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Abstract9

Recently, speech scientists have been motivated by the great success of build-10

ing margin-based classifiers, and have thus proposed novel methods to estimate11

continuous-density hidden Markov model (HMM) for automatic speech recogni-12

tion (ASR) according to the notion that the decision boundaries determined by13

the estimated HMMs attain the maximum classification margin as in learning14

support vector machines (SVMs). Although a good performance has been ob-15

served, the margin used in the ASR community is often specified as a parameter16

that has no explicit relationship with the HMM parameters. The issues of how17

the margin is related to the HMM parameters and how it directly characterizes18

the generalization capability of HMM-based classifiers have not been addressed19

so far in the community. In this paper we attempt to formulate the margin used20

in the soft margin estimation (SME) framework as a function of the HMM pa-21

rameters. The key idea is to relate the standard distance-based margin with the22

concept of divergence among competing HMM state Gaussian mixture model23

densities. Experimental results show that the proposed model-based margin24

function is a good indication about the quality of HMMs on a given ASR task25

without the conventional needs of running experiments extensively using a sep-26

arate set of test samples.27
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1. Introduction30

For classifier learning based on a set of training samples, one key design issue31

is the ability for the classifiers to generalize to unseen test data, some of them32

can come from mismatch conditions different from those observed in training. In33

particular, large margin learning frameworks, such as support vector machines34

(SVMs) [2], have demonstrated superior generalization capabilities over other35

conventional classifiers. By securing a margin from the decision boundary to the36

nearest training sample, a correct decision can still be made if the mismatched37

test sample falls within a tolerance region around the original training samples38

defined by the margin. Inspired by the past success of margin-based classifiers,39

there is a trend to incorporate the margin concept into hidden Markov models40

(HMMs) for automatic speech recognition (ASR). Recent attempts based on41

margin maximization [7, 19, 14, 17, 13, 15] have shown some advantages over42

conventional discriminative training methods (e.g., [1, 9, 8]) for some ASR tasks.43

The margin for ASR applications is defined in terms of the distance of log44

likelihood values between the true model and its competing models. In large45

margin estimation of HMMs [7] the goal is to adjust decision boundaries, which46

are implicitly determined by all HMM models, through optimizing HMM pa-47

rameters to make all support tokens (namely, a subset of the spoken sentences)48

as far from the decision boundaries as possible. These support token were se-49

lected such that the distance between true model and competing model fall50

between zero and to a preset positive number ρ. The large margin HMM tech-51

nique proposed in [17] constraints the Mahalanobis score of each target sequence52

to exceed that of each competing sequence by an amount equal to or greater53
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than the Hamming distance between these two sequences. The work in [19]54

incrementally adjusts the margin value to achieve best performance. Soft mar-55

gin estimation (SME) [14, 13, 15] presets the margin (i.e., the distance between56

competing HMM models) and only optimizes the HMM parameters. Typically57

the value of the margin varies according to the number of the parameters and58

the complexity of the model. Therefore, constraining the margin using expert59

knowledge, as done so far in margin- based HMM training for ASR, often limits60

the number of models to be experimented and the ability to achieve a good61

performance. Furthermore, the issues of how the margin is related to the HMM62

parameters and how it directly characterizes the generalization ability of HMM63

based classifiers have not been addressed so far in the above methods.64

The divergence is known as a good measure to compare two probability65

densities [4], and a new system divergence measure for HMM as an average66

divergence between top competing models in the complex set of HMMs is here67

proposed. The margin is expressed as a function of the system divergence,68

which can then be plugged into the SME objective function [15] for optimiza-69

tion. When compared with ASR results obtained in conventional SME [15] using70

empirically specified margin constants, the proposed margin function gives very71

similar performance, yet with potentially more theoretical impacts and flexibil-72

ity than the original SME algorithms. Furthermore, it will be shown how the73

proposed model-based margin can be employed as a figure of the quality of the74

system design. This figure aims at predicting the performance of HMM-based75

recognition systems without the need of actually running recognition exper-76

iments. The idea of predicting the run-time performance of a HMM based77

recognition system without running any recognition experiments using a sepa-78

rate set of test samples is highly desirable both in theory and in practice, and79

it was formerly explored in [6]. Specifically, the authors showed that the error80

3



rate can be accurately estimated from the probabilistic distance between the81

assumed parametric models. The model-based margin introduced in this paper82

can be used to compare HMM-based ASR systems and predict which one would83

perform better on the unseen test samples.84

The rest of the paper is organized as follows. In Section 2, the starting85

point for this work, i.e., the general concept of margin for two classes, is briefly86

described. Section 3.1 gives details about how to generalize the notion of a87

separation margin for Gaussian mixture models using a symmetric divergence.88

The extension for multiway classification and HMMs is also given in Section89

3.1. The soft margin estimation procedure via model divergence is presented90

in Section 4. The experimental evaluation is carried out in Section 5. Finally,91

Section 6 concludes this work.92

2. SVMs for Two Classes93

The purpose of SVM design is to construct a projection w and an offset94

b based on a set of training samples (x1, y1),. . . , (xn, yn), where yi is the95

class label. In the separable case, where there exists a pair (w, b) such that96

yi(ρxi + b) > 0 for all samples, SVMs solve the following optimization problem:97

maxw
1
‖w‖ (s.t. yi(xiwi + b) − 1 > 0) where ‖ρ‖ is the Euclidean norm of w,98

and 1/‖w‖ is referred as the margin. With this optimization objective, every99

mapped sample is at least away from decision boundary with a tolerance distance100

of 1/‖w‖. The margin, 1/‖w‖, can be considered as a measure to characterize101

the generalization property for the SVMs, and the margin (times 2) can be102

considered as a separation distance of these two competing models. This view103

can be extended to defining the optimization target of non-separable SVMs as104

a combination of empirical risk minimization and model separation (or105

margin) maximization.106
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3. System Generalization via Model Distance107

The strong relationship between the model distance and the margin outlined108

in Section 2 can also be extended to the Gaussian mixture model (GMM) and109

HMM cases, which have a much large number of parameters and with nonlinear110

decision boundaries. In the following, a system divergence to measure the model111

distance for GMMs and HMMs is first defined, and the link between the model112

distance and the margin is introduced.113

3.1. GMMs114

If the two classes are each modeled by GMMs, a symmetric divergence can115

be used to measure the model distance [10]:116

D = E

{
−lnp1(x)

p2(x)
| w2

}
− E

{
−lnp1(x)

p2(x)
| w1

}
, (1)

where p1(x) and p2(x) are the probability density functions of the two competing117

models, w1 and w2.118

For two Gaussian densities, k, and l, a closed form exist for Eq. (1) [4]:119

DG(k, l) =
1

2
tr
{(

Σ−1
k + Σ−1

l

)
(µk − µl) (µk − µl)T

}
+

+
1

2
tr
(
Σ−1
k Σl + Σ−1

l Σk − 2I
)
, (2)

where (µk,Σk) and (µl,Σl) are the means and covariance matrices of the Gaus-120

sian densities, k and l, respectively. The matrix I is the identity matrix. For121

GMMs, the following approximation is made for the divergence of the ith and122

jth GMMs:123

DGMM (i, j) =

mi∑
k=1

mj∑
l=1

cikcjlDG(ik, jl), (3)
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where ik and jl indicate the kth and lth Gaussians of the ith and j GMMs.124

This approximation weights all the pair wise Gaussian components from GMMs125

with the corresponding mixture weights (cik and cjl) and sums them together.126

3.2. GMMs and HMMs for multiway classification127

The system divergence as the model distance for multiple GMMs is now128

defined as:129

D(Λ) =
1

NG

∑
i

DGMM (i, nearest(i)), (4)

where Λ denotes all GMM parameters in the system and NG is the total number130

of GMMs in the system. For the ith GMM, only its nearest GMM (nearest(i))131

is considered to significantly contribute the value of the system divergence. In132

our opinion the divergence of two GMMs far apart from each other provides lit-133

tle information to quantify the system confusion, or system generalization. For134

HMM system, every state is modeled by a GMM. Hence, the system divergence135

of HMMs can also be defined in a similar way to Eq. (3) by considering all the136

state GMMs. The only difference is that the GMMs belong to the same speech137

unit cannot be included in defining nearest(i). It is well known that the transi-138

tion probability of the HMMs is not critical for speech recognition. Therefore,139

most discriminative training methods only adjust the Gaussian parameters in140

practice. As a consequence, we do not include the transition probability into141

the divergence distance.142

3.3. Mapping between Model Distance and Margin143

The margin is used to keep the class samples away from the decision bound-144

ary. A large model distance implies there is enough space between models.145

Similarly a larger margin often results in better system generalization. Because146
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of this strong relationship, the margin is defined as a monotonic function of the147

model distance:148

ρ(Λ) = f(D(Λ)), (5)

where D is defined as in Eq. (4).149

For the separable SVM case, Λ = (w, b) and 1/‖w‖ is referred as the margin.150

The model distance is 2/‖w‖, as shown in Section 2. Hence, ρ(Λ) = D(Λ)/2. For151

the systems with multiple GMMs or HMMs, the mapping relationship between152

system model distance D and margin ρ is complex because it is hard to get the153

decision boundary for the multiple classes as a function of model parameters.154

Different systems may have different mapping. In the next sections, it will be155

shown how the mapping function is built in the context of SME for ASR tasks.156

4. Soft Margin Estimation via Divergence157

In this section, a link between the divergence-based model distance and the158

margin within the SME framework is made. First the original SME formulation159

is introduced. Then, its potential weaknesses are discussed. As an improvement,160

the margin is expressed as a function of the system divergence so that it can be161

plugged into the objective function of SME, so that the margin and the HMM162

(GMM) parameters can be optimized simultaneously.163

4.1. Original SME Formulation164

Here, SME is briefly introduced. A detailed discussion can be found in165

[13, 15]. SME has two targets for optimization. The first is to minimize an166

empirical risk (i.e., the risk on the training set). The other is to maximize the167

margin, which is related to classifier generalization. These two quantities are168

combined into one objective function for minimization:169
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LSME(Λ) =
λ

ρ
+Remp(Λ) =

λ

ρ
+

1

N

N∑
i=1

l(Oi,Λ), (6)

where Λ denotes the HMM parameters, l(Oi,Λ) is a loss function for the spoken170

utterance Oi, N is the number of training utterances, ρ is the soft margin that171

is set in advance using expert knowledge, and λ is a coefficient to balance soft172

margin maximization and empirical risk (Remp(Λ)) minimization.173

Before defining the loss function, it should be remarked that a continuous174

ASR system can generate either a single sentence (the best decoded sentences)175

or a list of competing sentences (usually organized in the form of either a n-best176

lists or a confusion network) at its output. The loss function can now be defined177

as:178

l(Oi,Λ) = (ρ− d(Oi,Λ))+

=

 ρ− d(Oi,Λ) if (ρ− d(Oi,Λ)) > 0

0 otherwise
, (7)

with the separation measure d defined as:179

d(Oi,Λ) =
1

ni

∑
j

log

[
pΛ(Oij |Si)
pΛ(Oij |Ŝi)

]
I(Oij ∈ Fi), (8)

where Fi is the frame set in which the speech samples (commonly referred to180

as frames) have different labels in the competing decoded sentences. I(.) is an181

indicator function, Oij is the jth frame of the spoken utterance Oi. The number182

of frames that have different labels in the target and competing strings for Oi183

is indicated with ni, and pΛ(Oij |Si) and pΛ(Oij |Ŝi) are the likelihood scores for184

the target string Si and the most competitive string Ŝi, respectively.185
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4.2. Potential Weaknesses of the Original SME Formulation186

There are two potential shortfalls of the original SME formulation [13, 15].187

The first is that the solution to minimizing the objective in Eq. (6) is sub-188

optimal because it presets the margin value ρ, and optimizes the HMM param-189

eters only. The solution assumes that the optimal margin is known in advance.190

Since there is no direct way to know the optimal value of ρ, it is empirically191

determined if it delivers the best ASR result. The second problem is common192

to all margin-based HMM training algorithms so far proposed in the ASR com-193

munity. The margin ρ in Eq. (6) is purely a numerical value, without any direct194

relationship with HMM parameters. In contrast, as discussed in Section 2, the195

margin of SVMs can be considered as a model separation related to the parame-196

ter, w. Therefore, it is highly desirable, both in theory and in practice, that the197

margin can also be a function of parameters to characterize the generalization198

issue of HMMs in the ASR field.199

4.3. SME Formulation with Divergence200

To overcome the above deficiencies of the original SME, it is desirable to201

express the margin as a function of the HMM parameters. However, it is difficult202

to determine the exact mapping function, given the HMM system is too complex.203

Instead, we observed that the square root of the divergence in Eq. (4) is similar204

to the margin used in our original SME work, as shown in Table 1 later. To this205

end, the square root of the divergence in Eq. (4) is used to define a model-based206

(or divergence-based) margin for HMMs. Hence, the model-based margin as a207

function of the HMM parameters is defined as:208

ρ(Λ) =
1

NG

∑
i

DGMM (i, nearest(i))
1
2 , (9)

By embedding this model-based margin into the SME framework, the new209

SME objective function becomes:210

9



LSME(Λ) =
λ

ρ(Λ)
+

1

N

N∑
i=1

(ρ(Λ)− d(Oi,Λ))+

=
λ

ρ(Λ)
+

1

N

N∑
i=1

(ρ(Λ)− d(Oi,Λ))I((ρ(Λ)− d(Oi,Λ)) > 0)

=
λ

ρ(Λ)
+ (10)

+
1

N

N∑
i=1

(ρ(Λ)− d(Oi,Λ))
1

1 + exp(−r((ρ(Λ)− d(Oi,Λ)))
,

where r is the tilting parameter for sigmoid function. The right hand side of211

Eq. (10) is obtained by smoothing the indicator with a sigmoid function so it212

can be minimized with a generalized probabilistic descent (GPD) [9] algorithm.213

The model parameter is updated sequentially such that214

Λn+1 = Λn − εn
∂LSME(Λ)

∂Λ
(11)

The key of GPD is to get the derivatives of loss function with respect to215

model parameters Λ, which denotes the set of mean and covariance parameters216

in GMM. The detailed formulation of the derivatives is in the following.217

∂LSME(Λ)

∂Λ
=


[
− λ
ρ2(Λ) + 1

N

∑N
i=1 {l(1 + γ(ρ(Λ)− d(Oi,Λ))(1− l))}

]
∂(ρ(Λ))
∂Λ

+ 1
N

∑N
i=1 {l(1 + γ(ρ(Λ)− d(Oi,Λ))(1− l))} ∂(−d(Oi,Λ))

∂Λ

 .

(12)

Since d(Oi,Λ) is a normalized log likelihood ratio, ∂(−d(Oi,Λ))
∂Λ can be com-218

puted similarly to what has been done in minimum classification error (MCE)219

training. Please refer [8] for the detailed formulations of those derivatives.220

∂(ρ(Λ))
∂Λ can be obtained in a similar way since ρ(Λ) can be written as a function221

of mean and covariance parameters of GMM. After getting all the derivatives,222
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GPD is used to update all GMM parameters.223

It should be noted that although the empirical approximation of margin is224

not precise, it can still work well under the framework of SME. As opposed225

to the separable case, there is no unique soft margin value for the cases of226

inseparable classification. The final soft margin value is affected by the choice227

of the balance coefficient, λ. In essence, Eq. (10) works well for generalization228

in two parts. The first is to pull the samples away from the decision boundary229

with a distance of margin by reducing the empirical risk. The second is to make230

this margin as a function of the system model distance, and then maximize it by231

minimizing the objective function in Eq. (10). Recently, divergence was used232

in a new DT method, called minimum divergence training (MDT) [3]. A major233

difference between model-based SME and MDT is that SME is a margin-based234

DT method while MDT is still a conventional one. SME jointly maximizes235

the system divergence and minimize the empirical risk, while MDT minimizes236

the divergence between the recognized model sequence and the correct model237

sequence in training utterances. Furthermore, SME uses divergence globally, as238

a measure of system generalization, while MDT evaluates divergence utterance239

by utterance, as a local measure of the dissimilarity between the competing240

models and correct models in each utterance.241

5. Speech Recognition Experiments242

SME has been applied to Aurora-2 for robustness issue [12, 18], and TIDIG-243

ITS and WSJ05 for various complexity issues [13, 14, 15]. In this paper, we just244

want to study the need for a model-based formulation. Therefore, we validate245

the utility of our modified SME framework with model-based margin using the246

TIDIGITS and Aurora-2 tasks, a connected-digit recognition task. The dis-247

covery can be easily generalized to other tasks with different robustness and248
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complexity issues given the consistent results we observed [12, 13, 14, 15, 18].249

Through this recognition experiments, it will be shown that the square root250

of the divergence in Eq. (4) is very close in value to the margin preset using251

expert knowledge, so it is a viable solution. Furthermore, it will be shown that252

the model-based margin could be used as a figure to compare HMM-based ASR253

systems one to another and predict which one would perform better on a given254

task without running any experiment on a separate set of test samples.255

The TIDIGITS [11] and Aurora-2 [16] corpora are two corpora of connected256

digit recognition.257

5.1. TIDIGITS258

5.1.1. Experimental Setup259

There are 8623 digit strings in the training set and 8700 digit strings for260

testing. The hidden Markov model toolkit (HTK) was used to build the base-261

line maximum likelihood estimation (MLE) models. There were 11 whole-digit262

HMMs, one for each of the 10 English digits plus the word “o”. GMMs were263

used as state-conditional probability distributions. From each speech signal, a264

sequence of feature vectors were extracted using a 25 ms Hamming window and265

a window shift of 10 ms. Each feature vector consisted of 12 Mel-frequency266

cepstral coefficients (MFCC) and the frame energy, augmented with their delta267

and acceleration coefficients. This resulted in 39-dimensional vectors. Models268

of MCE [8], a traditional DT, were also trained for comparison. SME models269

were initiated with the MLE models. Digit decoding was based on unknown270

length without imposing any language model or insertion penalty.271

5.1.2. Connected Digit Recognition Results272

Table 1 compares string accuracies of different training methods by varying273

the number of mixture components in each GMM in each HMM state. The274
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Table 1: EVALUATION SET STRING ACCURACY COMPARISON WITH DIFFERENT
METHODS ON THE TIDIGITS TASK.

MLE MCE SMED SMEC
1-mixture 95.20% 96.94% 98.76% 98.64%
2-mixture 96.90% 97.40% 98.91% 98.90%
4-mixture 97.80% 98.24% 99.15% 99.10%
8-mixture 98.03% 98.66% 99.29% 99.23%
16-mixture 98.36% 98.87% 99.29% 99.24%

column labeled with SMED and SMEC show the accuracy of the SME method275

with model-based margin, and the of the original SME method [14], respectively.276

Both SME methods outperform MLE and MCE significantly. Furthermore,277

SMED accuracy is close to the original SMEC technique, which implicitly278

confirms the viability of the proposed solution, that is, the use of the square279

root of the divergence to link the HMM margin and the HMM parameters within280

the SME framework.281

For 1-mixture SMED models, the SMED string accuracy is 98.76%, which282

is better than that of the 16- mixture MLE models. The goal of our design is to283

separate the models as far as possible, instead of modeling the observation dis-284

tributions. With SMED, even 1-mixture models can achieve satisfactory model285

separation. Finally, string accuracies as high as 99.29%, or 99.24%, which are286

listed in the bottom row of Table 1, represent excellent results on the TIDIG-287

ITS task. This good SME performance can be attributed to the well defined288

model separation measure, good objective function for generalization and better289

handling of difficult training samples than conventional discriminative training290

techniques, such as MCE. The values of λ and r for the SMED and the SMEC291

systems were set to 10 and 2.0, respectively.292

5.1.3. System Divergence Evaluation293

In Table 2 we list the square root values of the system divergence of all the294

models. The divergence trend of the three training methods is clear within the295
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Table 2: SQUARE ROOT OF SYSTEM DIVERGENCE (ρ(Λ)) WITH DIFFERENT
METHODS ON THE TIDIGITS TASK.

MLE MCE SMED SMEC
1-mixture 3.68 5.12 5.55 5.00
2-mixture 5.52 6.30 6.47 6.00
4-mixture 6.83 6.99 7.15 7.50
8-mixture 7.96 8.16 8.57 8.50
16-mixture 8.99 9.09 9.97 9.00

same model configuration. The divergence of MLE is the smallest and that of296

SMED is the largest in all model configurations. Furthermore, the value of297

the model-based margin of group of classifiers with competing designs (systems298

referring to the same row in Table 2), one can predict which system might299

perform the best without running any experiment on the evaluation data.300

On another hand, the model-based margin is not the only indicator for accu-301

racy. For 1-mixture SME models, the string accuracy is 98.76%, which is better302

than that of the 16- mixture MLE models. Nevertheless, the system divergence303

of the 1-mixture SMED models is far less than that of the 16-mixture MLE304

models. Hence, generalization is not only the factor that determines the recog-305

nition performance; nonetheless, it is a very good index when the model setup306

is the same (e.g., the same number of Gaussians)307

Finally, the rightmost column of Table 2 with label SMEC lists the empir-308

ical margins used in the original SME method [14] that have been selected by309

hand using expert knowledge. It is easy to see that the model-based margins310

(SMED) are similar in value to these empirical margins (SMEC). This result311

confirms that the proposed approach to define a margin dependent upon the312

HMM parameters represents indeed a good solution.313

5.2. Aurora-2314

In this work, we choose λ equal to 10, but the interested reader is referred315

to [12] for an investigation on the system performance on the Aurora-2 task as316
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the λ varies. The value of r was set equal to 2.0.317

5.2.1. Experimental Setup318

The Aurora-2 task defines two training modes: (a) clean training mode in319

which the acoustic model is trained on clean data alone and (b) multi-conditional320

training where training is done using both clean and noisy data. Three testing321

sets are provided for the evaluation of the Aurora-2 task. Each set has 4 sub-322

sets of 1001 utterances. The first testing set, set A contains four sets of 1001323

sentences, corrupted by subway, babble, car, and exhibition hall noises, respec-324

tively, at different SNR levels. The noise types included in this set are the same325

as those in the multi-conditional training. The second set, set B contains 4 sets326

of 1001 sentences each, corrupted by restaurant, street, airport, and train sta-327

tion noises at different SNR levels. These noise types are different from the ones328

used in the multi-conditional training. The test set C contains 2 sets of 1001329

sentences, corrupted by subway, and street and airport noises. The data set C330

was filtered with the MIRS filter before the addition of noise in order to evaluate331

the robustness of the algorithm under convolutional distortion mismatch.332

The acoustic features are 13-dimension MFCCs, appended by their first, and333

second-order time derivatives. The baseline experiment configuration follows the334

standard script provided by ETSI [16].335

Table 3: AURORA-2 WORD RECOGNITION ACCURACY COMPARISON WITH DIF-
FERENT TRAINING CONDITIONS AND DIFFERENT EVALUATION SETS. THE
LAST ROW SHOWS THE QUARE ROOT OF SYSTEM DIVERGENCE (ρ(Λ)) .

Training Conditions System Averaged Word Accuracy [16] ρ(Λ)

Clean
MLE 61.15% 4.78

SMEC (λ = 10) 66.86% 8.88
SMED (λ = 10) 66.88% 8.96

Multi-conditioning
MLE 86.41% 7.45

SMEC (λ = 10) 87.72% 11.96
SMED (λ = 10) 87.89% 12.32
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5.2.2. Recognition Results & System Divergence Evaluation336

Table 3 compares word accuracies of different training methods averaging337

over different noise types and levels as suggested in [16]. The proposed SMED338

method outperforms MLE for both clean and multi-conditional training, and339

compares well with the SMEC method in all training conditions. The last340

column of Table 3 demonstrates that the system divergence of MLE is the341

smallest and that of SMED is the largest in all model configurations. Those342

results confirm the validity of the proposed model-based formulation approach343

for robust ASR applications as well.344

6. Conclusion345

In this work, we extend the margin from a constant value in our previous346

work to a function of the system model distance. This distance-based margin is347

a function of all the model parameters and well characterizes the system gen-348

eralization. A system divergence is defined as the model distance of GMMs or349

HMMs. A model-based margin is plugged into the objective function of SME.350

The modified SME achieved a similar performance to that obtained with the351

previously proposed method, and with a better theoretic foundation. This fa-352

cilitates us to design SME quickly without the need to try different constants353

for systems with different complexities. From the experiment, for each mixture354

model setting, the divergence follows the same trend as the accuracy. Mean-355

while, a greater divergence result in greater accuracy in the digit recognition356

task. This demonstrates better generalization results in better accuracy. Fur-357

thermore, the value of the model-based margin, it is not the only factor to358

determine the system performance. The work in this letter goes beyond the359

margin definition in SVM. In binary SVMs, the margin is easily viewed as the360

separation distance of the two competing classifiers. For multiple classifiers,361
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there is no obvious extension. We directly relate the margin with model param-362

eters to characterize the generalization issue. Although this work uses HMMs363

as classifiers, we believe this model-based margin can be generalized to bene-364

fit other multi-class margin-based methods. As stated in this letter, a square365

root operation is adopted to map the system divergence to the soft margin.366

Although satisfactory results were obtained, many efforts are needed to inves-367

tigate what is the underlined theory and whether there are other functions to368

associate the system divergence with margin in SME. In [5], some precise real-369

izations of divergence with heavy computation cost are discussed. In our study,370

the computation of divergence is simple and easy for optimization, but with371

some potential precision loss. We will investigate whether better precision mod-372

eling of divergence will bring out further improvements. In [13] we have shown373

that SME also works well on a large vocabulary continuous speech recognition374

(LVCSR) task. We will demonstrate the effectiveness of this model-based SME375

on a LVCSR task in future works.376
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