Autograder Æ

RISHABH SINGH, SUMIT GULWANI, ARMANDO SOLAR-LEZAMA

Microsoft® Research

- Test-cases based feedback
 - Hard to relate failing inputs to errors
- Manual feedback by TAs
 - Time consuming and error prone

Feedback on Programming Assignments

"Not only did it take I-2 weeks to grade problem, but the comments were entirely unhelpful in actually helping us fix our errors. Apparently they don't read the code — they just ran their tests and docked points mercilessly. What if I just had a simple typo, but my algorithm was fine?"

Student Feedback

coursera

Scalability Challenges (>100k students)

Bigger Challenge in MOOCs

Today's Grading Workflow

```
def computeDeriv(poly):
                                                                                       def computeDeriv(poly):
    deriv = []
                                                                                           deriv = []
                                                                                                            replace derive by [0]
    zero = 0
    if (len(poly) == 1):
                                                                                           if (len(poly) == 1):
        return deriv
                                                                                               return (deriv
    for e in range(0, len(poly)):
                                                                                           for e in range (0, len(poly)):
        if (poly[e] == 0):
                                                                                               if (poly[e] == 0)
            zero += 1
                                                                                                    zero += 1
        else:
                                                                                               else:
            deriv.append(poly[e]*e)
                                                                                                   deriv.append(poly[e]*e)
    return deriv
                                                                                           return deriv
```

Teacher's Solution

Grading Rubric

Autograder Workflow

```
def computeDeriv(poly):
                                                                                       def computeDeriv(poly):
    deriv = []
                                                                                           deriv = []
                                                                                                           replace derive by [0]
    zero = 0
    if (len(poly) == 1):
                                                                                           if (len(poly) == 1):
        return deriv
                                                                                               return deriv
    for e in range(0, len(poly)):
                                                                                           for e in range (0), len(poly)):
        if (poly[e] == 0):
                                                                                               if (poly[e] == 0)
            zero += 1
                                                                                                    zero += 1
        else:
                                                                                               else:
            deriv.append(poly[e] *e)
                                                                                                   deriv.append(poly[e]*e)
                                                                                           return deriv
    return deriv
```

Teacher's Solution

Error Model

Technical Challenges

Large space of possible corrections

Minimal corrections

Dynamically-typed language

Constraint-based Synthesis to the rescue

Running Example

computeDeriv

Compute the derivative of a polynomial

poly =
$$[10, 8, 2]$$
 #f(x) = $10 + 8x + 2x^2$
=> $[8, 4]$ #f'(x) = $8 + 4x$

Teacher's solution

```
def computeDeriv(poly):
    result = []
    if len(poly) == 1:
        return [0]
    for i in range(1, len(poly)):
        result += [i * poly[i]]
    return result
```

Demo: http://bit.ly/179jFjo

Simplified Error Model

- return a \rightarrow return {[0],?a}
- range(a_1 , a_2) \rightarrow range(a_1+1 , a_2)
- $a_0 == a_1 \rightarrow False$

Autograder Algorithm

Algorithm

Algorithm: Rewriter


```
range(0, len(poly))

range({0,1}, len(poly))

default choice
```

$$a \rightarrow a+1$$

```
range(0, len(poly))

range(1, len(poly))

range(1, len(poly))
```

```
range(0, len(poly))

range({0, len(poly)})

range({0, len(poly)})
```

```
range(0, len(poly))

range({0, 1}, {len({poly, poly+1}), len({poly, poly+1})+1})
```

$$a \rightarrow a+1$$

```
def computeDeriv(poly):
    deriv = []
    zero = 0
    if ({|len(poly) == 1|, False}):
        return {deriv, [0]}
    for e in range(\{0,1\}, len(poly)):
        if (poly[e] == 0):
            zero += 1
        else:
            deriv.append(poly[e] *e)
    return {deriv, [0]}
```

Problem: Find a program that minimizes cost metric and is functionally equivalent with teacher's solution

Algorithm: Translator

A Synthesis Primer

The Synthesis problem as a doubly quantified constraint

$$\exists P \forall in (in, P \models Spec)$$

• What does it mean to quantify over programs?

Quantifying over programs

Synthesis as curve fitting

It's hard to do curve fitting with arbitrary curves

- Instead, people use parameterized families of curves
- Quantify over parameters instead of over functions

$$\exists c \forall in (in, P[c] \models Spec)$$

Key idea:

Let user define parameterized functions with partial programs

Sketch [Solar-Lezama et al. ASPLOS06]

```
void main(int x) {
    int k = ??;
    assert x + x == k * x;
}
void main(int x) {
    int k = 2;
    assert x + x == k * x;
}
```

Statically typed C-like language with holes

\widetilde{Py} Translation to Sketch

(I) Handling python's dynamic types

(2) Translation of expression choices

Algorithm: Solver

CEGIS Synthesis algorithm

CEGIS

Algorithm: Feedback

Feedback Generation

Correction rules associated with Feedback Template

Extract synthesizer choices to fill templates

Evaluation

Autograder Tool for Python

Currently supports:

- Integers, Bool, Strings, Lists, Dictionary, Tuples
- Closures, limited higher-order fn, list comprehensions

Benchmarks

Exercises from first five weeks of 6.00x and 6.00

int: prodBySum, compBal, iterPower, recurPower, iterGCD

tuple: oddTuple

list: compDeriv, evalPoly

string: hangman I, hangman 2

arrays(C#): APCS dynamic programming (Pex4Fun)

Benchmark	Test Set
evalPoly-6.00	13
compBal-stdin-6.00	52
compDeriv-6.00	103
hangman2-6.00x	218
prodBySum-6.00	268
oddTuples-6.00	344
hangman I-6.00x	35 I
evalPoly-6.00x	541
compDeriv-6.00x	918
oddTuples-6.00x	1756
iterPower-6.00x	2875
recurPower-6.00x	2938
iterGCD-6.00x	2988

Average Running Time (in s)

Why low % in some cases?

- Completely Incorrect Solutions
- Unimplemented Python Features
- Timeout
 - · comp-bal-6.00

Big Conceptual errors

Big Error: Misunderstanding APIs

eval-poly-6.00x

```
def evaluatePoly(poly, x):
    result = 0
    for i in list(poly):
        result += i * x ** poly.index(i)
    return result
```

Big Error: Misunderstanding Spec

hangman2-6.00x

```
def getGuessedWord(secretWord, lettersGuessed):
    for letter in lettersGuessed:
        secretWord = secretWord.replace(letter,'_')
    return secretWord
```

- A technique for automated feedback generation Error Models, Constraint-based synthesis
- > Provide a basis for automated feedback for MOOCs

> Towards building a Python Tutoring System

Thanks! rishabh@csail.mit.edu

Conclusion