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From a systems perspective, 1t 1s an exciting
time for this area!

= When we started ...

= ... there were no implementations

= ... my colleagues thought I was a lunatic
= Today ...

= ... there is a rich design space

= ... the work can be called “systems” with a straight face



A key trade-off 1s performance versus expressiveness.
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We 1nvestigate:

= What are the verifiers’ variable (verification, per-instance)
costs, and how do they compare to native execution?

= What are the verifiers’ fixed (per-computation or per-
batch setup) costs, and how do they amortize?

=  What are the workers’ overheads?



Experimental setup and ground rules

= A system 1s included iff it has published experimental results.

= Data are from our re-implementations and match or exceed
published results.

= All experiments are run on the same machines (2.7Ghz, 32GB
RAM). Average 3 runs (experimental variation 1s minor).

= Fora few systems, we extrapolate from detailed microbenchmarks

* Measured systems:
=  General-purpose: IKO, Pepper, Ginger, Zaatar, Pinocchio
=  Special-purpose: CMT, Pepper-tailored, Ginger-tailored, Allspice

= Benchmarks: 150%150 matrix multiplication and clustering
algorithm (others in our papers)
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Verification cost sometimes beats (unoptimized)
native execution.

Ishai et al. (PCP-based efficient argument)

1017 150 % 150 matrix multiplication
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verification cost
(minutes of CPU time)

Some of the general-purpose protocols have
reasonable cross-over points.
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The cross-over points can sometimes 1mprove
with special-purpose protocols.
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The worker’s costs are pretty much preposterous.
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Summary of performance in this area

= None of the systems is at true practicality
=  Worker’s costs still a disaster (though lots of progress)

= Verifier gets close to practicality, with special-purposeness
= QOtherwise, there are setup costs that must be amortized
= (We focused on CPU; network costs are similar.)



applicable computations
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Pantry [sosp13] creates verifiability for real-world computations

before: after:
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= V supplies all inputs F, x )
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=  All outputs are shipped back
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input filenames
\Y | W,

~ output filenames




Recall the compiler pipeline.

(The last step differs among
Ginger, Zaatar, Pinocchio.)

QAP i v
FO/{ constraints =
} [subset of C] | ——| 4p circuit 1
execution arith. o
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Programs compile to constraints on circuit execution.

dec-by-three.c
10 | -
Y=X-3; comp1er> 0=272-X,
return Y; 0=2-3-Y
h

Input/output pair correct < constraints satisfiable.

As an example, suppose X = 7.

fY=4..

0=2-7
0=72-3-4

... there 1s a solution

fY=5..

0=2-7
W=Z=3=73

... there 1s no solution



The pipeline decomposes into two phases.

FO{

[subsetof C] | <

(0=x+2,
0= Y+ZZ
0=ZIZ3_ZZ

:

—————————————————————————————————

/

—————————————————————————————————

“If E(X=x,Y=y) 1s satisfiable,
computation is done right.”

———————————————————————

QAP \Y%
a.r1th.. W
circuit
}

— “E(X=x,Y=y) has a

satisfying assignment”
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How can we represent storage operations? (1)

Representing “load(addr)” explicitly would be horrifically expensive.

Straw man: variables M,, ..., M,;,. contain state of memory.
r N
B:M0+(A_O)°F0
B=M;+A-1)*F,
B=1loadlA) —> < B=M,+(A-2)*F, >
\B = Msize + (A = SiZC) > Fsize 2

Requires two variables for every possible memory address!



How can we represent storage operations? (2)

Consider self-certifying blocks:
digest

? cli. |+ | serv.
hash(block) = digest block

= They bind references to values

= They provide a substrate for verifiable RAM, file systems, ...
[Merkle CRYPTOS87, Fu et al. OSDI0O0, Mazieres & Shasha PODC02, Li et al. OSDI04]

Key idea: encode the hash checks in constraints

* This can be done (reasonably) efficiently

Folklore: “this should be doable.” (Pantry’s contribution: “it 1s.”)



We augment the subset of C with the semantics of untrusted storage
= block = vget(digest): retrieves block that must hash to digest

= hash(block) = vput(block): stores block; names it with its hash

add_indirect(digest d, value x)

[ r N\
value z = vget(d); { ¢ =i Z) }
_ . — < >
y=2Z+X; =)
. y=72+X
return vy, 3 >
;

Worker is obliged to supply the “correct” Z
(meaning something that hashes to d).



Putting the pieces together

o
C with RAM, er]r]e 8> f ) ’
search trees \] subse-lt_ of e | QAP \
—>4 > —>1 —>
{vput, vget} | circuit W
map(), / Yy ' o
reduce() constraints (E)
F, x
VESS == \WY
]

= recall: = “I know a satisfying assignment to E(X=x, Y=y)”
= checks-of-hashes pass < satisfying assignment identified
= checks-of-hashes pass < storage interaction 1s correct

= storage abstractions can be built from {vput(), vget()}



The verifier 1s assured that a MapReduce job was
performed correctly—without ever touching the data.

map(), reduce(), in_digests

= out_digests

— [ ™, “ .IRj.

M

The two phases are handled separately:

mappers

s [ =
&Q§5§ | in = vget(in_digest);
> '_, out = map(in); ol
forr=1,....R: T

d[r] = vput(out|r])

reducers

form=1,...,M:

out = reduce(in);

in[m] = vget(e[m]);

out_digest = vput(out)]]




Example: for a DNA subsequence search, the verifier saves
work, relative to performing the computation locally.
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= A mapper gets 1000 nucleotides and outputs matching locations

» Vary mappers from 200 to 1200; reducers from 20 to 120



Pantry applies fairly widely

*  Our implemented applications include:

query, digest

< =
=1t
) result w

= Verifiable queries in (highly restricted) subset of SQL

= Privacy-preserving facial recognition

*  Our implementation works with Zaatar and Pinocchio



Major problems remain for this area

= Setup costs are high (for the general-purpose systems)

» Vernfication costs are high, relative to native execution
= Evaluation baselines are highly optimistic

=  Example:100X100 matrix multiplication takes 2 ms on
modern hardware; no VC system beats this.

=  Worker overhead 1s 1000

* The computational model 1s a toy

= Loops are unrolled, memory operations are expensive



Summary and take-aways

= A framework for organizing the research in this area is
performance versus expressiveness.

= Pantry extends verifiability to stateful computations,
including MapReduce, DB queries, RAM, etc.

= Major problems remain for all of the systems

= Setup costs are high (for the general-purpose systems), and
verification does not beat optimized native execution

=  Worker costs are too high, by many orders of magnitude

= The computational model 1s a toy



