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Mining meaningful structures from data 
• Multimedia (images, videos, speech, music, text, etc.) 

 

 
 

• Healthcare data (medical imaging data, preoperative conditions, 
time series measurements, etc.) 

 

 

 

• Multi modal sensor networks (e.g., robotics, surveillance, etc.) 

Camera array 3d range scans Visible light image Thermal Infrared Audio 

fMRI PET scan Ultra sound EEG 
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Learning Representations 

• Key ideas: 

– Unsupervised Learning: Learn statistical structure or 
correlation of the data from unlabeled data (and some 
labeled data) 

– Deep Learning: Learn multiple levels of representation of 
increasing complexity/abstraction. 

– The learned representations can be used as features in 
supervised and semi-supervised settings. 

• I will also talk about how to go beyond supervised 
(or semi-supervised) problems, such as: 

– Weakly supervised learning 

– Structured output prediction 
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    Natural Images Learned bases:  “Edges” 
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~ 0.8 *                   + 0.3 *                     + 0.5 * 

     x      ~ 0.8 *       b
36         +  0.3 *        b42          

+ 0.5 *       b65 

 [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, …]  
= coefficients (feature representation)  

Test example 

Motivation? 
Salient features, Compact representation 

Compact & easily 
interpretable 

Unsupervised learning with sparsity 
[NIPS 07; ICML 07; NIPS 08] 
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• Learning objects and parts in images 
 

 

 

 

• Large image patches contain interesting higher-
level structures. 
– E.g., object parts and full objects 

 

• Challenge: high-dimensionality and spatial 
correlations 

Learning object representations 
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Example image 

“Filtering” 
output 

“Shrink” 
(max over 2x2) 

filter1 filter2 filter3 filter4 

“Eye detector” 
Advantage of shrinking 
1. Filter size is kept small 
2. Invariance 

Illustration: Learning an “eye” detector 
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Wk 

V  (visible layer) 

Detection layer H 

Max-pooling layer P 

Visible nodes (binary or real) 

At most one hidden 
nodes are active. 

Hidden nodes (binary) 

“Filter“ weights (shared) 

For “filter” k, ‘’max-pooling’’ node (binary) 

Input data V 

Convolutional RBM (CRBM) [ICML 2009] 

 
 RBM (probabilistic model) 
 Convolutional structure 
 Probabilistic max-pooling     
(“mutual exclusion”) 
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W1 

W2 

W3 

Input image 

Layer 1 

Layer 2 

Layer 3 

Example image 

Layer 1 activation (coefficients) 

Layer 2 activation (coefficients) 

Layer 3 activation (coefficients) 

Show only one figure 

Filter  
visualization 

Convolutional deep belief networks illustration 
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Faces Cars Elephants Chairs 

Learning object-part decomposition 
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Applications 

• Classification (ICML 2009, NIPS 2009, ICCV 2011, Comm. 

ACM 2011) 

• Verification (CVPR 2012) 

• Image alignment (NIPS 2012) 

• The algorithm is applicable to other domains, 
such as audio (NIPS 2009) 
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Ongoing Work 

• Investigating theoretical connections and efficient 
training (ICCV 2011) 

• Robust feature learning with weak supervision 
(ICML 2013) 

• Representation learning with structured outputs  
(CVPR 2013) 

• Learning invariant representations (ICML 2009; NIPS 
2009; ICML 2012) 

• Multi-modal feature learning (ICML 2011) 

• Life-long representation learning (AISTAST 2012) 
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Ongoing Work 

• Investigating theoretical connections and 
efficient training (ICCV 2011) 

• Robust feature learning with weak supervision 
(ICML 2013) 

• Representation learning with structured outputs  
(CVPR 2013) 

• Learning invariant representations (ICML 2009; NIPS 
2009; ICML 2012) 

• Multi-modal feature learning (ICML 2011) 

• Life-long representation learning (AISTAST 2012) 
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Theoretical Connections and Efficient Training 

• Connections between unsupervised learning methods 

– Clustering vs. distributed representation [Coates, Lee, Ng, 
AISTATS 2011] 

– Can we develop better learning algorithms using the links? 

• Explore the connections between mixture models and 
RBMs. 

 

 

– We provide an efficient training method for RBMs via the 
connection. 

– This is the first work showing that RBMs can be trained so that 
they are no worse than Gaussian Mixture models (GMMs). 

• State-of-the-art results on object classification tasks. 

 

GMM 
Softmax 

Gaussian RBM 
= 

Activation-
constrained RBM 

< Sparse RBM ≈ 
Convolutional 
sparse RBM 

< 
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Spherical Gaussian Mixtures  is equivalent 
to RBM with softmax constraints 

 

Gaussian Softmax RBM  
= GMM with shared covariance σ2I 

GMM 
Softmax 

Gaussian RBM 
= 
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Relaxing the constraints 

 

Gaussian Softmax RBM 

subj. to  ℎ𝑘 ≤ 𝜶
𝐾
𝑘=1 ,       activation-constrained RBM 

GMM 
Softmax 

Gaussian RBM 
= 

Activation-
constrained RBM 

< 
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Relaxing the constraints 

 

Gaussian Softmax RBM 

subj. to  ℎ𝑘 ≤ 𝜶
𝐾
𝑘=1 ,       activation-constrained RBM 

sparse RBM: 
(regularize in training) 
1

𝐾
 ℎ𝑘 ≈

𝛼

𝐾
𝐾
𝑘=1  

 

GMM 
Softmax 

Gaussian RBM 
= 

Activation-
constrained RBM 

< Sparse RBM ≈ 
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Experiments – Analysis 

• Effect of sparsity to the classification performance (Caltech 101). 

 

 

 

 

 

 

 

 
– The sparsity > 1/K showed the best CV accuracy. 

• Practical guarantee that the sparse RBM lead to comparable or better 
classification performance than Gaussian mixtures. 

[ICCV 2011] 
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Ongoing Work 

• Investigating theoretical connections and efficient 
training (ICCV 2011) 

• Robust feature learning with weak supervision 
(ICML 2013) 

• Representation learning with structured outputs  
(CVPR 2013) 

• Learning invariant representations (ICML 2009; NIPS 
2009; ICML 2012) 

• Multi-modal feature learning (ICML 2011) 

• Life-long representation learning (AISTAST 2012) 
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Learning from scratch 

• Unsupervised feature learning  
– Powerful in discovering features from unlabeled data. 

– However, not all patterns (or data) are equally important. 
• When data contains lots of distracting factors, learning meaningful 

representations can be challenging. 

• Feature selection 
– Powerful in selecting features from labeled data. 

– However, it assumes existence of discriminative features. 
• There may not be such features at hand. 

• We develop a joint model for feature learning and 
feature selection  
– allows to learn task-relevant high-level features using 

(weak) supervision. 
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• Learning from noisy handwritten digits with 
PGBM 

Experiments – visualizations 

Learned task-relevant 
hidden unit weights: 
mostly pen-strokes 

Inferred  
switch variables 

Noisy digit images  
(mnist-back-image) 

Learned task-irrelevant 
hidden unit weights: 

noisy patterns 
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• Learning from noisy handwritten digits with 
PGBM 

Experiments – visualizations 

Learned task-
relevant hidden 

unit weights: 
mostly pen-strokes 

Inferred  
switch variables 

Noisy digit 
images  

(mnist-back-
image) 

Learned task-
irrelevant hidden unit 

weights: noisy 
patterns 

y 
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We can distinguish between task-relevant and irrelevant 
features with point-wise gating idea while feature learning. 

Convolutional Extensions 

input image 

W1 

W2 

W1 W2 
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• Learned set of filters (task-relevant/irrelevant) 

 

 

 

 

• (Weakly supervised) object localization 

Experiments – weakly supervised object 
segmentation 

Caltech101 - Faces Caltech101 – car side 

1st row: switch unit activation map, 
2nd row: predicted and ground truth bounding box. 
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Experiments – weakly supervised object 
segmentation 

1st row: switch unit activation map, 
2nd row: predicted and ground truth bounding box. 
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Ongoing Work 

• Investigating theoretical connections and efficient 
training (ICCV 2011) 

• Robust feature learning with weak supervision 
(ICML 2013) 

• Representation learning with structured outputs  
(CVPR 2013) 

• Learning invariant representations (ICML 2009; NIPS 
2009; ICML 2012) 

• Multi-modal feature learning (ICML 2011) 

• Life-long representation learning (AISTAST 2012) 
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Enforcing Global and Local Consistencies 
for Structured Output Prediction 

• Task: scene segmentation 

 

 

 

 

 

 

 

 

• Problem: only enforces local consistency 

• Our model can enforce both local and global consistency 

Image Over-segmentation Target Output 

CRF with 
superpixels 

s 

(CVPR 2013) 
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Combining Global and Local Consistencies 
for Structured Output Prediction 

 
(CVPR 2013) 
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Experimental results 

• Visualization of segmentation 
 
 
 
 
 
 
 
 

 

– LR: singleton potential 
– CRF: singleton + pairwise potential 
– Ours: singleton + pairwise + RBM potential 

 

LR CRF Ours 
Ground 

truth LR CRF Ours 
Ground 

truth 

(CVPR 2013) 
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Summary 

• Generative learning of convolutional feature hierarchy 

• Better training algorithms 

• Learning representations with weak supervision 

• Learning representations with structured outputs 
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