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Principles ‘

Gigahertz is not free

Speed and power calculated from specification sheets
Power includes “system overhead” (e.g., Ethernet)
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Gigahertz hurts

Remember:
Memory capacity costs you
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“Each decimal order of magnitude increase in parallelism requires a
major redesign and rewrite of parallel code™ - Kathy Yelick
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The FAWN Quad of Pain

Load Balancing Parallelization

Bigger Clusters

Wimpy Nodes

Hardware

Specificity Memory Capacity



It's not just masochism

Moore Dennard

BB scoling of Transistor Festure Sizes Over Time Processor Frequency Scaling Over Time
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(Figures from Danowitz, Kelley, Mao, Stevenson, and Horowitz: CPU DB)

All systems will face this challenge over time



FAVVN:
It started
with a key-value store
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Key-value storage systems

® Critical infrastructure service
® Performance-conscious

® Random-access, read-mostly, hard to cache
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Small record, random access

Dan Wendlandt wrote

have a good one man. hope the facebook TG was fun, the email was
hilarious

Wall-to-Wa Write on Dan's Wa

Patrick Gage Kelley wrote
Oh! birthday!

Wall-to-Wa Write on Patrick's Wal
Corey lohn Ram
lyican Bethenco Ravichan
urt ) Jagan Seshadri wrote
Happy birthday Vij! 24 and there's so much more...
Wall-to-Wa Write on Jagan's Wa
_reate a Profile Badge Vish Subramanian wrote
hapy birthday dude, its been awhile!
= Wall-to-Wa Write on Vish's Wall
Y - Bobby Gregg wrote
I A ’.

S hi vijay! i'm super early but i'm bad about checking facebook regularly
‘ nowadays so i wanted to say happy birthday. let's catch up about our
respective grad school woes.

Wall-to-Wa Write on Bobby's Wall
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Small record, random access

Select name,photo from users where uid=513542;

o _.,!F Dan Wendlandt wrote
4 Bl have a good one man. hope the facebook TG was fun, the email was
FZJ I hilarious

g Patrick Gage Kelley wrote
L

J‘ .:; hl bir".‘”?iil}"

sesnadri wrote

Happy birthday Vij! 24 and there's so much more...

1 wrote

| S : ) :
hapy birthday dude, its been awhile!

: ' Bobby Gregg wrote

- A

vijay! i'm super early but i'm bad about checking facebook regularly
ij nowadays so i wanted to say happy birthday. let's catch up about our

respective grad school woes.
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Small record, random access

Select name,photo from users where uid=818503;

wrote

Vij! 24 and there's so much more...

wrote

—
hnapy birthday dude, its been awhile
=y

wrote

vijay! i'm super early but i'm bad about checking facebook regularly
‘i nowadays so | wanted to say happy birthday. let's catch up about our

respective grad school woes.
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Small record, random access

1“'
.,‘; Dan Wendlandt wrote
Ll "y
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nave a good one man. hope the facebook TG was fun, the email was
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S  Patrick Gage Kelley wrote

: > -
J‘ Oh! birthday!
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; 'S SO much more...
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1 wrote

| S . ) :
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vijay! i'm super early but i'm bad about checking facebook regularly
‘] nowadays so i wanted to say happy birthday. let's catch up about our

respective grad school woes.
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Small record, random access
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Small record, random access

Select wallpost from posts where pid=89888333522;

.
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» < p _—
y as 1

here 111d= 24111;

Select name,photo from users where uid=124566;

Select wallpost from posts where pid=12314144887;

‘ Select name,photo from users where uid=357845; I

|3



Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

FAWN-DS and -KV:

Key-value Storage System

Goal: improve Queries/jJoule

500MHz CPU
256MB DRAM
} 4GB CompactFlash




FAWN-KYV Design

Goal: improve Queries/jJoule

Unique Challenges:

* Wimpy CPUs, limited DRAM
® Flash poor at small random writes

® Sustain performance during membership changes
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\ - (""‘»‘ |

|4




Avoiding random writes

Hashtable

[FAWN-KYV Design

Data region
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[FAWN-KYV Design

Avoiding random writes

In DRAM In Flash
Hashtable Data region
T -

]

Put

All writes to Flash are sequential




Research Example

® Developed DRAM-efficient system to find
location on flash

® (“Partial-key hashing’) 200s-9
® VWe've continued this since then:
® Partial-key cuckoo hashing 201

® Optimistic concurrent cuckoo hashing 212



I ‘ ‘ Evaluation

Evaluation Takeaways

® 2008: FAWN-based system 6x more
efficient than traditional systems

® Partial-key hashing enabled memory-
efficient DRAM index for flash-resident

data

® Can create high-performance, predictable
storage service for small key-value pairs



And then we moved to
Atom + SSD

Geode 4GB CF Card
500Mhz 256MB ~2k IOPS
' 6x l 30-60x
Atom
|20GB SSD
|.6 Ghz 2GB ~60k 1OPS

single-core




FAWN-DS FAWN-KVY Small Cache Cuckoo

Fawn-DS

Fawn-KV Fawn-DS




FAWN-DS FAWN-KY SILT Small Cache Cuckoo

backend store
hyper-optimized
for low DRAM

and large flash

SILT

Fawn-KV

SILT

SILT




Systems begat
algorithms:

“Practical Batch-Updtable
External Hashing with Sorting”

H.Lim et al., ALENEX 2012

(Recently heard that Bing uses
several state-of-the-art,
memory-efficient indexes)
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And now... Load imbalance

* Distributed key-value system

Backendl
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And now... Load imbalance

* Distributed key-value sym !

Backendl —" 3 /




And now... Load imbalance

* Distributed key-value sym !
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* Distributed key-value sym

1.

And now... Load imbalance

get (key)

Backendl
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* Distributed key-value sym

1.

And now... Load imbalance

get (key)

2. BackendID=hash (key)

Backendl
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And now... Load imbalance

* Distributed key-value sym !

Backendl — o /

Backend2 (—— ;
~

3. val=lookup (key)

1. get(key)

2. BackendID=hash (key)

Back.. 85 \‘\: /

Back.. 88 \\ /
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And now... Load imbalance

* Distributed key-value sym

1. get(key)

4. return val

2. BackendID=hash (key)

<
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And now... Load imbalance

* Distributed key-value sym !

Backendl

S

10,000 queries/sec

1. get(key)

4. return val

2. BackendID=hash (key)

Backend2
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And now... Load imbalance

* Distributed key-value sym !

Backendl (—"
NG

10,000 queries/sec

SLA: 850,000 queries/sec

1. get(key)

4. return val

2. BackendID=hash (key)

3. val=lookup (key)
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(KQPS)

Overall throughput

Measured tput on FAWN testbed
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Overall throughput (KQPS)
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small/fast cache is enough!

Queries

cache

We prove that, for n nodes
- Only need to cache O(n log n) most

popular entries
- With 100 backend nodes, need only
about 4,000 items in the cache. Tiny!

24



Worst case? Now best case
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Thus...



FAWN-DS FAWN-KY SILT Small Cache Cuckoo

«¢ o ”»
Wl m Py Servers [FAWN, SOSP 2009]

“Brawny” server SILT

» Insanely SILT
« Fast Cache
SILT

O(N IOg N)[ ““““ Il cache” socc 201 1]

[SILT, SOSP 201 1]

Entropy-coded tries

[SOSP + ALENEX]

Multi-reader
parallel cuckoo
haSh i ng [“MemC3” - NSDI 201 3]

Partial-key cuckoo hashing

Cuckoo filter



Moore Dennard

Processor Frequency Scaling Over Time

I Scaling of Transistor Feature Sizes Over Time
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highly parallel, lower-GHz, (memory-
constrained?):

Architectures, algorithms, and programming



