
Making verifiable computation a

systems problem

Michael Walfish

The University of Texas at Austin

From a systems perspective, it is an exciting

time for this area!

 When we started …

 … there were no implementations

 … my colleagues thought I was a lunatic

 Today …

 … there is a rich design space

 … the work can be called “systems” with a straight face

applicable computations

setup costs “regular” straightline pure, no RAM stateful, RAM

none

(w/ fast worker)
Thaler
[CRYPTO13]

none
CMT, TRMP
[ITCS,Hotcloud12]

low
Allspice
[Oakland13]

medium
Pepper
[NDSS12]

Ginger
[Security12]

Zaatar
[Eurosys13]

Pantry
[SOSP13]

high
Pinocchio
[Oakland13]

Pantry
[SOSP13]

A key trade-off is performance versus expressiveness.

(Includes only implemented systems.)

more expressive

lower cost,

less crypto

(1)

(2)

ship with compilers
better crypto properties:

ZK, non-interactive, etc.

 What are the verifiers’ variable (verification, per-instance)

costs, and how do they compare to native execution?

 What are the verifiers’ fixed (per-computation or per-

batch setup) costs, and how do they amortize?

 What are the workers’ overheads?

We investigate:

 A system is included iff it has published experimental results.

 Data are from our re-implementations and match or exceed

published results.

 All experiments are run on the same machines (2.7Ghz, 32GB

RAM). Average 3 runs (experimental variation is minor).

 For a few systems, we extrapolate from detailed microbenchmarks

 Measured systems:

 General-purpose: IKO, Pepper, Ginger, Zaatar, Pinocchio

 Special-purpose: CMT, Pepper-tailored, Ginger-tailored, Allspice

 Benchmarks: 150×150 matrix multiplication and clustering

algorithm (others in our papers)

Experimental setup and ground rules

x(1)

y(1)

F, EKF

x(2)

y(2)

setup costs are per-computation

x(B)

y(B)

. . .

Pinocchio Pepper, Ginger, Zaatar

F, x(1)

y(1)

x(2)

y(2)

x(B)

y(B)

. . .

q

setup costs are per-batch

V W V W

 A system is included iff it has published experimental results.

 Data are from our re-implementations and match or exceed

published results.

 All experiments are run on the same machines (2.7Ghz, 32GB

RAM). Average 3 runs (experimental variation is minor).

 For a few systems, we extrapolate from detailed microbenchmarks

 Measured systems:

 General-purpose: IKO, Pepper, Ginger, Zaatar, Pinocchio

 Special-purpose: CMT, Pepper-tailored, Ginger-tailored, Allspice

 Benchmarks: 150×150 matrix multiplication and clustering

algorithm (others in our papers)

Experimental setup and ground rules

102

1011

108

105

1014

1017

0

1020

1023

1026

150×150 matrix multiplication

Pepper Ginger Zaatar Pinocchio

Ishai et al. (PCP-based efficient argument)

v
e
ri

fi
c
a
ti

o
n

 c
o

st

(m
s

o
f

C
P

U
 t

im
e
)

50 ms

5 ms

Verification cost sometimes beats (unoptimized)

native execution.

Some of the general-purpose protocols have

reasonable cross-over points.

0

10

20

30

40

50

0 10K 20K 30K 40K 50K 60K

native (sl
ope: 50 ms/inst)

Zaatar (slo
pe: 33 ms/inst)

v
er

if
ic

a
ti

o
n

 c
o

st

(m
in

u
te

s
o

f
C

P
U

 t
im

e)

instances of the same computation

Ginger (slope: 18 ms/inst) cross-over point: 4.5 million instances

Pinocchio (slope: 12 ms/inst)

..
..

1.6 days

instances of 150x150 matrix multiplication

15K

30K

45K

60K

1.2B 450K

25.5K

50.5K

22K

4.5M

matrix multiplication (m=150) PAM clustering (m=20, d=128)

7.4K
7 1

N/Ac
ro

ss
-o

v
e
r

p
o

in
t

The cross-over points can sometimes improve

with special-purpose protocols.

101

105

0

109

103

107

1011

w
o

rk
e
r’

s
c
o

st

n
o

rm
a
li

z
e
d

 t
o

 n
a
ti

v
e
 C

matrix multiplication (m=150) PAM clustering (m=20, d=128)

N/A

The worker’s costs are pretty much preposterous.

Summary of performance in this area

 None of the systems is at true practicality

 Worker’s costs still a disaster (though lots of progress)

 Verifier gets close to practicality, with special-purposeness

 Otherwise, there are setup costs that must be amortized

 (We focused on CPU; network costs are similar.)

applicable computations

setup costs “regular” straightline pure, no RAM stateful, RAM

none

(w/ fast worker)
Thaler
[CRYPTO13]

none
CMT
[ITCS12]

low
Allspice
[Oakland13]

medium
Pepper
[NDSS12]

Ginger
[Security12]

Zaatar
[Eurosys13]

Pantry
[SOSP13]

high
Pinocchio
[Oakland13]

Pantry
[SOSP13]

(1)

(2)

before:

F, x

y

after:

Pantry [SOSP13] creates verifiability for real-world computations

 V supplies all inputs

 F is pure (no side effects)

 All outputs are shipped back

V W

query, digest

result
V W

F, x

y
V W RAM

DB

V

map(), reduce(),

input filenames

output filenames
Wi

V

W

QAP

arith.

circuit

F(){

[subset of C]

}

constraints

on circuit

execution

Recall the compiler pipeline.

V W

F, x

y

(The last step differs among

Ginger, Zaatar, Pinocchio.)

if Y = 4 …

… there is a solution

Input/output pair correct ⟺ constraints satisfiable.

0 = Z – 7

0 = Z – 3 – 4

Programs compile to constraints on circuit execution.

f(X) {

Y = X − 3;

return Y;

}

0 = Z − X,

0 = Z – 3 – Y

As an example, suppose X = 7.

if Y = 5 …

… there is no solution

0 = Z – 7

0 = Z – 3 – 5

dec-by-three.c

compiler

V

W

V W

QAP

arith.

circuit

F(){

[subset of C]

}

constraints (E)

F, x

y

“E(X=x,Y=y) has a

satisfying assignment”

The pipeline decomposes into two phases.

0 = X + Z1

0 = Y + Z2

0 = Z1Z3 − Z2

….

“If E(X=x,Y=y) is satisfiable,

computation is done right.”
=

Design question: what can we put in the constraints so

that satisfiability implies correct storage interaction?

Representing “load(addr)” explicitly would be horrifically expensive.

How can we represent storage operations? (1)

Straw man: variables M0, …, Msize contain state of memory.

B = M0 + (A − 0)  F0

B = M1 + (A − 1)  F1

B = M2 + (A − 2)  F2

…

B = Msize + (A − size)  Fsize

Requires two variables for every possible memory address!

B = load(A)

 They bind references to values

 They provide a substrate for verifiable RAM, file systems, …

[Merkle CRYPTO87, Fu et al. OSDI00, Mazières & Shasha PODC02, Li et al. OSDI04]

How can we represent storage operations? (2)

Consider self-certifying blocks:

Key idea: encode the hash checks in constraints

 This can be done (reasonably) efficiently

Folklore: “this should be doable.” (Pantry’s contribution: “it is.”)

digest

block
cli. serv.

hash(block) = digest
?

d = hash(Z)

add_indirect(digest d, value x)
{

value z = vget(d);

y = z + x;

return y;

}

y = Z + x

We augment the subset of C with the semantics of untrusted storage

 block = vget(digest): retrieves block that must hash to digest

 hash(block) = vput(block): stores block; names it with its hash

Worker is obliged to supply the “correct” Z

(meaning something that hashes to d).

constraints (E)

V

W

QAP

circuit

subset of C

+

{vput, vget}

C with RAM,

search trees

map(),

reduce()

V W

F, x

y

Putting the pieces together

= recall: “I know a satisfying assignment to E(X=x,Y=y)”

 checks-of-hashes pass ⟺ satisfying assignment identified

 checks-of-hashes pass ⟺ storage interaction is correct

 storage abstractions can be built from {vput(), vget()}

The verifier is assured that a MapReduce job was

performed correctly—without ever touching the data.

The two phases are handled separately:

mappers

in = vget(in_digest);

out = map(in);

for r=1,…,R:

d[r] = vput(out[r])

reducers

for m=1,…,M:

in[m] = vget(e[m]);

out = reduce(in);

out_digest = vput(out);

V
Mi Ri

0

5

10

15

200K 400K 600K 800K 1M 1.2M

verifier

baseline

C
P

U
 t

im
e

(s
ec

o
n

d
s)

input size
(number of nucleotides in the DNA dataset)

Example: for a DNA subsequence search, the verifier saves

work, relative to performing the computation locally.

 A mapper gets 1000 nucleotides and outputs matching locations

 Vary mappers from 200 to 1200; reducers from 20 to 120

Pantry applies fairly widely

 Privacy-preserving facial recognition

query, digest

result
V W DB

 Verifiable queries in (highly restricted) subset of SQL

 Our implementation works with Zaatar and Pinocchio

 Our implemented applications include:

Major problems remain for this area

 Setup costs are high (for the general-purpose systems)

 Verification costs are high, relative to native execution

 Evaluation baselines are highly optimistic

 Example:100×100 matrix multiplication takes 2 ms on

modern hardware; no VC system beats this.

 Worker overhead is 1000×

 The computational model is a toy

 Loops are unrolled, memory operations are expensive

Summary and take-aways

 A framework for organizing the research in this area is

performance versus expressiveness.

 Pantry extends verifiability to stateful computations,

including MapReduce, DB queries, RAM, etc.

 Major problems remain for all of the systems

 Setup costs are high (for the general-purpose systems), and

verification does not beat optimized native execution

 Worker costs are too high, by many orders of magnitude

 The computational model is a toy

