/pubmed/22226273)




BlinkDB Challenges

How to estimate error bounds for arbitrary 
computations?

How do you know that technique you used is 
actually working?

» Not trivial to check assumptions under which these 

estimates hold

» Many assumptions are sufficient, not necessary









What Is Next? Graph X

GraphLab API on top of Spark 

Leverage Spark’s fault tolerance
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What Is Next? MLlib/MLbase

MLlib: Highly scalable ML library 

MLbase: Declarative approach to ML
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Summary

Spark: narrow waist of BDAS

» Unifies batch, streaming, and interactive comp.

» Ability to execute sub-second parallel jobs

» Enable job’s stages and jobs to share in-memory data


Future work

» Sophisticated computations (Graph X, MLbase)

» Trade accuracy, speed, and cost (BlinkDB)


Vibrant open source community

» Used by tens of companies (e.g., Yahoo!, Intel, Twitter…)

» 60+ contributors from 17+ companies


Batch


Interactive
 Streaming
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