
Berkeley Data Analytics Stack!
(Beyond Spark & Shark)

UC	
 BERKELEY	

Ion Stoica

UC Berkeley

What is Big Data used For?

Reports, e.g.,

» Track business processes, transactions

Diagnosis, e.g.,

» Why is user engagement dropping?

» Why is the system slow?

» Detect spam, worms, viruses, DDoS attacks

Decisions, e.g.,

» Personalized medical treatment

» Decide what feature to add to a product

» Decide what ads to show

Data is only as useful as the decisions it enables

Data Processing Goals

Low latency (interactive) queries on historical
data: enable faster decisions

» E.g., identify why a site is slow and fix it

Low latency queries on live data (streaming):
enable decisions on real-time data

» E.g., detect & block worms in real-time (a

worm may infect 1mil hosts in 1.3sec)

Sophisticated data processing: enable “better”
decisions

» E.g., anomaly detection, trend analysis

One Reaction

Specialized models for some of these apps

» Google Pregel for graph processing

» Impala for interactive queries

» Iterative MapReduce

» Storm for streaming

Problem:

» Don’t cover all use cases

» How to compose in a single application?

Our Goals

Batch

Interactive
 Streaming

One !
stack to

rule them all!

Support batch, streaming, and interactive computations…

… and make it easy to compose them

Easy to develop sophisticated algorithms

Approach: Leverage Memory

Memory bus >> disk & SSDs

Many datasets fit into
memory

» The inputs of over 90% of jobs

in Facebook, Yahoo!, and Bing
clusters fit into memory

» 1TB = 1 billion records @ 1 KB

Memory density (still) grows
with Moore’s law

» RAM/SSD hybrid memories at

horizon

High-end datacenter node

16-24 cores

10-30TB

128-512GB

1-4TB

10Gbps

0.2-1GB/s

(x10 disks)
 1-4GB/s

(x4 disks)

40-60GB/s

Approach: Increase Parallelism

Reduce work per node à
improves latency

Techniques:

» Low latency parallel scheduler

that achieve high locality

» Efficient recovery from failures

and straggler mitigation

» Optimized parallel

communication patterns (e.g.,
shuffle, broadcast)

result

T

result

Tnew (< T)

Spark: Interactive & Iterative Comp.

Achieve sub-second parallel job execution

Enable stages & jobs to share data efficiently

How?

» Resilient Distributed Datasets (RDDs): in-memory

fault-tolerant storage abstraction

» Low latency scheduler

» Efficient communication patterns

Spark: Interactive & Iterative Comp.

Achieve sub-second parallel job execution

Enable stages & jobs to share data efficiently

How?

» Resilient Distributed Datasets (RDDs): in-memory

fault-tolerant storage abstraction

» Low latency scheduler

» Efficient communication patterns

How to ensure fault tolerance?

RDDs: restricted form of shared memory

» Immutable, partitioned sets of records

» Can only be built through coarse-grained,

deterministic operations (map, filter, join, …)

Use lineage

» Log one operation to apply to many elements

» Recompute any lost partitions on failure

Resilient Distributed Datasets (RDDs)

filter(h)
group-by(g)
map(f)

RDD Recovery

Input file

filter(h)
group-by(g)
map(f)

RDD Recovery

Input file

filter(h)
group-by(g)
map(f)

RDD Recovery

Input file

Generality of RDDs

Surprisingly, RDDs can express many parallel
algorithms

» These naturally apply the same operation to many items

Unify many current programming models

» Data flow models: MapReduce, Dryad, SQL, …

» Specialized models for iterative apps: Pregel, iterative

MapReduce, GraphLab, …

Support new apps that these models don’t

PageRank Performance

17
1

80

23
	

14
	

0

20

40

60

80

100

120

140

160

180

200

30
 60

Ite
ra

tio
n

tim
e

(s)

Number of machines

Hadoop

Spark

Other Iterative Algorithms

0.96

110

0
 25
 50
 75
 100
 125

Logistic
Regression

4.1

155

0
 30
 60
 90
 120
 150
 180

K-Means
Clustering

Hadoop

Spark

Time per Iteration (s)

Spark: Narrow Waist of BDAS

Spark	

HDFS	

 S3	

 …

Spark
Straming	

 Shark	

SQL	

Graph 	

X	

 ML	

library	

…

BlinkDB	

 MLbase	

Storage

Execution

Engine

Domain

specific

fmwks

Spark: Narrow Waist of BDAS

Spark	

HDFS	

 S3	

 …

Spark
Straming	

 Shark	

SQL	

Graph 	

X	

 ML	

library	

…

BlinkDB	

 MLbase	

Storage

Execution

Engine

Domain

specific

fmwks

spark-­‐project.org	
 spark-­‐project.org	
 spark-­‐project.org	

Existing Streaming Systems

Continuous processing model

» Each node has long-lived state

» For each record, update state &

send new records

State is lost if node dies!

Making stateful stream
processing fault-tolerant is
challenging

mutable state

node 1

node 3

input

records

node 2

input

records

Spark Streaming

Run a streaming computation as a series of very small,
deterministic batch jobs

Spark

Spark

Streaming

batches of X
seconds

live data
stream

processed
results

Divide live stream into batches of X
seconds

Spark treats each batch of data as
RDDs

Return results in batches

How Fast Can It Go?

Can process over 60M records/s (6 GB/s) on!
100 nodes at sub-second latency

Maximum throughput for latency under 1 sec

0	

20	

40	

60	

80	

0	

 50	

 100	

R
ec

or
ds

/s
 (

m
illi

on
s)
	

Nodes in Cluster	

Grep	

0	

10	

20	

30	

0	

 50	

 100	

R
ec

or
ds

/s
 (

m
illi

on
s)
	

Nodes in Cluster	

Top K Words	

How Fast Can It Recover?

Two second batches

Recovers from faults/stragglers within 1 second

Shark: Hive over Spark

Up to 100x faster when data in memory

Up to 5-10x faster even when data on disk

Spark	

HDFS	

 S3	

 …

Spark
Straming	

 Shark	

SQL	

Graph 	

X	

 ML	

library	

…

BlinkDB	

 MLbase	

Storage

Execution

Engine

Domain

specific

frmwks

What Is Next?

Trade between result accuracy
and response time

Why?

» In-memory processing doesn’t

guarantee interactive processing

•  E.g., ~10’s sec just to scan 512

GB RAM!

•  Gap between memory capacity

and transfer rate increasing

512GB

16 cores

40-60GB/s

doubles every
18 months

doubles every
36 months

BlinkDB: Approximate Computations

Spark	

HDFS	

 S3	

 …

Spark
Straming	

 Shark	

SQL	

Graph 	

X	

 ML	

library	

…

BlinkDB	

 MLbase	

Storage

Execution

Engine

Domain

specific

fmwks

Key Insight

Input often noisy: exact computations do not
guarantee exact answers

Error often acceptable if small and bounded

Don’t always need exact answers

Best scale

± 0.5lb error

Speedometers

± 2.5 % error

(edmunds.com)

OmniPod Insulin Pump

± 0.96 % error

(www.ncbi.nlm.nih.gov/pubmed/22226273)

BlinkDB Challenges

How to estimate error bounds for arbitrary
computations?

How do you know that technique you used is
actually working?

» Not trivial to check assumptions under which these

estimates hold

» Many assumptions are sufficient, not necessary

What Is Next? Graph X

GraphLab API on top of Spark

Leverage Spark’s fault tolerance

Spark	

HDFS	

 S3	

 …

Spark
Straming	

 Shark	

SQL	

Graph 	

X	

 ML	

library	

…

BlinkDB	

 MLbase	

Storage

Execution

Engine

Domain

specific

frmwks

What Is Next? MLlib/MLbase

MLlib: Highly scalable ML library

MLbase: Declarative approach to ML

Spark	

HDFS	

 S3	

 …

Spark
Straming	

 Shark	

SQL	

Graph 	

X	

 ML	

library	

…

BlinkDB	

 MLbase	

Storage

Execution

Engine

Domain

specific

frmwks

Summary

Spark: narrow waist of BDAS

» Unifies batch, streaming, and interactive comp.

» Ability to execute sub-second parallel jobs

» Enable job’s stages and jobs to share in-memory data

Future work

» Sophisticated computations (Graph X, MLbase)

» Trade accuracy, speed, and cost (BlinkDB)

Vibrant open source community

» Used by tens of companies (e.g., Yahoo!, Intel, Twitter…)

» 60+ contributors from 17+ companies

Batch

Interactive
 Streaming

Spark

UC	
 BERKELEY	

