Autograder /G

RISHABH SINGH, SUMIT GULWANI, ARMANDO SOLAR-LEZAMA

lcrosoft rch [P;Z r&

CSAIL

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

e Test-cases based feedback
* Hard to relate failing inputs to errors

* Manual feedback by TAs
* Time consuming and error prone

Feedback on Programming Assighments

"Not only did it take -2 weeks to grade problem, but the
comments were entirely unhelpful in actually helping us fix
our errors.Apparently they don't read the code — they just
ran their tests and docked points mercilessly. What if | just had

a simple typo, but my algorithm was fine?"

Student Feedback

ﬁ U coursera

UDACITY

Scalability Challenges (> 100k students)

Bigger Challenge in MOOCs

Today’s Grading Workflow

def computeDeriv (poly) :
deriv = []

sero = 0 replace derive by [O]
if (len(poly)[== 1):
j‘> return (deriy

def computeDeriv (poly) :

deriv = []

zero = 0

if (len(poly) == 1):
return deriv

for e in range (0, len(poly)):
if (polyle] == 0):

zero += 1 zero += 1

else: else:

deriv.append (polyle] *e) deriv.append (polyle] *e)
return deriv return deriv

Teacher’s Solution Grading Rubric

for e in range (0), len(poly)):
if @olyle] = Tp

Autograder Workflow

def computeDeriv (poly) :
deriv = []
zero = 0
if (len(poly) == 1):
return deriv
for e in range (0, len(poly)):
if (polyle] == 0):
zero += 1
else:
deriv.append (polyle] *e)
return deriv

Teacher’s Solution

=)

def computeDeriv (poly) :

deriv = []

cero = 0 replace derive by [O]
if (len(poly)[== 1):
return @eriy

for e in range (0), len(poly)):
zero += 1
else:
deriv.append (polyle] *e)
return deriv

Error Model

Technical Challenges

Large space of possible corrections

Minimal corrections

Dynamically-typed language

Running Example

computeDeriv

Compute the derivative of a polynomial

poly = [10, 8, 2] #f(x) = 10 + 8x +2x2
=> [8, 4] BE/ (x) = 8 + 4x

Teacher’s solution

def computeDeriv (poly) :
result = []
1f len(poly) == 1:
return [0O]
for 1 in range(l, len(poly)):
result += [1 * poly[1]]
return result

Demo:
http://bit.ly/1 79jFjo

http://bit.ly/179jFjo
http://bit.ly/179jFjo

Simplified Error Model

* return a =2 return {[0], ?a}
° range(a,, a,) =2 range(a,;+1,a,)

* a, == a, 2 False

Autograder Algorithm

Algorithm

Rewriter [> Translator [> Solver [> Feedback

Algorithm: Rewriter

FD Translator [> Solver [> Feedback

Rewriting using Error Model

range (0, len(poly))

!

range ({I%}, len (poly))

default choice

Rewriting using Error Model

range (0, len(poly))

!

range ({0| , 1}, len(poly))

Rewriting using Error Model

range (0, len(poly))

!

range ({{0],1}, len({polyl, poly+1}))

Rewriting using Error Model

range (0, len(poly))

!

range ({{0] , 1}, {{len({polyl poly+1})}
len ({poly, poly+1l})+1})

Rewriting using Error Model (Py)

def computeDeriv (poly) :

deriv = []
zero = 0
LE ({|L (ly) == 1|, Fal }) e .
L ({llen (poly e Problem: Find a program that
return {deriv, [0]} minimizes cost metric and
for e in range({0/1}, len(poly)): js functionally equivalent
if (polyle] == 0): . 9 .
zero += 1 with teacher’s solution
else:

deriv.append (polyle] “e)

return {deriv) [0]}

Algorithm:Translator

Solver [> Feedback

Rewriter [> * [>

. Py sk

A Synthesis Primer

The Synthesis problem as a doubly quantified constraint

{PY in (in, P E Spec)

> What does it mean to quantify over programs!?

Quantifying over programs

Synthesis as curve fitting

It’s hard to do curve fitting with arbitrary curves

° Instead, people use parameterized families of curves

> Quantify over parameters instead of over functions
3 cVin (in,P[c] E Spec)

Key idea:

Let user define parameterized functions with partial programs

Sketch [Solar-Lezama et al. ASPLOS06]

vold main (int x) { vold main (int x) {
int k = 27; int k = 2;
assert x + x == k * x; assert x + x == k * x;

Statically typed C-like language with holes

Py Translation to Sketch

(1) Handling python’s dynamic types

(2) Translation of expression choices

Algorithm: Solver

Rewriter

pe
S AN

Translator

-)

[> Feedback

CEGIS Synthesis algorithm

Synthesize

dc s.t. Correct(P,, in;)

CEGIS

Synthesize

Check
Q (c'inO) Q (C, inl) —|Q (c,in;)

0, (C,inz) Q (C'in?»)

Algorithm: Feedback

Rewriter [> Translator [> Solver [H

Feedback Generation

Correction rules associated with Feedback Template

Extract synthesizer choices to fill templates

Evaluation

Autograder Tool for Python

Currently supports:
- Integers, Bool, Strings, Lists, Dictionary, Tuples

- Closures, limited higher-order fn, list comprehensions

Benchmarks

Exercises from first five weeks of 6.00x and 6.00

int: prodBySum, compBal, iterPower, recurPower, iterGCD

tuple: oddTuple
list: compDeriv, evalPoly
string: hangman |, hangman?2

arrays(C#): APCS dynamic programming (Pex4Fun)

Benchmark Test Set

evalPoly-6.00 |3
compBal-stdin-6.00 52
compDeriv-6.00 103
hangman2-6.00x 218
prodBySum-6.00 268
oddTuples-6.00 344
hangman|-6.00x 351
evalPoly-6.00x 541
compDeriv-6.00x 918
oddTuples-6.00x 1756
iterPower-6.00x 2875
recurPower-6.00x 2938
iterGCD-6.00x 2988

Time (in s)
= = N N w w
o U o Ul o (O]

Ul

0llIl|I||IIII
N S S S N S+ St St oF St St SF

© NS N N S S A S AN

Average Running Time (in s)

30.00%
20.00%
10.00%

0.00%

Feedback Percentage

Feedback Generated (Percentage)

30.00%
20.00%
10.00%

0.00%

Feedback Percentage

Feedback Generated (Percentage)

30.00%
20.00%
10.00%

0.00%

Feedback Percentage

Feedback Generated (Percentage)

30.00%
20.00%
10.00%

0.00%

Feedback Percentage

Feedback Generated (Percentage)

Why low % in some cases?

* Completely Incorrect Solutions
* Unimplemented Python Features

* Timeout
* comp-bal-6.00

* Big Conceptual errors

Big Error: Misunderstanding APlIs

* eval-poly-6.00x

def evaluatePoly(poly, Xx):
result = 0

for 1 in list (poly):
result += 1 * X **<§§£§.inde§2§1}

return result

Big Error: Misunderstanding Spec

* hangman2-6.00x

def getGuessedWord (secretWord, lettersGuessed) :
for letter in lettersGuessed:
secretWord = secretWord.replace (letter,’”)
return secretWord

» A technique for automated feedback generation
Error Models, Constraint-based synthesis

» Provide a basis for automated feedback for MOOCs

» Towards building a Python Tutoring System
Thanks! rishabh@csail.mit.edu

Conclusion

