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This talk

The idea of “deep learning.” Using brain simulations, hope to:
- Make learning algorithms much better and easier to use.
- Make revolutionary advances in machine learning and Al.

| believe this is our best shot at progress towards real Al.




What do we want computers to do with our data?

Label: “Motorcycle”
5 Suggest tags
Image search

Images/video

Speech recognition

Audio Speaker identification
Music classification
Web search
Text > Anti-spam

Machine translation

Machine learning performs well on many of these problems, but is a
lot of work. What is it about machine learning that makes it so hard
to use?

\ndrew Ng



Machine learning and feature representations

Learning

algorithm

pixel 2

< Motorbikes
Raw image “Non”-Motorbikes

pixel 2

Andrew Ng



Machine learning and feature representations

Sl Learning
algorithm

pixel 2

< Motorbikes
Raw image “Non”-Motorbikes
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pixel 1
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Machine learning and feature representations

Sl Learning
algorithm

pixel 2
Input
< Motorbikes
Raw image “Non”-Motorbikes
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What we want

—handlebars

> Feature Sl Learning
wheel representation algorithm

E.g., Does it have Handlebars? Wheels?

Input
-+ Motorbikes
Raw image “Non"-Motorbikes Features
~ g F "'+
)
= @ ot
+ 4 < &
+ =
Tk

pixel 1 Handlebars

Andrew Ng



Feature representations

Feature Learning
Representation algorithm

Andrew Ng



Computer vision features

Normalized patch Spin image

Image gradients Keypoint descriptor

HoG RIFT

SN2 2 5ok T4
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Audio features

ZCR

1~ Transform of Data Tapering Window [_{5]x]
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NLP features

35 SEM (<PAST SEES1> evl (NAME 1 “Jill”) (THE 41 : (DOG1 d1)))

<DOC>
<DOCID> wsj9%4_008.0212 </DOCID>
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VAR j1 / VAR di REEEIREDY, 48, who left :MSERPSY last month. A [ESH

‘ spokeswanan said it hasn‘t named a successor to Mr.
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Coming up with features is difficult, time-
consuming, requires expert knowledge.

Pars

His father, Nick Begich

e \\/nen working applications of learning, we
warswamne < 0end a lot of time tuning the features.

" /,-" / \_‘

Itstill hasn't turned up. It's why locators are now ~ S T

required in all US planes.

Anaphora Part of speech

Ontologies (WordNet)

Andrew Ng



The “one learning algorithm” hypothesis

-"J. i
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Cortex

Auditory cortex learns to see

[Roe et al., 1992]
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The “one learning algorithm” hypothesis

Ny d'f! " II|

- Somatosensory Cortex
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Somatosensory cortex learns to see

[Metin & Frost, 1989]

Andrew Ng



Learning input representations

Find a better way to represent images than pixels.

Andrew Ng



Learning input representations

et gt e
T R e
LA i bl

Find a better way to represent audio.

Andrew Ng



Feature learning problem

* Given a 14x14 image patch x, can represent

it using 196 real numbers. e

98
93
87
89
91
48

* Problem: Can we find a learn a better
feature vector to represent this?

Andrew Ng



Feature Learning via Sparse Coding

Sparse coding (Olshausen & Field,1996). Originally
developed to explain early visual processing In
the brain (edge detection).

Input: Images x®, x@, ..., xM (each in R"*x ")

Learn: Dictionary of bases ¢, ¢, ..., ¢, (also R"*"),
so that each input x can be approximately
decomposed as:

k
s.t. a’s are mostly zero ("sparse”)

Andrew Ng



Sparse coding illustration

Natural Images Learned bases (¢; _ {g4): “Edges”

L IMANT=Y
e P i, <l o 2
e B BTl B RS 74
M=

Test example

|
il

: F"l ~ (0.8 *

g

X ~ (.8 * <|>36 + 0.3 % by  TO5* gy
[a,, .., ag]l =1[0,0,..,0,0.8,0,..00.3,0,..0,0.5, 0]

(featu re representation) More succinct, higher-level,
representation.



More examples

bus 0, 0,

Represent as: [a,5=0.6, a,3=0.8, az; = 0.4].

05

b

Represent as: [a;=1.3, a,3=0.9, a,¢ = 0.3].

» Method “invents” edge detection.

« Automatically learns to represent an image in terms of the edges that
appear in it. Gives a more succinct, higher-level representation than
the raw pixels.

« Quantitatively similar to primary visual cortex (area V1) in brain.

Andrew Ng



Sparse coding applied to audio

Image shows 20 basis functions learned from unlabeled audio.
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[Evan Smith & Mike Lewicki, 2006] Andrew Ng



Sparse coding applied to audio

Image shows 20 basis functions learned from unlabeled audio.
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[Evan Smith & Mike Lewicki, 2006]
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Learning feature hierarchies

Higher layer
(Combinations of edges;
cf V2)

“Sparse coding”
(edges; cf. V1)

Input image (pixels)

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]
[Lee, Ranganath & Ng, 2007]



Learning feature hierarchies

Higher layer
(Model V3?)

Higher layer
(Model V27?)

Model V1

Input image

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]
[Lee, Ranganath & Ng, 2007]



Hierarchical Sparse coding (Sparse DBN): Trained on face images

object models

object parts
(combination

Iﬁ.ﬁ.ll' of edges)

Training set: Aligned

images of faces. F =N 02
NERFEL S
AINANN, | edges
=lI121l1m=

pixels

[Honglak Lee]



State-of-the-art
Unsupervised
feature learning



Images

Prior art (Ciresan et al., 2011) Prior art (Scherer et al., 2010)

Stanford Feature learning Stanford Feature learning

Video

Prior art (Laptev et al., 2004) Prior art (Liu et al., 2009)

Stanford Feature learning Stanford Feature learning

Prior art (Wang et al., 2010) Prior art (Wang et al., 2010)

Stanford Feature learning Stanford Feature learning

Text/NLP

Prior art (Das & Smith, 2009) Prior art (Nakagawa et al., 2010)

Stanford Feature learning Stanford Feature learning

Multimodal (audio/video)

Other unsupervised feature learning records:
Pedestrian detection (Yann LeCun)
Prior art (Zhao et al., 2009) Speech recognition (Geoff Hinton)

PASCAL VOC object classification (Kai Yu)
Stanford Feature learning

Andrew Ng



Technical challenge:
Scaling up



Scaling and classification accuracy (CIFAR-10)

Large numbers of features is critical. The specific learning algorithm is
important, but ones that can scale to many features also have a big
advantage.

80 -80

751 =75
2
= 0" -70
o
3
8
<
G 65~ 165
©
he)
$ - kmeans (tri) raw
B Anl kmeans (hard) raw |
8 60 - gmm raw 60

- autoencoder raw
- rbm raw
—e— kmeans (tri) white

55+~ kmeans (hard) white K8
—e— gmm white
—e— autoencoder white
| ‘ | —e— rbm white
50 : : —'50
100 200 400 800 1200 1600

# Features
[Adam Coates]



Scaling up: Discovering
object classes

[Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga,
Greg Corrado, Matthieu Devin, Kai Chen, Jeff Dean]



Local Receptive Field networks

Machine #1

Spars¢ features

Image

Le, et al., Tiled Convolutional Neural Networks. NIPS 2010

Machine #2

Machine #3

Machine #4

Andrew Ng



Asynchronous Parallel SGD

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012, ;e ng



Asynchronous Parallel SGD

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012, ;e ng



Asynchronous Parallel SGD

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012, ;e ng



Training procedure

What features can we learn if we train a massive model on a massive
amount of data. Can we learn a “grandmother cell”?

Train on 10 million images (YouTube)
1000 machines (16,000 cores) for 1 week.
1.15 billion parameters

Test on novel images

——

.f_g:’m th A% o
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Training set (YouTube) Test set (FITW + ImageNet)

Andrew Ng



Face neuron

Optimal stimulus by numerical optimization

Andrew Ng



Cat neuron

Top Stimuli from the test set Average of top stimuli from test set

‘ % 4\_{5 2
- L it D
i .1 2 '

Andrew Ng



ImageNet classification

20,000 categories
16,000,000 images

Others: Hand-engineered features (SIFT, HOG, LBP),
Spatial pyramid, SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



20,000 is a lot of categories...

smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis

Florida smoothhound, Mustelus norrisi

whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias

Pacific spiny dogfish, Squalus suckleyi

hammerhead, hammerhead shark

smooth hammerhead, Sphyrna zygaena

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus

guitarfish

roughtail stingray, Dasyatis centroura

OUTLErTly ray
eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma
grey skate, gray skate, Raja batis
little skate, Raja erinacea



0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

ImageNet 2009 (10k categories): Best published result: 17%
(Sanchez & Perronnin ‘11),
Our method:

Using only 1000 categories, our method > 50%

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Speech recognition on Android

n Speech Recognition and Deep Learning

Posted by Vincent Vanhoucke, Research Scientist, Speech Team

The New York Times recently published an article about Google’s large scale deep learning project, which learns to
discover patterns in large datasets, including... cats on YouTube!

What's the point of building a gigantic cat detector you
might ask? When you combine large amounts of data,
large-scale distributed computing and powerful machine
learning algorithms, you can apply the technology to
address a large variety of practical problems.

pictures of cats

With the launch of the latest Android platform release, Jelly
Bean, we've taken a significant step towards making that
technology useful: when you speak to your Android phone,
chances are, you are talking to a neural network trained to
recognize your speech.

Using neural networks for speech recognition is nothing
new: the first proofs of concept were developed in the late

Andrew Ng



Unsupervised Feature Learning Summary

* Deep Learning : Lets learn rather than manually design
our features.

 Discover the fundamental computational principles that
underlie perception.

* Deep learning very successful on vision and audio tasks.

 Other variants for learning recursive representations for
text.

Thanks to: Adam Coates, Quoc Le, Brody
Huval, Andrew Saxe, Andrew Maas,
Richard Socher, Tao Wang

Andrew Ng



Unsupervised Feature Learning Summary

* Deep Learning : Lets learn rather than manually design
our features.

 Discover the fundamental computational principles that
underlie perception.

* Deep learning very successful on vision and audio tasks.

 Other variants for learning recursive representations for
text.

Thanks to: Adam Coates, Quoc Le, Brody Huval, Andrew Saxe,
Andrew Maas, Richard Socher, Tao Wang

Andrew Ng



Conclusion



Deep Learning Summary

» Deep Learning and Self-Taught learning: Lets B g7
learn rather than manually design our features. L - T

Unlabeled images

Motorcycle

* Discover the fundamental computational
principles that underlie perception?

* Deep learning very successful on vision and
audio tasks.

 Other variants for learning recursive
representations for text.

Stanford

Adam Coates Quoc Le Honglak Lee  Andrew Saxe Andrew Maas Chris Manning Jiquan Ngiam Richard Socher  Will Zou

Google: KaiChen GregCorrado Jeff Dean Matthieu Devin Andrea Frome Rajat Monga Marc’Aurelio  Paul Tucker Kay Le
Ranzato

Andrew Ng



Advanced 7’0/7:‘05'

Andrew Nj

Stanford University & Goqg/e



Analysis of feature
learning algorithms

Andrew Coates Honglak Lee



Supervised Learning

« Choices of learning algorithm:

— Memory based
— Winnow /

— Perceptron Training set size
>
'Kl O
— Naive Bayes %
— SVM <

 \What matters the most?

[Banko & Brill, 2001]

“It's not who has the best algorithm that wins.
It's who has the most data.”

Andrew Ng



Unsupervised Feature Learning

« Many choices in feature learning algorithms;
— Sparse coding, RBM, autoencoder, etc.
— Pre-processing steps (whitening)
— Number of features learned
—Various hyperparameters.

 \WWhat matters the most?

Andrew Ng



Unsupervised feature learning

Most algorithms learn Gabor-like edge detectors.

Sparse auto-encoder

Andrew Ng



Unsupervised feature learning

Weights learned with and without whitening.

with whitening without whitening with whitening without whitening

el Bl SOl : h
Sparse auto-encoder Sparse RBM

with whitening without whitening with whitening without whitening

K-means Gaussian mixture model

Andrew Ng



Scaling and classification accuracy (CIFAR-10)

Cross—Validation Accuracy (%)

Performance for Raw and Whitened Inputs

80 -80
751 75
70+ =470
65+ -65
- » - kmeans (tri) raw
kmeans (hard) raw
601 - % - gmm raw 160
-* - autoencoder raw
-* - rbm raw
—o— kmeans (tri) white
55 kmeans (hard) white |29
—o— gmm white
—e— autoencoder white
0 —— rbm white 0
5 | | | | t t 5
100 200 400 800 1200 1600

# Features

Andrew Ng



Results on CIFAR-10 and NORB (old result)

« K-means achieves state-of-the-art

— Scalable, fast and almost parameter-free, K-means does
surprisingly well.

CIFAR-10 Test accuracy
Raw pixels

NORB Test accuracy (error)

Convolutional Neural Networks  93.4% (6.6%)
Deep Boltzmann Machines 92.8% (7.2%)
Deep Belief Networks 95.0% (5.0%)
Jarrett et al., 2009 94.4% (5.6%)

RBM with back-propagation
3-Way Factored RBM (3 layers)
Mean-covariance RBM (3 layers)

Improved Local Coordinate Coding Sparse auto-encoder 96.9% (3.1%)

Sparse RBM 96.2% (3.8%)
K-means (Hard) 96.9% (3.1%)

K-means (Triangle) 97.0% (3.0%

Convolutional RBM

Sparse auto-encoder
Sparse RBM
K-means (Hard)

K-means (Triangle, 1600 features)
K-means (Triangle, 4000 features)

Andrew Ng



Tiled Convolution
Neural Networks

Quoc Le Jiquan Ngiam



Learning Invariances

« We want to learn invariant features.

« Convolutional networks uses weight tying to:

— Reduce number of weights that need to be learned.
- Allows scaling to larger images/models.

— Hard code translation invariance. Makes it harder to
learn more complex types of invariances.

« Goal: Preserve computational scaling advantage of
convolutional nets, but learn more complex invariances.

Andrew Ng
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Fully Connected Topographic ICA

Pooling Units
(Sqart)
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(Square)

)
-]
Q
c

Doesn’t scale to large images.

Andrew Ng



Fully Connected Topographic ICA

Simple Units
(Square)

009009 -

Doesn’t scale to large images.

Andrew Ng



Local Receptive Fields

Simple Units
(Square)

o OO O

Andrew Ng



Convolution Neural Networks (Weight Tying)

Pooling Units Q Q Q

(Sart)

Simple Units
(Square)

pu OO O

Andrew Ng



Tiled Networks (Partial Weight Tying)

Q00

Tile Size (k) = 2
<>

Simple Units
(Square)

mpu OO O

Local pooling can capture complex invariances (not just translation);

but total number of parameters is small.
Andrew Ng



Tiled Networks (Partial Weight Tying)

Pooling Units
(Sqart) |
Tile Size

Simple Units
(Square)

A 0

Andrew Ng



Tiled Networks (Partial Weight Tying)

Pooling Units
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Tiled Networks (Partial Weight Tying)

Pooling Units
(Sqrt)

Tile Size (k) £ 2>

< S Number
< | Xf Maps (I)
imple Units * ($ION N4 43 =3
= YOS

Lacal
Orthogonalization

Input QQQQQ QQ

Andrew Ng



NORB and CIFAR-10 results

Deep Tiled CNNs [this work]

CNNs [Huang & LeCun, 2006]

3D Deep Belief Networks [Nair & Hinton, 2009]

Deep Boltzmann Machines [Salakhutdinov & Hinton, 2009]
TICA [Hyvarinen et al., 2001]

SVMs

Improved LCC [Yu et al., 2010]
Deep Tiled CNNs [this work]

LCC [Yu et al., 2010]

mcRBMs [Ranzato & Hinton, 2010]
Best of all RBMs [Krizhevsky, 2009]
TICA [Hyvarinen et al., 2001]

Andrew Ng



Scaling up: Discovering
object classes

[Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga,
Greg Corrado, Matthieu Devin, Kai Chen, Jeff Dean]



Training procedure

What features can we learn if we train a massive model on a massive
amount of data. Can we learn a “grandmother cell”?

Train on 10 million images (YouTube)
1000 machines (16,000 cores) for 1 week.
1.15 billion parameters

Test on novel images

——
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Training set (YouTube) Test set (FITW + ImageNet)

Andrew Ng



Face neuron

Optimal stimulus by numerical optimization

Andrew Ng



Random distractors

| T Faces
L [ HH

Andrew Ng



Invariance properties
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Cat neuron

Top Stimuli from the test set Optimal stimulus by numerical optimization

Andrew Ng



Cat face neuron

Random distractors

Cat faces

Andrew Ng



Visualization

Optimal stimulus by numerical optimization
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Pedestrian neuron

Random distractors

1l Pedestrians

Andrew Ng



Weaknesses &
Criticisms



Weaknesses & Criticisms

You're learning everything. It's better to encode prior knowledge about
structure of images (or audio, or text).

A: Wasn't there a similar machine learning vs. linguists debate in NLP ~20

years ago....

Unsupervised feature learning cannot currently do X, where X is:

—n hovinnd CahnAr (1 Ilaviary fantiirne

CU UCYyUINu Savuurl (4 1iaycij icatuico

\AlAavl, Aan tamnarval Aata hndan)

VVUIRK Ul wCiiipurdil baia \viucu).

Il aarn hiararcrhiral ranrocantatinne fenmnncitinnal eamantire)
LLUCALLL 111 viiituval I\arJl COouvIlILtCALIVI IO \UUI 1 |'~JU\J|L|U| 1CAI Oull11Cl |L|\J\J}
ot ctata_nf_-thoa_art in activihvy rarnAanitinn

Nl JLLALL UL LIl LAl tlL il UL\.;LIVIL] I\;\JUU"'L'UII

ot ctata_nf_-thoa_art nn iIMana eclaccifiratinn

Nl JLLALL VI ClIN, CAI L VI lllluv\, VIO IITIVCALIVIL ],

Get state-of-the-art on object detection.

Learn variable-size representations.

A: Many of these were true, but not anymore (were not fundamental
weaknesses). There’s still work to be done though!

We don’t understand the learned features.

A: True. Though many vision/audio/etc. features also suffer from this (e.qg,

concatenations/combinations of different features).

Andrew Ng



Summary/Big ideas



Probabilistic vs. non-probabilistic models

'
today's current
weather season
tomorrow's
weather

geographic
location

Andrew Ng



Where these algorithms work

Two main settings in which good results obtained. Has
been confusing to outsiders.

— Lots of labeled data. “Train the heck out of the
network.”

— Small amount of labeled data. (Lots of unlabeled
data.) Unsupervised Feature Learning/Self-Taught
learning.




Summary

Large scale brain simulations as revisiting of the big “Al
dream.”

“Deep learning” has had two big ideas:
— Learning multiple layers of representation
— Learning features from unlabeled data

Scalability is important.

Detalled tutorial: http://deeplearning.stanford.edu/wiki
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