Learning to Scale Out
By Scaling Down

The FAWN Project

David Andersen,Vijay Vasudevan, Michael Kaminsky™, Michael A.
Kozuch™®, Amar Phanishayee, Lawrence Tan, Jason Franklin, lulian
Moraru, Sang Kil Cha, Hyeontaek Lim, Bin Fan, Reinhard Munz,
Nathan Wan, Jack Ferris, Hrishikesh Amur** Wolfgang Richter,
Michael Freedman™** Wyatt Lloyd™**, Padmanabhan Pillali*,
Dong Zhou

Carnegie Mellon University *Intel Labs Pittsburgh
** Princeton University *** Georgia Tech

|000W

=

Servers

Servers

Infrastructure:
PUE
2005: 2-3
2012:~1.1
Leave it to industry 100%

|000W

Servers

Infrastructure:
PUE

2005: 2-3

2012:~1.1

Proportionality

750W

200w

Infrastructure:
PUE

2005: 2-3

2012: ~1.1

Efficiency

300W

Proportionality

750W

200w

Infrastructure:
PUE

2005: 2-3

2012:~1.1

e ——
"/,p - - T =

[

- 0% Efficiency-

|000W N
300W
Proportionality
750W

200w

Principles ‘

Gigahertz is not free

Speed and power calculated from specification sheets
Power includes “system overhead” (e.g., Ethernet)

2500 o S N A A ;
2000 [M
Instructions ~ XScale 800Mhz tom Z500
Joule 1500 R
| | | Xeon7350
1000 o e A ¥ e
| | ° o ‘ |
500 |- Gustom ARM Mote, g .
| 3 3 | ®
o ° ‘.. %o |
ol.—=<® a® L
1 10 100 1000 10000 100000

Instructions/sec in millions

(Speed)

Principles \Key-VaIue Systems ‘FAWN-KV Design ‘Evaluation
The Memory Wall
Disk Seek
| ms
s DRAM Access —

Ins
CPU Cycle

1980 1985 1990 1995 2000 2005

Year

Principles \Key-VaIue Systems ‘FAWN-KV Design ‘Evaluation
The Memory Wall
Disk Seek
| ms

Bridge gap: Caching,
speculation, etc.

DRAM Access

| us

Ins
CPU Cycle

1980 1985 1990 1995 2000 2005

Year

Principles \Key-VaIue Systems ‘FAWN-KV Design ‘Evaluation
The Memory Wall Transistors
Disk Seek

Have the soul of

Ims a capacitor

Bridge gap: Caching,
speculation, etc.

DRAM Access

| us

Ins
CPU Cycle

1980 1985 1990 1995 2000 2005

Year

Principles \ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

The Memory Wall Transistors
Disk Seek
Have the soul of
| ms

a capacitor

Charge
Here / \
Moves charge

carriers here

Bridge gap: Caching,
speculation, etc.

DRAM Access

| us

Ins
CPU Cycle

1980 1985 1990 1995 2000 2005

Which lets current flow

Year

Gigahertz hurts

Remember:
Memory capacity costs you

/) & B .\

Wlmpy” Nodes

e oo

1.6 GHz Dual-core Atom \
32-160 GB Flash SSD
Only 1 GB DRAM!

|
i
|
!
I
H |
:

“Each decimal order of magnitude increase in parallelism requires a
major redesign and rewrite of parallel code™ - Kathy Yelick

Load Balancing Parallelization

Bigger Clusters

Wimpy Nodes

Hardware

Specificity Memory Capacity

The FAWN Quad of Pain

Load Balancing Parallelization

Bigger Clusters

Wimpy Nodes

Hardware

Specificity Memory Capacity

It's not just masochism

Moore Dennard

BB scoling of Transistor Festure Sizes Over Time Processor Frequency Scaling Over Time

1.0um
3162

0.68 um

0.50 um
1000

0.35 um 'g
& 025um =
£ ci8um i 316
-
K
0.13um E
[*]

90 nm 100

65 nm
45 nm

32 nm

198

(Figures from Danowitz, Kelley, Mao, Stevenson, and Horowitz: CPU DB)

All systems will face this challenge over time

FAVVN:
It started
with a key-value store

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Key-value storage systems

® Critical infrastructure service
® Performance-conscious

® Random-access, read-mostly, hard to cache

Secn S50 3 Wrpeord or phiate

Ewittend

a Member? Login
Discover what's happening right now, anywhere in the world Twitter Is a rich source of
nstant information. Stay
Password: : wpdated Keep others updated
Facebook Is a social utility that connects e
dCeéDoo o
you with the people around you.
. Let me in>
Forgot Password? s here View all »
o o Ga i) planetbeing Fisally breaking radio swlence %o bring you Customize Twitter by choosing
eryons £ 2D00K — m - L vdr ¢ Pre Y1 o folow wee tweetsy
hode fol SO0N A
they're posted
Crefio g emerm na of | W
upload photos or publish notes - get the latest news from your friends - post videos on your 1 Know Cod's weed
f ter for a bus
rofile - tag your ¢ Twitter 101

se privacy settings to control who sees your info - join a network

(=2 Find your friends»

12

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Dan Wendlandt wrote

have a good one man. hope the facebook TG was fun, the email was
hilarious

Wall-to-Wa Write on Dan's Wa

Patrick Gage Kelley wrote
Oh! birthday!

Wall-to-Wa Write on Patrick's Wal
Corey lohn Ram
lyican Bethenco Ravichan
urt) Jagan Seshadri wrote
Happy birthday Vij! 24 and there's so much more...
Wall-to-Wa Write on Jagan's Wa
_reate a Profile Badge Vish Subramanian wrote
hapy birthday dude, its been awhile!
= Wall-to-Wa Write on Vish's Wall
Y - Bobby Gregg wrote
I A ’.

S hi vijay! i'm super early but i'm bad about checking facebook regularly
‘ nowadays so i wanted to say happy birthday. let's catch up about our
respective grad school woes.

Wall-to-Wa Write on Bobby's Wall

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Select name,photo from users where uid=513542;

o _.,!F Dan Wendlandt wrote
4 Bl have a good one man. hope the facebook TG was fun, the email was
FZJ I hilarious

g Patrick Gage Kelley wrote
L

J‘ .:; hl bir".‘”?iil}"

sesnadri wrote

Happy birthday Vij! 24 and there's so much more...

1 wrote

| S :) :
hapy birthday dude, its been awhile!

: ' Bobby Gregg wrote

- A

vijay! i'm super early but i'm bad about checking facebook regularly
ij nowadays so i wanted to say happy birthday. let's catch up about our

respective grad school woes.

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Select name,photo from users where uid=818503;

wrote

Vij! 24 and there's so much more...

wrote

—
hnapy birthday dude, its been awhile
=y

wrote

vijay! i'm super early but i'm bad about checking facebook regularly
‘i nowadays so | wanted to say happy birthday. let's catch up about our

respective grad school woes.

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

1“'
.,‘; Dan Wendlandt wrote
Ll "y

13

t{.bé

nave a good one man. hope the facebook TG was fun, the email was

niarious

S Patrick Gage Kelley wrote

: > -
J‘ Oh! birthday!

— ‘ ,
- . » | ¢ " S " 4 \‘-‘rOtC

; 'S SO much more...
‘ Select name,photo from users where uid=468883; |, R
1 wrote

| S .) :
hapy birthday dude, its been awhile!

i ' Bobby Gregg wrote

. 11

vijay! i'm super early but i'm bad about checking facebook regularly
‘] nowadays so i wanted to say happy birthday. let's catch up about our

respective grad school woes.

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

‘i"‘r‘:)tt
e
napy oirtnaay di
wrote
n 1 1 SUpP¢ \Irly but I'm bad about chef g ebo egularly
‘» N SO | W to \appy birtha t's catch up about ou
_
espectn I’J"L‘Ij (
* AL

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

Small record, random access

Select wallpost from posts where pid=89888333522;

.
| y -
. L g .
4 ' B :
poe n _'_. . d
» < p _—
y as 1

here 111d= 24111;

Select name,photo from users where uid=124566;

Select wallpost from posts where pid=12314144887;

‘ Select name,photo from users where uid=357845; I

|3

Principles ‘ Key-Value Systems ‘ FAWN-KYV Design ‘ Evaluation

FAWN-DS and -KV:

Key-value Storage System

Goal: improve Queries/jJoule

500MHz CPU
256MB DRAM
} 4GB CompactFlash

FAWN-KYV Design

Goal: improve Queries/jJoule

Unique Challenges:

* Wimpy CPUs, limited DRAM
® Flash poor at small random writes

® Sustain performance during membership changes

SOMR RS 256MBIL

r
LS 4GB Comg
' ‘ ”\\ | " ’
\ - (""‘»‘ |

|4

Avoiding random writes

Hashtable

[FAWN-KYV Design

Data region

NN

Avoiding random writes

In DRAM
Hashtable

[FAWN-KYV Design

In Flash

Data region

HiNIn

[FAWN-KYV Design

Avoiding random writes

In DRAM In Flash

Hashtable Data region

Put

[FAWN-KYV Design

Avoiding random writes

In DRAM In Flash

Hashtable Data region

Put

[FAWN-KYV Design

Avoiding random writes

In DRAM In Flash

Hashtable Data region

Put

[FAWN-KYV Design

Avoiding random writes

In DRAM In Flash

Hashtable Data region

T (T
|]

Put

[FAWN-KYV Design

Avoiding random writes

In DRAM In Flash
Hashtable Data region
T -

]

Put

All writes to Flash are sequential

Research Example

® Developed DRAM-efficient system to find
location on flash

® (“Partial-key hashing’) 200s-9
® VWe've continued this since then:
® Partial-key cuckoo hashing 201

® Optimistic concurrent cuckoo hashing 212

I ‘ ‘ Evaluation

Evaluation Takeaways

® 2008: FAWN-based system 6x more
efficient than traditional systems

® Partial-key hashing enabled memory-
efficient DRAM index for flash-resident

data

® Can create high-performance, predictable
storage service for small key-value pairs

And then we moved to
Atom + SSD

Geode 4GB CF Card
500Mhz 256MB ~2k IOPS
' 6x l 30-60x
Atom
|20GB SSD
|.6 Ghz 2GB ~60k 1OPS

single-core

FAWN-DS FAWN-KVY Small Cache Cuckoo

Fawn-DS

Fawn-KV Fawn-DS

FAWN-DS FAWN-KY SILT Small Cache Cuckoo

backend store
hyper-optimized
for low DRAM

and large flash

SILT

Fawn-KV

SILT

SILT

Systems begat
algorithms:

“Practical Batch-Updtable
External Hashing with Sorting”

H.Lim et al., ALENEX 2012

(Recently heard that Bing uses
several state-of-the-art,
memory-efficient indexes)

20

And now... Load imbalance

* Distributed key-value system

Backendl

21

And now... Load imbalance

* Distributed key-value sym

Backendl

\\ >
LS Y /

21

And now... Load imbalance

* Distributed key-value sym !

Backendl —" 3 /

And now... Load imbalance

* Distributed key-value sym !

Backendl

\

(OS5 /

Backend2

\“ -
o /

Back.. 85

\\ :
o /

Back.. 88

\" =
o /

21

* Distributed key-value sym

1.

And now... Load imbalance

get (key)

Backendl

<

\

(OS5 /

Backend2

\“ -
o /

Back.. 85

\\ :
o /

Back.. 88

\" =
o /

21

* Distributed key-value sym

1.

And now... Load imbalance

get (key)

2. BackendID=hash (key)

Backendl

<

\

(OS5 /

Backend2

Back.. 85

Back.. 88

21

And now... Load imbalance

* Distributed key-value sym !

Backendl — o /

Backend2 (—— ;
~

3. val=lookup (key)

1. get(key)

2. BackendID=hash (key)

Back.. 85 \‘\: /

Back.. 88 \\ /

21

And now... Load imbalance

* Distributed key-value sym

1. get(key)

4. return val

2. BackendID=hash (key)

<

Backendl

\

(OS5 /

Backend2

-\“ -
oS /

3. val=lookup (key)

Back.. 85

\\ '
o /

Back.. 88

\\.:/ |

21

And now... Load imbalance

* Distributed key-value sym !

Backendl

S

10,000 queries/sec

1. get(key)

4. return val

2. BackendID=hash (key)

Backend2

3. val=lookup (key)

Back.. 85

Back.. 88

21

And now... Load imbalance

* Distributed key-value sym !

Backendl (—"
NG

10,000 queries/sec

SLA: 850,000 queries/sec

1. get(key)

4. return val

2. BackendID=hash (key)

3. val=lookup (key)

Backend2 (——

Back.. 85 <\‘\: /

21

(KQPS)

Overall throughput

Measured tput on FAWN testbed

1000 .
uniform
Zipf (1.01) ---->----
adversarial -
800
600
400
200
0

10 20 30 40 50 60 70 80 90 100

n: number of nodes

Overall throughput (KQPS)

1000

800

600

400

200

" uniform ——
Zipf (1.01) -
adversarial ¥

10 20 30

n:

Queries

40 50 60 70 80 90
number of nodes

100

Backendl

Backend?2

BackendS8

Backend8

.- /'

23

1000 r r r r

uniform —+—
Zipf (1.01) ----%----
adversarial - SRt
800

600

400

200

Overall throughput (KQPS)

10 20 30 40

50

60 70 80

n: number of nodes

Queries

cache

90 100

How many items to cache?

Backendl

Backend2

BackendS8

Backend8

23

small/fast cache is enough!

Queries

cache

We prove that, for n nodes
- Only need to cache O(n log n) most

popular entries
- With 100 backend nodes, need only
about 4,000 items in the cache. Tiny!

24

Worst case? Now best case

1000 L] L] L] L] L] L] L] L] L] L)
uniform —— 1000 'X

- Zipf (1.01) - =

g adversarial - L)

o 800 S 800

M ¥

§4 600 g

< 24 600

o o

= 3

O 0

H G

5 400 ﬁ 400

—
—

< 2

4 200 3 200

3 > uniform —+—
© Zipf (1.01) ===

0 0 .]]] adlversla.ria:.L *.

10 20 30 40 50 60 70 80 90 100

n: number of nodes
n: number of nodes

10 20 30 40 50 60 70 80 90 100

Thus...

FAWN-DS FAWN-KY SILT Small Cache Cuckoo

«¢ o ”»
Wl m Py Servers [FAWN, SOSP 2009]

“Brawny” server SILT

» Insanely SILT
« Fast Cache
SILT

O(N IOg N)[““““ Il cache” socc 201 1]

[SILT, SOSP 201 1]

Entropy-coded tries

[SOSP + ALENEX]

Multi-reader
parallel cuckoo
haSh i ng [“MemC3” - NSDI 201 3]

Partial-key cuckoo hashing

Cuckoo filter

Moore Dennard

Processor Frequency Scaling Over Time

I Scaling of Transistor Feature Sizes Over Time

1.5 um 10000

1.0um
3162

0.68 um

0.50um
- 1000
0.35um §
& 025um T
é 0.18um % 316
< 013um Z
o 100
90 nm
65 nm
45 nm 32
32 nm
10
198

198

highly parallel, lower-GHz, (memory-
constrained?):

Architectures, algorithms, and programming

