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From a systems perspective, it is an exciting 

time for this area!

 When we started …

 … there were no implementations

 … my colleagues thought I was a lunatic

 Today …

 … there is a rich design space

 … the work can be called “systems” with a straight face



applicable computations

setup costs “regular” straightline pure, no RAM stateful, RAM

none

(w/ fast worker)
Thaler
[CRYPTO13]

none
CMT, TRMP
[ITCS,Hotcloud12]

low
Allspice
[Oakland13]

medium
Pepper
[NDSS12]

Ginger
[Security12]

Zaatar
[Eurosys13]

Pantry
[SOSP13]

high
Pinocchio
[Oakland13]

Pantry
[SOSP13]

A key trade-off  is performance versus expressiveness.

(Includes only implemented systems.)

more expressive

lower cost,

less crypto

(1)

(2)

ship with compilers
better crypto properties:

ZK, non-interactive, etc.



 What are the verifiers’ variable (verification, per-instance) 

costs, and how do they compare to native execution?

 What are the verifiers’ fixed (per-computation or per-

batch setup) costs, and how do they amortize?

 What are the workers’ overheads?

We investigate:



 A system is included iff it has published experimental results.

 Data are from our re-implementations and match or exceed 

published results.

 All experiments are run on the same machines (2.7Ghz, 32GB 

RAM). Average 3 runs (experimental variation is minor).

 For a few systems, we extrapolate from detailed microbenchmarks

 Measured systems:

 General-purpose: IKO, Pepper, Ginger, Zaatar, Pinocchio

 Special-purpose: CMT, Pepper-tailored, Ginger-tailored, Allspice 

 Benchmarks: 150×150 matrix multiplication and clustering 

algorithm (others in our papers)

Experimental setup and ground rules 
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Verification cost sometimes beats (unoptimized) 

native execution.  



Some of  the general-purpose protocols have 

reasonable cross-over points.
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Ginger (slope: 18 ms/inst) cross-over point: 4.5 million instances
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1.6 days

instances of  150x150 matrix multiplication
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The cross-over points can sometimes improve 

with special-purpose protocols.
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The worker’s costs are pretty much preposterous.



Summary of performance in this area

 None of  the systems is at true practicality

 Worker’s costs still a disaster (though lots of  progress)

 Verifier gets close to practicality, with special-purposeness

 Otherwise, there are setup costs that must be amortized

 (We focused on CPU; network costs are similar.)



applicable computations

setup costs “regular” straightline pure, no RAM stateful, RAM

none

(w/ fast worker)
Thaler
[CRYPTO13]

none
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(1)

(2)



before:

F, x

y

after:

Pantry [SOSP13] creates verifiability for real-world computations

 V supplies all inputs

 F is pure (no side effects)

 All outputs are shipped back

V W

query, digest

result
V W

F, x

y
V W RAM

DB

V

map(), reduce(), 

input filenames

output filenames
Wi



V

W

QAP

arith. 

circuit

F(){

[subset of  C]

}

constraints 

on circuit 

execution

Recall the compiler pipeline.

V W

F, x

y

(The last step differs among 

Ginger, Zaatar, Pinocchio.)



if  Y = 4 …

… there is a solution

Input/output pair correct ⟺ constraints satisfiable.

0 = Z – 7

0 = Z – 3 – 4

Programs compile to constraints on circuit execution.

f(X) {

Y = X − 3;

return Y;

}

0 = Z − X,

0 = Z – 3 – Y

As an example, suppose X = 7. 

if  Y = 5 …

… there is no solution

0 = Z – 7  

0 = Z – 3 – 5

dec-by-three.c

compiler



V

W

V W

QAP

arith. 

circuit

F(){

[subset of  C]

}

constraints (E)

F, x

y

“E(X=x,Y=y) has a

satisfying assignment”

The pipeline decomposes into two phases.

0 = X + Z1

0 = Y + Z2

0 = Z1Z3 − Z2

….

“If  E(X=x,Y=y) is satisfiable, 

computation is done right.”
=

Design question: what can we put in the constraints so 

that satisfiability implies correct storage interaction? 



Representing “load(addr)” explicitly would be horrifically expensive.

How can we represent storage operations? (1)

Straw man: variables M0, …, Msize contain state of  memory.

B = M0 + (A − 0)  F0

B = M1 + (A − 1)  F1

B = M2 + (A − 2)  F2

…

B = Msize + (A − size)  Fsize

Requires two variables for every possible memory address!

B = load(A)



 They bind references to values

 They provide a substrate for verifiable RAM, file systems, …

[Merkle CRYPTO87, Fu et al. OSDI00, Mazières & Shasha PODC02, Li et al. OSDI04]

How can we represent storage operations? (2)

Consider self-certifying blocks:

Key idea: encode the hash checks in constraints

 This can be done (reasonably) efficiently

Folklore: “this should be doable.” (Pantry’s contribution: “it is.”)

digest

block
cli. serv.

hash(block) = digest
?



d = hash(Z)

add_indirect(digest d, value x) 
{

value z = vget(d);

y = z + x;

return y;

}

y = Z + x

We augment the subset of  C with the semantics of  untrusted storage

 block = vget(digest): retrieves block that must hash to digest

 hash(block) = vput(block): stores block; names it with its hash

Worker is obliged to supply the “correct” Z 

(meaning something that hashes to d).



constraints (E)

V

W

QAP

circuit

subset of  C 

+

{vput, vget}

C with RAM,

search trees

map(), 

reduce()

V W

F, x

y

Putting  the pieces together

= recall: “I know a satisfying assignment to E(X=x,Y=y)”

 checks-of-hashes pass ⟺ satisfying assignment identified

 checks-of-hashes pass ⟺ storage interaction is correct  

 storage abstractions can be built from {vput(), vget()}



The verifier is assured that a MapReduce job was 

performed correctly—without ever touching the data.

The two phases are handled separately:

mappers

in = vget(in_digest);

out = map(in);

for r=1,…,R:

d[r] = vput(out[r])

reducers

for m=1,…,M:

in[m] = vget(e[m]);

out = reduce(in);

out_digest = vput(out);

V
Mi Ri
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Example: for a DNA subsequence search, the verifier saves 

work, relative to performing the computation locally.

 A mapper gets 1000 nucleotides and outputs matching locations

 Vary mappers from 200 to 1200; reducers from 20 to 120



Pantry applies fairly widely

 Privacy-preserving facial recognition

query, digest

result
V W DB

 Verifiable queries in (highly restricted) subset of  SQL

 Our implementation works with Zaatar and Pinocchio

 Our implemented applications include:



Major problems remain for this area

 Setup costs are high (for the general-purpose systems)

 Verification costs are high, relative to native execution

 Evaluation baselines are highly optimistic

 Example:100×100 matrix multiplication takes 2 ms on 

modern hardware; no VC system beats this.

 Worker overhead is 1000×

 The computational model is a toy

 Loops are unrolled, memory operations are expensive



Summary and take-aways

 A framework for organizing the research in this area is 

performance versus expressiveness.

 Pantry extends verifiability to stateful computations, 

including MapReduce, DB queries, RAM, etc.

 Major problems remain for all of  the systems

 Setup costs are high (for the general-purpose systems), and 

verification does not beat optimized native execution

 Worker costs are too high, by many orders of  magnitude 

 The computational model is a toy


