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Gigahertz is not free
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The Memory Wall Transistors

Have the soul of
a capacitor

Charge
Here

Moves charge 
carriers here

Which lets current flow



Gigahertz hurts

Remember:  
Memory capacity costs you
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“Each decimal order of magnitude increase in parallelism requires a 
major redesign and rewrite of parallel code” - Kathy Yelick

8



ParallelizationLoad Balancing

Memory Capacity
Hardware
Specificity

Bigger Clusters

Wimpy Nodes



ParallelizationLoad Balancing

Memory Capacity

The FAWN Quad of Pain

Hardware
Specificity

Bigger Clusters

Wimpy Nodes



It’s not just masochism

All systems will face this challenge over time

Moore Dennard

(Figures from Danowitz, Kelley, Mao, Stevenson, and Horowitz:  CPU DB)



FAWN:
It started 

with a key-value store
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Key-value storage systems

• Critical infrastructure service

• Performance-conscious

• Random-access, read-mostly, hard to cache
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Small record, random access
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Small record, random access
Select name,photo from users where uid=513542; 
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Small record, random access

Select name,photo from users where uid=818503; 
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Small record, random access

Select name,photo from users where uid=468883; 
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Small record, random access

Select name,photo from users where uid=124111; 

Select wallpost from posts where pid=13821828188; 
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Select wallpost from posts where pid=89888333522; 

Small record, random access

Select name,photo from users where uid=124111; 

Select wallpost from posts where pid=13821828188; 
Select name,photo from users where uid=474488; 

Select name,photo from users where uid=42223; 
Select name,photo from users where uid=124566; 

Select name,photo from users where uid=097788; 

Select name,photo from users where uid=357845; 

Select wallpost from posts where pid=12314144887; 

Select wallpost from posts where pid=738838402; 
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FAWN-DS and -KV:
Key-value Storage System

Goal: improve Queries/Joule
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500MHz CPU
256MB DRAM

4GB CompactFlash
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FAWN-DS and -KV:
Key-value Storage System

Goal: improve Queries/Joule

14

500MHz CPU
256MB DRAM

4GB CompactFlash

Unique Challenges:
•  Wimpy CPUs, limited DRAM

• Flash poor at small random writes 

• Sustain performance during membership changes
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Avoiding random writes
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Figure 2: (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transfer-
ring out-of-range entries to the new store. (c) After scan is complete, the datastore list is atomically updated to add the new store.
Compaction of the original store will clean up out-of-range entries.

3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.

Hashtable Data region

Principles Key-Value Systems EvaluationFAWN-KV Design



In FlashIn DRAM

Avoiding random writes

15

Data Log 
In-memory
Hash Index 

Log Entry

KeyFrag   Valid Offset

160-bit Key

KeyFrag

Key   Len   Data

Inserted values
are appended

Scan and Split

Concurrent
Inserts

Datastore List Datastore List
Data in new range
Data in original range Atomic Update

of Datastore List

(a) (b) (c)

Figure 2: (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transfer-
ring out-of-range entries to the new store. (c) After scan is complete, the datastore list is atomically updated to add the new store.
Compaction of the original store will clean up out-of-range entries.

3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.

Hashtable Data region
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3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.

K1,VPut

Hashtable Data region
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3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.
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3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.

K1,V

Put

Hashtable Data region

Principles Key-Value Systems EvaluationFAWN-KV Design



In FlashIn DRAM

Avoiding random writes

15

Data Log 
In-memory
Hash Index 

Log Entry

KeyFrag   Valid Offset

160-bit Key

KeyFrag

Key   Len   Data

Inserted values
are appended

Scan and Split

Concurrent
Inserts

Datastore List Datastore List
Data in new range
Data in original range Atomic Update

of Datastore List

(a) (b) (c)

Figure 2: (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transfer-
ring out-of-range entries to the new store. (c) After scan is complete, the datastore list is atomically updated to add the new store.
Compaction of the original store will clean up out-of-range entries.

3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.
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3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.
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Research Example

• Developed DRAM-efficient system to find 
location on flash

• (“Partial-key hashing”)  2008-9

• We’ve continued this since then:

• Partial-key cuckoo hashing 2011

• Optimistic concurrent cuckoo hashing 2012
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Evaluation Takeaways

• 2008: FAWN-based system 6x more 
efficient than traditional systems

• Partial-key hashing enabled memory-
efficient DRAM index for flash-resident 
data

• Can create high-performance, predictable 
storage service for small key-value pairs
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And then we moved to 
Atom + SSD
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Geode
500Mhz

256MB 4GB CF Card
~2k IOPS

Atom
1.6 Ghz

single-core
2GB 120GB SSD

~60k IOPS

6x 8x 30-60x
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SILT

SILT

SILT

backend store
hyper-optimized
for low DRAM
and large flash

FAWN-DS FAWN-KV SILT Small Cache Cuckoo
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“Practical Batch-Updtable 
External Hashing with Sorting”

H. Lim et al.,   ALENEX 2012

(Recently heard that Bing uses 
several state-of-the-art, 

memory-efficient indexes)

Systems begat 
algorithms:
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small/fast	
  cache	
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  enough!

Backend1

FrontEnd

Queries
Backend2

…

Backend8

Backend8

cache

24

We	
  prove	
  that,	
  for	
  n	
  nodes
-­‐ Only	
  need	
  to	
  cache	
  O(n	
  log	
  n)	
  most	
  
popular	
  entries

-­‐ With	
  100	
  backend	
  nodes,	
  need	
  only	
  
about	
  4,000	
  items	
  in	
  the	
  cache.	
  	
  Tiny!



Worst	
  case?	
  	
  Now	
  best	
  case
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Thus...
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SILT

SILT

SILT

FAWN-DS FAWN-KV SILT Small Cache Cuckoo

Insanely 
Fast Cache

“Brawny” server

“Wimpy” servers

O(N log N)

Multi-reader 
parallel cuckoo 

hashing

Entropy-coded tries

Partial-key cuckoo hashing

Cuckoo filter

[“small cache” socc 2011]

[“MemC3” - NSDI 2013]

[FAWN, SOSP 2009]

[SILT, SOSP 2011]

[SOSP + ALENEX]



highly parallel, lower-GHz, (memory-
constrained?):

Architectures, algorithms, and programming

Moore Dennard


