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What Shape are Dolphins? Building 3D
Morphable Models from 2D Images
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Abstract—3D morphable models are low-dimensional parametrizations of 3D object classes which provide a powerful means of

associating 3D geometry to 2D images. However, morphable models are currently generated from 3D scans, so for general object

classes such as animals they are economically and practically infeasible. We show that, given a small amount of user interaction

(little more than that required to build a conventional morphable model), there is enough information in a collection of 2D pictures

of certain object classes to generate a full 3D morphable model, even in the absence of surface texture. The key restriction is that

the object class should not be strongly articulated, and that a very rough rigid model should be provided as an initial estimate of

the ‘mean shape’.

The model representation is a linear combination of subdivision surfaces, which we fit to image silhouettes and any identifiable

key points using a novel combined continuous-discrete optimization strategy. Results are demonstrated on several natural object

classes, and show that models of rather high quality can be obtained from this limited information.

Index Terms—Morphable model, shape from silhouette, subdivision surfaces, image-based modelling, single-view reconstruction.
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1 INTRODUCTION

MORPHABLE models of the human head and
body have enabled a myriad of applications in

computer graphics, special effects, and computational
photography [1], [2], [3], [4], [5]. However, building
a morphable model for a new object category is
currently a task that demands considerable effort: even
if full 3D scans of many object instances are available,
existing systems require user-guided correspondence
algorithms to build a vertex-consistent mesh across
instances. For some classes, such as live animals, the
difficulty is even greater: obtaining the 3D scans is
essentially impossible even using today’s real-time
depth sensors, particularly if canonical poses of the
animals are dynamic, for example a dolphin in mid-
leap. In one sense, however, we are not short of data:
we can obtain dozens of high-quality images of the
target class simply using a search engine, much as
Photo tourism [6] makes use of images of tourist
landmarks. The question we ask in this paper is
whether such a collection contains enough information
to build a 3D morphable model of a new object class.
For instance, given 32 images of the class ‘dolphin’,
can we generate an 8-parameter morphable model
which fits the image data, and generates plausible
new 3D dolphin instances? We show that with a small
amount of additional information supplied by user
interaction and a rough initial estimate of the ‘mean
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shape’, morphable models of usable quality can be
obtained purely from such 2D images (see Figure 1).
The models we obtain are at a coarser scale than those
from 3D scans, but nevertheless capture the object class
in a manner that has not previously been possible.
The classes to which this applies are general nonrigid
or deformable objects without significant articulation
(e.g. pigeons without feet, but not the human hand).
Importantly, surface texture is not required: the major
source of information is the object’s silhouette.

The contributions of this work are at a number of
levels.

• The first is essentially scientific: showing that
a 3D object class model can be recovered from
2D images is an extension of existing results in
nonrigid structure from motion [7], in multiview
reconstruction from silhouettes [8], [9], and in
single-view reconstruction [10].

• The second level is technical: a new combined
continuous-discrete optimization for recovery of
the object shape and contour generator (§5), and
new constructions for optimization on subdivision
surfaces (the details of which appear in supple-
mentary material).

• Finally, the practical contribution is to enable the
many applications to which morphable models
have been put to be extended to other classes.

1.1 Related work

Cootes et al. [11] build the first class-specific morphable
models of 2D shapes from 2D contours. By analysing
the relationship between linear combinations of 3D
models and their 2D projections, Vetter and Poggio [12]
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Fig. 1. Images showing eight dolphins out of 32, from which we build an 8-parameter morphable model. Top: input images with silhouette
annotations. Middle: The rigid dolphin prototype in initial position for our optimization, showing user-provided point constraints (blue), each of
which corresponds to a point in the image (shown in red). Bottom: final morphable model reconstruction overlaid on the input images.

indicate the potential for ‘linear object classes’ to
describe a variety of complex phenomena. Applied to
modelling of the human head from 3D scans, Blanz
and Vetter [1] demonstrate the enormous power of 3D
morphable models fitted to 2D images; extended to
modelling of the whole body, the range of applications
continues to widen [5]. Chen et al. [13] learn separate
pose and shape models for sharks as well as humans,
and demonstrate good reconstructions by fitting these
models to a single silhouette. However, in all of these
cases, 3D models are built starting from 3D data, while
we wish to recover 3D shape from 2D images.

1.1.1 Single-view reconstruction

The recovery of 3D from 2D is a subject with a long
history. The first class of related techniques comprises
those which recover a 3D model from a single 2D
image. Terzopolous et al. [14] show how generalized
cylinders can be fitted to image silhouettes using an
iterative approach which may be viewed as energy
minimization. Gingold et al. [15] combine generalized
cylinders with user-provided semantic annotations
to create smooth models from 2D sketches. Using
simple image-based rules, Igarashi et al. [16] generate a
variety of impressive 3D models in the TEDDY system.
Karpenko and Hughes [17] allow more topologies in
SMOOTHSKETCH and deal with invisible cusps and
incomplete silhouettes. Prasad et al. [10] show how
geometry images [18] allow complex topologies to
be recovered using a globally-convergent quadratic
energy minimization. The FiberMesh system [19] uni-
fies several existing constraint sources in an energy
minimization framework to provide a comprehensive
interactive system for 3D model construction from
curves.

Our approach may be seen as a generalization of
this type of system to morphable models rather than a
single 3D model. However, although previous systems

could use a fixed assignment of the contour generator’s
preimage in surface parameter space with little effect
on the final model, this approach is inadequate for the
morphable model case. Kraevoy et al. [20] find contour
generator preimages using a dynamic programming
approach similar to the discrete optimization we
propose in §5.2. They do not combine this with a
continuous representation, however, and their focus is
fitting a single 3D mesh to a single sketched contour.

If we consider how these approaches might be
adapted to the problem we address in this paper, one
might imagine performing a single-view reconstruction
for each of our input images and then applying
existing morphable model fitting methods. However,
this approach would ignore the shape information
available from multiple viewpoints represented across
the images, depending heavily on the surface smooth-
ness priors used in each reconstruction, as well as
requiring considerably more effort than our proposal.

1.1.2 Rigid reconstruction from multiple views

A second school of 3D recovery uses the information
available in multiple images of a single rigid 3D object
or scene. For textured objects, very effective systems
exist based on interest point detection and matching.
For example, Photo tourism [6] shows that 3D models
can be built from internet-sourced images. However,
our system cannot depend on interest points alone,
for two reasons: first, many objects of interest are
untextured (e.g. many animals); second, even textured
object classes such as leopards or giraffes may not
have corresponding interest points across individuals.
Recall that each of our images may be of a different
individual.

The key prior work in rigid reconstruction is there-
fore systems which recover shape and motion from
contours, and in particular from the object’s occluding
contour or silhouette. With known camera motion,
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shape from silhouette is a relatively straightforward
problem with a rich literature. Thus the key problem is
to recover camera motion from silhouette information,
which is difficult to do effectively. For the special case
of two images of a single rigid object, Porrill and
Pollard [21] show that “frontier points”—the 3D points
where epipolar planes touch the object—can provide
point correspondences, and Cipolla et al. [22] show
how the frontier points can constrain relative camera
motion. Furukawa et al. [8] show that camera posi-
tions can be computed for multiple images using the
frontier points from all pairs of images, combined with
some contour tangent information. McIlroy and Drum-
mond [9] demonstrate camera recovery in the same
scenario without the tangency information. For our
purposes, however, these solutions share a significant
disadvantage: frontier points are very much a property
of the same rigid object seen in two cameras. As each
of our images views a different 3D object, there is no
analogue of the frontier point, so the above methods
cannot be applied. However, even without explicit use
of frontier points, one contribution of our work is to
compute camera positions for multiple cameras while
simultaneously recovering object structure all along
the silhouette.

1.1.3 Nonrigid reconstruction from multiple views

Moving from rigid to nonrigid reconstruction, almost
all existing work is based on interest points tracked
through video. In a sequence of papers, Torresani and
collaborators [23], [7] extend rigid-geometry structure
from motion (SfM) to nonrigid scenes using the
same idea as in morphable model construction: the
parameters of the model in a given image are assumed
to be representable as a linear combination of the
parameters of a set of 3D basis models. However, as
with rigid SfM, the input is the same 3D object, so
point correspondences can be obtained, unlike in our
scenario. Recently, Prasad et al. [24] addressed this
problem by using curve features rather than feature
points, arguing that for some object classes, there are
3D curves in common across object instances. For
example, plant leaves and petals can be modelled by
the 3D curves comprising their outer boundaries; or
surface markings on some animal species are common
across members of the class. However, suitable object
classes are relatively few, while the technique we
describe in this paper applies to a much larger set
of shape classes, because the object silhouette provides
such strong shape cues and point constraints can be
included.

Perhaps the closest work to ours is that of Ilić
et al. [25], who fit deformable 3D models to video
using a combination of silhouette and point features.
The key differences are that the number of point
correspondences they use is significantly higher than
in this work; they find silhouettes by solving an ODE
at each iteration, rather than via the global search we

Fig. 2. A rigid template triangulation (red lines) which we use to
initialize our dolphin model. Note that this triangulation defines only
the mesh topology, and is defined just once per object class, not
per image. The Loop subdivision surface defined by combining this
triangulation with the vertex positions defined by the red spheres is
shown in gray.

employ in §5.2; the deformations they consider are
quite small, and in each of their examples, recovery is
aided by some extra information such as a predefined
morphable model (in contrast, we initialize with a
predefined rigid model) or a deformation basis from
eigenshapes (with unsatisfactory results as shown in
§6.4 below).

2 MORPHABLE MODEL

In previous work on 3D morphable models, the model
is represented by a mesh of control vertices, combined
with an interpolation rule to create a continuous sur-
face from the mesh. For example, triangular facets [1],
[5] yield a piecewise planar model. Such models are
reasonably easy to use, but are described by thousands
of parameters, which would make them extremely
unwieldy in our application. In contrast, we assume
piecewise smooth objects, and use subdivision surfaces
(see §5.4), which require many fewer parameters to
describe, at the cost of a more complex interpolation
rule. Despite its apparent complexity, the model surface
is still linear in the control vertices.

The use of subdivision surfaces does impose the
requirement that the model topology must be pre-
defined, which is most easily achieved by defining
a rigid model of approximately the right shape (see
Figure 2). We created our primary template meshes
in the 3D modeller Blender, but also tested models
generated with even less user interaction by using
mesh decimation methods [26] on the output of the
sketch-based modeller FiberMesh [19]. See §6.1 for
details of this process, where we also demonstrate that
the template does not need to be accurate in terms of
shape, and simply defines the mesh topology.

We defer the precise details of the model until §5.4,
and specify only that both our model and the previous
mesh-based models may be given as follows: we have
an explicit surface representation parametrized by p
control vertices represented by a vector X ∈ R

3p and
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evaluated on a 2D domain Ω. Initially it will suffice
to think of Ω as a subset of R

2, but its topology is
in practice much less restrictive. Points in Ω will be
denoted using a circle accent, for example ů. The
surface is a mapping M : Ω 7→ R

3, where each
point ů generates a 3D surface point denoted by
M (̊u|X) ∈ R

3, to make explicit the dependence on
the control vertices X. M (̊u|X) is linear in X but non-
linear in ů; for our choice of Loop subdivision (see
§5.4), M is actually a piecewise quartic polynomial
function of ů. The corresponding surface normal is
written N (̊u|X) ∈ R

3.
Our model class allows for sharp edges, and indeed

perfect sharp edges can be generated by tagging certain
model edges as crease edges. In practice, this adds
complexity that we have not implemented, but as the
dolphin results show, good results can be obtained
simply by allowing the control mesh vertices to be
near each other.

Let Xi be the control vertices for the surface de-
scribing the object in image i. Then we define our
morphable model as a linear combination of D + 1
basis shapes, denoted Bm ∈ R

3p, giving

Xi =

D
∑

m=0

αimBm with αi0 = 1. (1)

From the constraint that αi0 = 1, we expect B0 to
represent an instance of the target object in neutral
pose, and the other basis shapes to encode the pose and
shape variations required to explain the image data.
This is analogous to performing principal component
analysis (PCA) on a set of known shapes [1], [5], where
B0 plays the role of the data mean, and the other
basis shapes {Bm}Dm=1 correspond to the PCA modes
of variation. However since the shapes {Xi}

n
i=1 are

unknown a priori, this analogy to PCA is not exact:
we do not constrain the basis shapes {Bm}Dm=1 to be
orthogonal to one another, and neither is B0 equal
to the mean 1

n

∑n
i=1

Xi. Nevertheless this model does
give a D-dimensional morphable model (i.e. the same
expressive power as PCA with D modes of variation),
as long as the shapes {Bm}Dm=1 are independent. We
use an iterative relaxation (§5.3) to guide the model
towards such independent shapes.

3 INPUTS

Before developing the details of our method, it will
be useful to look at the inputs it requires. Some of
these inputs are currently supplied by user interaction,
allowing us to ensure that the input does not appear
as a significant source of error in our results (§6). The
interactions are designed to be quick and easy for the
user, and in many cases, the input could also be made
automatic, as researchers have demonstrated automatic
systems which provide similar data. We make it clear
where this applies in the sections below.

contour generator

silhouette

(part of)
contour

preimage

M

ůi

(i)

si

T

M(T )

Ω

Fig. 3. An image (i) of an object with the silhouette si = {sij}
Si

j=1
.

The contour generator projects to this silhouette in the image. We
also show one triangle T ⊂ Ω, and a part of the contour preimage
ůi that appears in T . The contour generator (which is discontinuous,
in this figure) is the result of using M to evaluate the surface at the
contour preimage.

The main input (apart from the rigid template
described above) is a collection of images containing n
instances of the object class of which we wish to
build a model. We primarily use the example of the
class of dolphins, as they exhibit reasonably complex
deformations, and the combination of smooth and
sharp edges represents a challenge for modelling. For
the remainder of the paper, we assume that each
image contains exactly one object instance, so images
containing more than one are simply indexed twice.
We index per-image quantities using i ranging from 1
to n.

3.1 Image data: Silhouette

The primary feature in our approach is the object’s
silhouette, or occluding contour. Figure 3 illustrates some
of the key terms we use in this paper. The silhouette is
a 2D curve in the image plane, which is the projection
of a possibly discontinuous 3D space curve called the
contour generator. The contour generator is a curve on
the object surface, and thus is associated with a curve
in the parameter space Ω. We call this parameter-space
curve the contour preimage.

We extract the silhouette of each object instance
using a closed curve (see Figure 4b). This could also be
made automatic by training a 2D class model [27]. Each
silhouette is sampled to create Si discrete silhouette
points sij ∈ R

2 (j = 1 .. Si), each of which has a
corresponding unit normal nij ∈ R

2 (see Figure 4d).
The silhouette as a whole in image i is written

si = {sij}
Si

j=1.

Note that some definitions of image silhouette in-
clude internal edges. These are not required in our
framework—see for example Figure 4b, where the
right fin is only partially represented on the image
silhouette.
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(a) The initial dolphin model (see
Figure 2) overlaid in the position
given by the initial camera view
{ti, σi,Ri} for this image.

ci1

ci2ci3

ci4

ci5

ci6

(b) The silhouette curve we use
to extract an object, and the con-
straints cik. The point ci3 cap-
tures information which is not
available from the silhouette.

(c) The user-specified parameter
values µ̊ik ∈ Ω corresponding
to each 2D point constraint cik
shown in (b), drawn as positions
M(µ̊ik|Xi) ∈ R

3.

(d) The discrete silhouette points
sij and normals nij sampled at
regularly spaced positions from
the curve shown in (b).

Fig. 4. The input specification for one image: (a) gives an initial camera view, (b) and (c) show a silhouette curve and point constraints, and (d)
shows the discretized silhouette data. Note the significant mismatch between the initial model shown in (c) and the target shape given by (b),
for example at the fins.

3.2 Image data: Point constraints

We also allow each image i to be accompanied by Ki

user-specified point constraints, illustrated in Figure 4b
and 4c. These constraints help to direct the optimiza-
tion into the correct energy well, and can encode
information which is visible in the image but not
available from the silhouette. Each constraint is a pair
(µ̊ik, cik) ∈ Ω×R

2, linking a given point in the surface
parameter space to a position in the image; that is to
say the ideal reconstruction would satisfy

cik = πi(M(µ̊ik|Xi)) (2)

for all constraints k in all images i, and where πi

is the image projection defined below. There is no
requirement that the same points be specified in each
image: in Figure 1, occlusion means that some instances
have Ki = 5, some Ki = 6.

3.3 Image data: Initial viewpoint

Each image is associated with camera parameters
that represent the image’s view of model space. We
make the assumption that each camera takes a scaled
orthographic projection, as this simplification does not
make a significant difference to the model that we
construct. We can therefore represent the camera by a
similarity which transforms coordinates in model space
so that each image projects to the xy-plane, with the
viewing direction along the z-axis. In this coordinate
system, orthographic projection to the image is then
simply π([x y z]T ) = [x y]T . The similarity used to
represent the camera for image i has six degrees of
freedom:

• 3 for a rotation, parametrizing the 3×3 matrix Ri,
• 1 for a global uniform scale λi,
• 2 for an (x, y) translation ti.

The complete projection for image i is then

πi(x) = ti + π(λiRix). (3)

We initialize Ri by allowing the user to roughly
position a rigid template model over the image (see
Figure 4a), a task which takes a few seconds per object
instance. The scale λi and translation ti can then be
found either using a linear least-squares problem (if
there are three or more point constraints to supply
correspondences) or using the same user-supplied
position. Note that our optimization is free to modify
the camera view (see §5.1): the user input is only
the starting point for the optimizer. If four or more
point constraints are available then we could also
find the rotation automatically by finding the scaled
orthography that best fits the given constraints [28].

3.4 Smoothness parameters

To complete this list of inputs, we add 2 scalar
parameters ξ0 and ξdef which control the smoothness
of the model (ξ0) and of the deformation basis shapes
(ξdef). We defer further discussion of these weights
to §4.4 and §6.2.

4 ENERGY FORMULATION

We find a morphable model using a variational
approach; in this section we describe each of the
terms that contribute to the objective function. There
are a large number of terms, giving a complicated
energy, but we find that each one is necessary to
construct a function holding good solutions to the
reconstruction problem at its minimum. §5 explains the
global/local algorithm we use to find such a minimum.
Our goal now is to define an objective function, the
minimization of which simultaneously discovers:
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• basis shapes {Bm}Dm=0,

and per-image

• shape coefficients {αi}
n
i=1 where αi := {αim}Dm=1,

• camera parameters {ti, λi,Ri}
n
i=1,

• contour preimages {ůi}
n
i=1, where ůi := {ůij}

Si

j=1.

We gather the shape and pose parameters into a set
P = {B0 ..BD,α1 ..αn, t1 .. tn, λ1 .. λn,R1 ..Rn}, and
the preimage into U = {ů1 .. ůn}. Although this sea of
symbols represents a large number of parameters, the
silhouette is such a rich source of shape information
that the number of measurements greatly outweighs
the number of unknowns, so we can expect a relatively
well-constrained solution. We provide a glossary of
our notation in the supplementary material.

4.1 Matching image silhouettes and constraints

To begin, we shall assume we already have the contour
preimage points ůij , each of which corresponds to a
silhouette sample sij . Then the primary goal of our
surface reconstruction is that evaluating the model
at the contour preimage ůi, and viewing from the
correct angle, should give the silhouette si. That is,
with a perfect model in the absence of noise, the
reconstruction would satisfy

sij = πi (M (̊uij |Xi)) ∀i, j. (4)

Our first energy term is the negative log probability
of deviation from this equality under a Gaussian
distribution of variance σ2

sil:

Esil
i =

1

2
σ−2

sil

Si
∑

j=1

‖sij − πi (M (̊uij |Xi))‖
2
, (5)

where σsil is an estimate of the noise in the extracted
silhouettes. There is a similar energy term for the user-
specified constraints; compare with (2):

Econ
i =

1

2
σ−2

con

Ki
∑

k=1

‖cik − πi (M(µ̊ik|Xi))‖
2
. (6)

For the surface to be consistent with the silhouette
at sij , we require the normal N (̊uij |Xi), once trans-
formed by (R−1

i )T = Ri, to lie in the plane spanned
by [nT

ij 0] and [0 0 1]. However, we also want the
reconstructed surface to generate a silhouette at the
contour generator, which means that at ůij the surface
must be normal to the viewing direction. Prasad et
al. [10] show that we therefore know the required
normals completely: in the image space which is the
target of Ri, we want the normal to be exactly [nT

ij 0].
This leads to the energy term

Enorm
i =

1

2
σ−2

norm

Si
∑

j=1

∥

∥

∥

∥

[

nij

0

]

− ν (RiN (̊uij |Xi))

∥

∥

∥

∥

2

(7)

where ν is the normalization function ν(x) = x/‖x‖.
These terms penalize solutions where the surface

at the contour generator is not consistent with the

observed image silhouette. However they do not
penalize ‘spillage’, where an unconstrained part of the
surface falls outside of the observed image silhouette
when projected into the image plane. We discuss
the modifications needed to penalize spillage in §7.
Nevertheless we find that the constraints imposed on
the solution by Enorm

i are sufficient for many object
classes in practice (see Figure 1).

4.2 Smoothness and regularization

At the contour generator curves, we have a rich set of
information on the surface shape from the silhouettes.
Away from these curves, however, the surface is far
less constrained. In order to find an acceptable solution,
we therefore have to incorporate prior knowledge on
the types of surfaces that we wish to reconstruct. Here
we make the assumption that the target surfaces are
smooth, and we can choose from the wide array of
available surface smoothness energies [29].

One of the simplest choices is the linearized thin-
plate energy, and this has a form that can be evaluated
exactly and efficiently [30] for our surface represen-
tation, subdivision surfaces. A disadvantage is that
the thin-plate energy is a poor fairness measure for
surfaces which are given by only planar (or near-
planar) boundary constraints [19]. This is the case
when reconstructing surfaces from a single view.
However, we have the advantage that our solution
is constrained by multiple views by means of the
morphable model (1). We can therefore exploit the
simplicity of the thin-plate energy without suffering
from flat reconstructions.

There is a corresponding energy term for each of the
D+1 basis shapes. Using subscripts to indicate partial
differentiation in orthogonal parametric directions x
and y, these terms are:

Etp
m =

λ̄2

2

∫

Ω

‖Mxx(̊u|Bm)‖2 + 2 ‖Mxy (̊u|Bm)‖2+

‖Myy (̊u|Bm)‖2 dů.

(8)

The thin-plate energy is not invariant to scaling of the
basis shapes Bm, so we weight these smoothness terms
by the square of the average orthographic scale factor,
λ̄ = (

∑

i λi)/n, to avoid a solution with arbitrarily
large values of λ and correspondingly small Bm.
Similarly, we need to regularize the shape coefficients
αim, as otherwise the optimization will move towards
a solution with small Bm where m > 0. We therefore
add the regularization terms

E
reg
i = β

D
∑

m=1

α2
im. (9)

Here the value of the weight β simply fixes the oth-
erwise unconstrained overall scale of the deformation
basis shapes, and can be set to any value.
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4.3 Contour generator continuity

For simple scenes we expect the contour generator to
be a continuous curve, and we want to prevent a result
where the discrete points that we use to represent the
contour preimage are arbitrarily scattered over Ω. We
therefore add a term that penalizes a large distance
between points in the contour preimage. Conceptually
we can write that distance as ‖ůi,j+1 − ůij‖, although
our use of subdivision surfaces means that Ω has a
piecewise structure. We therefore approximate the dis-
tance between points in Ω by a function d(̊uij , ůi,j+1)
which takes account of the structure; see the supple-
mentary material for details.

Although silhouettes are mostly the image of con-
tinuous curves on the surface, we also need to allow
for selected discontinuities where one part of a surface
obscures or appears behind another (see Figure 3).
Such discontinuities should incur only a fixed penalty,
unrelated to the size of the jump on the surface. We
therefore add the distance function d to the energy
using the truncated quadratic τ(x) = min(x2, h2) for a
problem-independent constant h (see supplementary
material), giving

E
cg
i = γ

Si
∑

j=1

τ(d(̊uij , ůi,j+1)) (10)

where γ is a weighting parameter which is required
to find good solutions for contour generators, but
should be small and need not change between object
classes; in fact γ could be relaxed to 0 by the end of
the optimization.

4.4 Complete energy function

In summary, by combining all of the terms (5) to (10),
we arrive at the following energy

E =

n
∑

i=1

(

Esil
i + Enorm

i + Econ
i

)

+

+
n
∑

i=1

(

E
cg
i + E

reg
i

)

+ ξ20E
tp
0 + ξ2def

D
∑

m=1

Etp
m.

(11)

We weight the smoothness terms E
tp
0 and E

tp
m (for

m > 0) separately, as this allows us to distinguish
between the smoothness of the target object class and
the smoothness of the model, i.e. how smoothly the
model deforms when there is a change in the shape
coefficients α. See Figure 11 for a demonstration of the
effect of these separate weights.

Now that we have defined E, our task is to find
its minimum under perturbation of the parameters
defined at the start of this section. This gives a highly
nonlinear and large-scale optimization problem, which
implies that we need a good initialization (since the
search space may contain many local minima), and
an optimization algorithm specific to this problem
domain (in order to make the search tractable). The

next section describes our strategy to address both of
these challenges.

5 OPTIMIZATION ALGORITHM

The energy E is a function of pose and shape parame-
ters P and of the preimage parameters U , which may
be viewed as ‘nuisance’ or latent parameters. Thus our
optimization problem may be written as

P ∗ = argmin
P

min
U

E(P,U).

As both sets of parameters are continuous, a general
smooth-function optimizer may be used to simultane-
ously optimize E(P,U), computing

(P ∗, U∗) = argmin
P,U

E(P,U)

and discarding U∗. By simultaneously optimizing over
P and U , we can rapidly converge to a nearby local
minimum, and this forms one component of our
overall optimization strategy. However it is difficult
to find a good initial estimate for U , so this strategy
does not find high-quality optima (see Figure 7b).

We therefore interleave this continuous optimization
stage with a global discrete optimization over the U
only. Thus the overall strategy, given (Pm, Um), is to
compute (Pm+1, Um+1) by iterating the two steps

U∗ = argmin
U∈ΦS

E(Pm, U), (12)

using global optimization over the discrete set Φ (see
§5.2), and

(Pm+1, Um+1) = argmin
P,U

E(P,U), (13)

using local continuous optimization starting from
(Pm, U∗) (see §5.1).

5.1 Local non-linear optimization

For local continuous optimization, we use the trust-
region-reflective algorithm provided by the MATLAB
function lsqnonlin. The key observation that allows us
to use a least squares minimization is that each term
of E can be written as a squared quantity. To see this
for Etp, observe that M (̊u|Bm) is linear, and hence
E

tp
m is quadratic, in Bm. We can therefore write E

tp
m as

a quadratic form BT
mQBm for a coefficient matrix Q

which is positive definite. By taking the matrix square
root of Q, we arrive at a vector wm = Q1/2Bm such
that E

tp
m = ‖wm‖2.

Each camera is given the 6-parameter representa-
tion described in §3.3. To represent the rotation, we
use exp([θi]×), the matrix exponential of the skew-
symmetric matrix [θi]× with values drawn from the
vector θi ∈ R

3. The exponential map has singularities
wherever ‖θi‖ is a multiple of 2π [31]. To avoid
these, we combine the optimized rotation with the
user-specified initial rotation R̂i, by setting Ri =
R̂i exp([θi]×). This keeps ‖θi‖ small by using the
optimized rotation as a small correction to R̂i.
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5.2 Global search for contour generators

E is quadratic in αi and Bm, but has a much more
complicated dependence on the camera parameters
and contour preimages. The dependence on the camera
parameters is quite well understood in the context
of bundle adjustment [32], and here we are also
able to take advantage of a good initial estimate
(§3.3). However, the contour preimages are still very
susceptible to local minima, and their convergence has
a large effect on the quality of the final solution.

We therefore interleave iterations of least squares
minimization with a global search for contour gen-
erators, by selecting preimage points from a set of
discrete candidate positions Φ ⊂ Ω. Our experiments
use 10g + p candidates: 10 sampled uniformly from
inside each of the g triangles in the control mesh, and
one corresponding to each of the p control vertices.
However the density of this sampling is not critical,
as the continuous optimization follows every global
search and finds the optimal local position for each
preimage point.

As the global search modifies only the contour
preimage points U , the terms Econ, Etp and Ereg are
all constant. Each image therefore presents a separate
optimization problem, and finding the minimum of E
with respect to the contour preimage path for image i
coincides with finding

min
ůi

(

Esil
i + Enorm

i + E
cg
i

)

. (14)

This can be solved efficiently using dynamic program-
ming, where subproblems solve for a shorter contour
of length l. The base case, where l = 1, evaluates
only Esil and Enorm for each of the candidate positions
in Φ. Adding an additional point, to increase l by
one, uses the penalty Ecg in considering each possible
transition between preimage points. Once l has reached
the required contour length, we can find the optimal
preimage path by tracing back through the calculated
cost matrix.

We are often able to accelerate the calculation of
the globally optimal path even further, by noting any
constraints cik which lie on the silhouette. In Figure 4,
for example, there are five such points. Since these
constraints associate a µik ∈ Ω with a point on the
silhouette, they partition the contour path problem
into separate sections, each of which can be solved
separately (see Figure 5).

In the unusual situation where no constraints lie on
the silhouette, we do not have separate linear path
problems but just one circular path to find. In this case,
we have to make sure that the path forms a closed
loop, since dynamic programming makes no such
guarantee if used alone. A naive solution would be to
solve equation (14) |Φ| times, each time constraining a
linear path to start and end at a given candidate point.
However, Appleton and Sun [33] show that the same
result can be found with logarithmic rather than linear

(a) Silhouette, with con-
straints cik that lie on
the silhouette marked in
yellow (see Fig. 4b).

(b) Two different views showing the re-
sult of solving (14) separately on each
coloured section, between the known
points M(µik) marked in yellow.

Fig. 5. If one or more constraints cik lie on the silhouette, the global
search for contour generators is partitioned into separate problems
for non-circular paths. In this example, the constraints shown in (a)
split the silhouette into the five sections shown in different colours,
which we solve in turn to gain the contour generator solutions in (b).

complexity, by using a branch-and-bound method.
Using their algorithm, we solve a linear dynamic
programming problem at each iteration, where the
path is constrained to start and end in some subset
of Φ. The resulting path is a lower bound for the energy
of a circular path that starts and ends in the given
subset, and if the resulting path is circular, then it is
also a possible solution to the problem. The algorithm
continues pruning a binary search tree for subsets of Φ
until there is a circular solution, and no other subset
has a smaller lower bound.

For each of the eight dolphins shown in Figure 1, a
naive search for an initial circular contour generator
path takes one hour. Appleton and Sun’s algorithm
finds the same globally optimal circular paths in an
average of 62 seconds, with solution times ranging
from 29 to 138 seconds depending on the number of
passes required to prune the binary search tree. Finally,
by splitting each contour generator problem into
separate linear path problems using point constraints
that lie on the silhouette, each problem can be solved
in less than 2.5 seconds. With these improvements,
runtime is therefore dominated by the continuous least-
squares minimization described in §5.1.

5.3 Initialization and optimization schedule

We initialize B0 with the control vertices of the
template, and the initial camera rotation with user
input as described in §3: this gives the initialization
P 0 for the pose and shape parameters P . The first run
of our global search (12) provides an initial estimate
U∗ for the contour preimages ůi. In total we use D
passes each of the global discrete optimization (12)
and the local continuous optimization (13), adding
one additional basis shape for each pass. The final
output of our algorithm is then (PD, UD), from which
we can discard the preimage parameters UD. At each
pass, we initialize the newly-added Bm to 0 and αim

to 1 for all i.
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Fig. 6. Images showing six pigeons out of 25, from which we build a 7-parameter morphable model. Top: input images with silhouette
annotations. Bottom: final morphable model reconstruction overlaid on the input images.

Gradually increasing the dimension of the model
is more reliable than using D passes which optimize
for all D + 1 basis shapes at once, as the model is
able to successively factor out increasing amounts of
variation in pose and shape. The solution is therefore
directed towards a result with independent shapes
Bm, although explicit orthogonality is not imposed
(nor is it necessary).

5.4 Subdivision surface model

To minimize the energy E given in §4, we need to
define the functions M and N . We use Loop subdi-
vision surfaces [34], which have several advantages
for this application. Loop surfaces are linear functions
of the control vertices X, maintain continuity as X is
modified, and can be evaluated at arbitrary positions
in the domain Ω [35]. Surface normals are well defined
everywhere, and the same is true of their derivatives
except at isolated singularities. A smooth surface
representation is particularly important given our
continuous search for contour preimages ůi, which
relies on the continuity of the terms Enorm

i , which in
turn are functions of the surface normal.There is also
a closed form for the linearized version of thin-plate
energy integrated over the parametric domain [30],
leading to an efficient evaluation of our terms E

tp
m.

However, the piecewise structure of the parameter
space Ω presents two main challenges: in order to
evaluate Ecg, we need a function d(̊uj , ůj+1) which
serves as a distance measure between positions in Ω,
and we need to define how differential updates ∂E

∂U
are executed on the piecewise domain. We address
both problems by locally reparametrizing Ω about the
current estimate, following ideas developed by Peters,
Reif [36] and Zorin [37]. The details are provided in the
supplementary material, but Figure 7 gives an intuitive
indication of the benefit of this reparametrization.

6 EXPERIMENTS

We implemented the system as described, and tested
it on four object categories. For all experiments we

set Si = 125 for all i, and used γ = 1/128 and β =
0.5 for all problems. The silhouette point noise level
σsil = 1 (the units are arbitrary as an overall scale may
be applied to the energy), and the point constraint
noise level σcon = 0.2. σnorm is set on a per-problem
basis below as the noise on normals depends on the
silhouette extraction process. We empirically determine
the shape parameters {ξ0, ξdef} by modifying default
values based on a visual assessment of reconstruction
quality; see §6.2 for an experiment that measures the
sensitivity of our system to ξ0 and ξdef. We ran all
the experiments on a laptop with an Intel Core i7
processor clocked at 2.67 GHz. The source code for
our implementation is available from http://forms.
codeplex.com/.

The first dataset contains 32 dolphin instances in
a variety of poses: 22 taken underwater, and 10
showing dolphins in the middle of jumps out of the
water. We extracted silhouettes using the ‘Remove
Background’ feature of PowerPoint 2010. For 17 images
this required no more than a bounding box, but
for the rest, additional mouse strokes were required.
On average, 1.63 extra mouse strokes were required
per image. The weights we use for this dataset are
σnorm = 1/0.075 ≈ 13.3, ξ0 = 0.5 and ξdef = 0.25.
Our optimization finds a morphable model with 8
parameters in 24 hours. The number of variables
involved in each iteration of the local non-linear
optimization ranges from 8,267 (when D = 1) to 10,584
(when D = 8). See Figure 1 and the accompanying
video for examples of reconstructions from this model.

We used this dataset to test the impact of varying
the number of images used to build a model. Figure 8
shows that with a small number of images, such as
the 8 used to reconstruct Figure 8 (left), the contour
generators may not sufficiently cover the model sur-
face. The result is a reconstruction which is too flat,
given this disadvantage of the thin-plate energy we
mentioned in §4.2. However, 16 images is enough to
gain a plausible reconstruction, for this example, and
using the full 32 images allows the model to return a
more refined pose estimate.

http://forms.codeplex.com/
http://forms.codeplex.com/
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(a) Initial estimate. (b) Only continuous local opti-
mization, as described in §5.1.

(c) As (b), but including iterations
of our global search (§5.2).

(d) As (c), but with reparametriza-
tion around singularities.

Fig. 7. Different optimization methods for learning a morphable model with 8 parameters from 32 dolphin instances. In each image, the final
solution surface is shown transparent and overlaid with the contour generator shown as red spheres. In (b), the preimage points belonging on
the dolphin’s foremost fin are stuck in local minima. This deficiency is repaired in (c), but poor parameter updates damage the convergence of
the contour preimage points. In (d) the optimizer finds a good solution for nearly all preimage points.

Fig. 8. A reconstruction of the same dolphin, using 8, 16, and 32
instances (from left to right) to build an 8-parameter model.

The second dataset was built from images of 25
pigeons, selecting images where the birds’ wings are
folded rather than spread. We chose images which
show an interesting variety of poses for the head, and
also a large spread of different types of pigeons. To sim-
plify the problem and avoid occlusion, we modelled
only the feather-covered part of each bird, excluding
the featherless feet in each case. Note that occlusion
could be easily incorporated into our approach, by
allowing the input annotations to mark open as well as
closed silhouette curves; we ignored this possibility for
simplicity of description and implementation. Never-
theless our template model does contain extrusions for
the pigeon legs, and these are satisfactorily modelled in
many of the example images. For this pigeon dataset,
we find a morphable model with 7 parameters in 3
hours. We use the weights σnorm = 5, ξ0 = 0.25 and
ξdef = 0.05. Example reconstructions are shown in
Figure 6 and the accompanying video.

We also built a dataset from images of 20 polar
bears, to test our framework on an animal with much
more complicated pose variation. Here our method is
limited by the lack of representation for articulated
joints, and several reconstructions spill over the edge of
the silhouette: an error which is not explicitly penalized
by our reconstruction energy E. As the optimizer finds

it very difficult to make progress on this dataset, we are
able to build a 10-parameter model in 3 hours, using
weights σnorm = 4, ξ0 = 0.25 and ξdef = 0.25. Figure 14
shows a few reconstructions from the model.

Figure 7 shows some of the incremental improve-
ments made by different parts of this paper. The results
shown in (b), (c) and (d) were generated in 9, 21 and
24 hours, respectively. This difference between (b) and
(c) is not explained directly by the running time of
our global search, however, as the computation for
this stage is negligible compared to the continuous
optimization (see §5.2). The impact on the running time
of the algorithm is therefore better explained by the fact
that the global search, in (c), provides the continuous
optimization with the opportunity to make a greater
number of productive steps towards a minimum.

6.1 Sensitivity to template mesh

We investigated the sensitivity of the optimization to
the initial template using two tests: first, dependence
on mesh geometry, then mesh topology.

6.1.1 Geometry

To assess dependence on mesh geometry, we deformed
the initial user-created estimate shown in Figure 2 to
a sphere, by simply projecting the control vertex limit
positions onto a sphere. A linear combination of the
reference and sphere meshes, parametrized by a scalar
ω, allows us to smoothly vary the deviation from the
user-created initial estimate.

We then run our optimization for varying values of
ω and record the 3D difference between the converged
mesh and that reached for ω = 0. The results are
plotted in Figure 9a and show that we can start the
optimization from a wide range of shapes, up to the
blowfish-like geometry shown in Figure 9b, and find
a similar result at the end of the optimization. The
result worsens if we start from a very spherical shape
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(a) Variation of model quality with initial estimate.

(b) Initialization for B0 when ω =
0.675

(c) Initialization for B0

when ω = 1

Fig. 9. Model quality plotted as a function of how sphere-like the
initialization template is set. In (a) we compare the final shapes
{Xi}

n
i=1

against the shapes {X̂i}
n
i=1

that are given by the result
when ω = 0. The final result is similar for a large range of values for
ω, including the value ω = 0.675 shown in (b).

(a) Model created in FiberMesh
by sketching the blue (smooth)
and red (sharp) contours.

(b) Shape shown in (a), deci-
mated and converted to a Loop
subdivision surface (c.f. Fig. 2).

(c) Comparison of reconstructions using (top row) the hand-crafted
template mesh shown in Figure 2, and (bottom row) the template
mesh shown in (b), created using FiberMesh.

Fig. 10. The single template mesh can be created using very little
user interaction. Here we show the result of using FiberMesh [19]
to create a template mesh, with which we reconstruct the same 32
dolphins used to create Figure 1. The reconstruction comparison
in (c) shows that the resulting model is of a quality which is similar, but
not completely equivalent, to the model built using the hand-crafted
template shown in Figure 2.

(ω close to 1, as shown in Figure 9c), because the
surface normals no longer provide useful information
to the global search for contour generators. However,
these results show that the method is quite tolerant
of variations in starting geometry. Note that to give
tractable computation times, this experiment was run
with lowered optimization tolerances, just 16 images,
and five basis shapes (D = 4).

6.1.2 Topology

A potentially more serious dependence is on the
topology of the initial mesh. The mesh shown in
Figure 2 contains some vertices which are clearly
placed in order to capture some key dolphin features.
While such meshes are easy to build for 3D modellers,
we would like to test whether a more naive initial
mesh can be used. We used FiberMesh [19] to build an
approximate dolphin model, and then used a simple
decimation strategy to define the subdivision surface
control mesh, illustrated in Figure 10b. This mesh
is of a rather lower quality than the hand-crafted
template: triangles have more uneven aspect ratios,
and there are a greater number of surface singularities.
It would be possible to approximate the shape shown
in Figure 10a without these problems, by using a more
specialized subdivision-surface fitter [38]. Nevertheless,
the model is not too badly affected by the poor quality
of the starting mesh. The reconstructions shown in
Figure 10c are typical in showing that the model built
using a sketched template is close to the one shown
in Figure 1, but suffers around the tail region, for
example, where the sketched template provides fewer
degrees of freedom (i.e. control vertices) to match the
image data.

6.2 Sensitivity to weights on thin-plate energy

The weights ξ0 and ξdef determine the smoothness of
the desired object class and deformations. These are
user-determined parameters, so we need to ensure that
their setting is a straightforward process. In Figure 11
we show the effect of changing these weights on
three different object classes, demonstrating that the
model changes smoothly in response. This figure also
shows the importance of the terms Etp to gain a good
reconstruction; in particular, a value for ξ0 which is
too low leads to a highly implausible model, satisfying
the constraints along each contour generator but with
extreme, non-smooth changes in between.

6.3 Sensitivity to initial rotation

To test sensitivity to the user-provided view shown in
Figure 4a, we added a random perturbation to each
initial rotation R̂i for 16 dolphin instances, and found
{λi, ti} by solving a least-squares problem for the
point constraints. Figure 12 shows that the number of
point constraints in this dataset make the system very
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Fig. 11. Sensitivity to changes in weights on Etp. This figure shows an example reconstruction from models built using 32 dolphins, 25 pigeons
and 10 bananas, with a variety of values for ξ0 and ξdef. Note that the leftmost column shows a very low value of ξ0, illustrating the need for
the smoothness terms. For each dataset we highlight in red the model that is used in the rest of the paper.
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Fig. 12. Variation of model quality with perturbed initial rota-
tions {R̂i}

n
i=1

. This graph plots the difference between the final

shapes {Xi}
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and the shapes {X̂i}
n
i=1

that are given by the
unperturbed rotations.

Fig. 13. Reconstructions that solve for each image separately, by
using fixed eigenmodes of Etp as the basis shapes Bm. In each
row we show (left) the original image, (middle) the eigenmode
reconstruction for 5 modes in each of three coordinate directions,
i.e. D = 15 and (right) another view of the same reconstruction. While
some configurations (e.g. the top two images) can give reasonable
results for a single image and fixed basis shapes, others (e.g. the
bottom two) need the information available from other images to
obtain plausible reconstructions.

insensitive to changes in the supplied rotations; even
random perturbations of 50 degrees make little change
to the final reconstructed shapes. This experiment
used the same settings described in §6.1.1 to generate
models with five basis shapes.

6.4 Comparison to fixed deformation modes

In this work we use the information available from
multiple images of an object class to constrain the
model (1). However, the discrete search described in
§5.2 decouples the separate problems to be solved
in each image, and we could do the same for the
continuous optimization described in §5.1, if it were
possible to fix the basis shapes Bm. It is interesting to
consider if similar results can be obtained by solving
these much smaller optimization problems.

In Figure 13, we show results of an experiment
which uses eigenmodes of the smoothness energy Etp

as the basis shapes Bm. Since the thin-plate energy
is a sum of independent terms in each coordinate
direction, the eigenmodes are independent and we
assign basis shapes for deformation in each coordinate
direction. We modify Ereg to penalize these modes by
weights equal to the corresponding eigenvalues, so
the resulting model is exactly a low-order eigenbasis
approximation to the thin plate smoothness energy.
While it would be possible to improve these results by
providing a shape basis which gives more plausible
deformations, we use the same thin plate smoothness
measure in the rest of the paper. Any deficiencies
in the smoothness model are therefore shared by all
of our results, and yet the reconstructions shown in
Figure 13 are far less plausible than those shown in
Figure 1, for example. In some images the silhouette
constrains the model reasonably well, and so we can
find quite good single-view reconstructions (see top
two rows of Figure 13). However, other images are
far more reliant on the shape constraints imposed by
multiple silhouettes, and so the resulting single-view
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reconstructions are highly implausible (see bottom two
rows of the same figure).

7 CONCLUSIONS

We have shown that models can be constructed for
non-rigid object classes purely from 2D images, given
an initialization using a coarse rigid model. The user
input required is quite simple, and might even be con-
sidered comparable to the effort required to construct a
morphable model using range images, if one considers
the effort of positioning the scanner and generating
mesh correspondences. Because our correspondences
are an intrinsic part of the optimization, guided by
a few point constraints, we recover the morphable
model directly, rather than by first computing 3D and
then finding 3D correspondences. This is almost cer-
tainly the first system to recover nonrigid shape from
silhouettes in multiple unorganized views, and even
its restriction to rigid geometry is a novel contribution.
In addition we have contributed innovations in the
use of subdivision surfaces in fitting to image data.
Many further questions naturally arise from this work,
some of which we address here.

The first is: what makes an object class? One might
imagine building class models of ‘bottlenose dolphins’,
‘sea mammals’, or even ‘fish and the like’. How are
we to choose the granularity? First, a larger, more
complex class will require more images to build a
comprehensive model, so limitations on the number
of available images and computation power might
argue for a smaller class. Also, a large class may
not fit the unimodal Gaussian distribution inherently
assumed by the linear morphable model, so to model
larger classes we might require a more complex
generating distribution, such as a Gaussian process.
However, there are benefits to considering larger sets.
For example, a hierarchical approach, where basis
shapes are shared between different species, and then
subspecies, might overcome a lack of data for rare
species. For example, if one has hundreds of images of
all sorts of fish, whales, and dolphins, an accurate
bottlenose dolphin model might be obtained from
a few extra images by adding a small number of
specialized basis shapes to the generic model.

Another natural question is whether the requirement
for a coarse initialization can be relaxed. In principle
the system should be able to converge from a sphere,
but a key extension that would be required is for
the optimizer to be able to change the control mesh
triangulation, which is not currently implemented. It
may be that another discrete optimization stage would
permit this adaptation, generalizing the system. On
the other hand, creating one approximate rigid model
is considerably simpler than building the entire model.
With systems such as FiberMesh, the former is quite
easy, while the latter is difficult even for expert artists.
Additionally, as mentioned in §6, we could enrich

Fig. 14. Images showing three polar bears out of 20, from which
we build a 10-parameter morphable model. Top: input images with
silhouette annotations. Bottom: final morphable model reconstruction
overlaid on the input images.

the range of annotations we allow, perhaps allowing
the user to mark contour generator discontinuities
or crease edges, or intra-class texture edges like
Prasad et al. [24]. In each case, these annotations are
easy for a human to provide [15], being essentially
symbolic rather than numeric, but would increase the
scope and robustness of the system. Another possible
future application is to video sequences rather than
unrelated images. Like Furukawa et al. [8], in this
context it should be possible to use coherence between
consecutive frames to give better reconstructions.

Several limitations of the current approach could
be addressed. The technique is not yet well suited to
the recovery of articulated models, as exemplified by
the polar bears in Figure 14. An interesting direction
might be to look at the analogues of the deformable
case which exist for range data [39], or to consider an
extension to parametrized shapes such as chairs and
road vehicles. Another failure mode is ‘spillage’, where
the surface obeys the silhouette incidence and normal
constraints at the contour generator, but another part
of the surface falls outside the imaged object. It may be
possible to avoid this by augmenting the energy with
an image-based penalty term or by using constrained
optimization, gaining better models but with the risk
of introducing new local optima.
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body shapes: reconstruction and parameterization from range
scans,” ACM Trans. Graph., vol. 22, no. 3, pp. 587–594, 2003.

[3] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,
and J. Davis, “SCAPE: Shape Completion and Animation of
People,” ACM Trans. Graph., vol. 24, no. 3, pp. 408–416, 2005.

[4] A. Balan and M. J. Black, “The naked truth: Estimating body
shape under clothing,” in Proc. European Conf. on Computer
Vision, Part II, D. Forsyth, P. Torr, and A. Zisserman, Eds., 2008,
pp. 15–29.

[5] S. Zhou, H. Fu, L. Liu, D. Cohen-Or, and X. Han, “Parametric
reshaping of human bodies in images,” ACM Trans. Graph.,
vol. 29, no. 3, pp. #126:1–10, 2010.

[6] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism:
Exploring photo collections in 3D,” ACM Trans. Graph., vol. 25,
no. 3, pp. 835–846, 2006.

[7] L. Torresani, A. Hertzmann, and C. Bregler, “Non-rigid
structure-from-motion: Estimating shape and motion with
hierarchical priors,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 5, pp. 878–892, 2008.

[8] Y. Furukawa, A. Sethi, J. Ponce, and D. J. Kriegman, “Robust
structure and motion from outlines of smooth curved surfaces,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 302–315,
2006.

[9] P. McIlroy and T. Drummond, “Reconstruction from uncal-
ibrated affine silhouettes,” in Proc. British Machine Vision
Conference, 2009, pp. 1–11.

[10] M. Prasad, A. Zisserman, and A. Fitzgibbon, “Single view
reconstruction of curved surfaces,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2006, pp.
1345–1354.

[11] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active
shape models—their training and application,” Computer Vision
and Image Understanding, vol. 61, no. 1, pp. 38–59, 1995.

[12] T. Vetter and T. Poggio, “Linear object classes and image
synthesis from a single example image,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 19, no. 7, pp. 733–742, 1997.

[13] Y. Chen, T. Kim, and R. Cipolla, “Inferring 3D shapes and
deformations from single views,” in Proc. European Conf.
on Computer Vision, Part III, K. Daniilidis, P. Maragos, and
N. Paragios, Eds., 2010, pp. 300–313.

[14] D. Terzopoulos, A. Witkin, and M. Kass, “Symmetry-seeking
models and 3D object reconstruction,” International Journal of
Computer Vision, vol. 1, no. 3, pp. 211–221, 1988.

[15] Y. Gingold, T. Igarashi, and D. Zorin, “Structured annotations
for 2D-to-3D modeling,” ACM Trans. Graph., vol. 28, no. 5, pp.
#148:1–9, 2009.

[16] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A sketch-
ing interface for 3D freeform design,” in Proc. SIGGRAPH,
A. Rockwood, Ed., 1999, pp. 409–416.

[17] O. A. Karpenko and J. F. Hughes, “SmoothSketch: 3D free-form
shapes from complex sketches,” ACM Trans. Graph., vol. 25,
no. 3, pp. 589–598, 2006.

[18] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,” ACM
Trans. Graph., vol. 21, no. 3, pp. 355–361, 2002.

[19] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “FiberMesh:
Designing freeform surfaces with 3D curves,” ACM Trans.
Graph., vol. 26, no. 3, pp. #41:1–10, 2007.

[20] V. Kraevoy, A. Sheffer, and M. van de Panne, “Modeling from
contour drawings,” in Proceedings of the Eurographics Symposium
on Sketch-Based Interfaces and Modeling. ACM, 2009, pp. 37–44.

2. Used under a Creative Commons BY-SA 3.0 License. http://
creativecommons.org/licenses/by-sa/3.0/

[21] J. Porrill and S. Pollard, “Curve matching and stereo calibra-
tion,” Image and Vision Computing, vol. 9, no. 1, pp. 45–50,
1991.
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What Shape are Dolphins? Building 3D
Morphable Models from 2D Images

Supplementary material
Thomas J. Cashman and Andrew W. Fitzgibbon, Senior Member, IEEE

Abstract—Our paper [1] shows that there is enough information in a collection of 2D pictures of certain object classes to generate
a full 3D morphable model, even in the absence of surface texture. This supplementary material provides technical details on the
system we implemented.
The morphable models that we build are a linear combination of subdivision surfaces, and an important component of the
optimization problem is finding each object’s contour generators in the surface parameter space. To do so, this document
introduces two novel constructions on subdivision surfaces: a local distance measure and a local reparametrization around
extraordinary vertices.
We also describe the structure of the Jacobian that appears in the continuous optimization subproblems that we solve, and in an
appendix we give the function which calculates the product of that Jacobian with another matrix without forming the Jacobian
matrix explicitly.

F

1 INTRODUCTION

THis supplementary material accompanies our
paper ‘What Shape are Dolphins? Building 3D

Morphable Models from 2D Images’ [1]. For a glossary
of notation used in that paper and this document, see
Table 1.

2 PARAMETER-BASED DISTANCE MEASURE

In order to evaluate Ecg, introduced in §4.3 of our
paper [1], we need a function d(̊uj , ůj+1) which serves
as a distance measure between positions in Ω. The
ideal definition, to be independent of the surface
parametrization, would be the geodesic distance be-
tween M (̊uj) and M (̊uj+1). However d is evaluated in
the innermost loop of our optimization, and geodesic
distances for freeform surfaces are expensive to com-
pute [2]. We therefore settle for a purely parameter-
based measure, independent of the control vertices
X, which will be a good approximation to geodesic
distance if the control mesh is sufficiently uniform
and planar. By depending solely on the mesh topology
we can evaluate d just once, and cache the resulting
values, for each pair of candidate points in Φ.

To build this parameter-based distance measure, we
need a way to handle the structure of Ω, which is not
a single global space but consists of multiple pieces.
Fortunately, since the output of d is truncated by τ

• T. Cashman is with the Faculty of Informatics, University of Lugano,
Switzerland. E-mail: thomas.cashman@usi.ch.

• A. Fitzgibbon is with Microsoft Research, 7 JJ Thomson Ave, Cambridge,
UK. E-mail: awf@microsoft.com.

(see §4.3 in our paper [1]), we only need d defined
where a pair of points is sufficiently close in Ω. This
allows us to avoid difficult questions surrounding the
global surface topology. There is also the effect of the
mesh connectivity to consider, since M is always a
non-isometric map near extraordinary vertices: those
with edges connecting to fewer or greater than six
other vertices in the control mesh. The number of
edge-connected vertices is the valency of a vertex.

Here we use a similar technique to Zorin [3], associat-
ing a region surrounding each vertex of valency r with
the associated characteristic map ψr [4]. The character-
istic map is defined from the subdominant eigenvectors
of the matrix representation of a subdivision step;
see Figure 3a for an example. It is relevant here
because an affine transformation of ψr gives a first-
order Taylor approximation of a subdivision surface
at every singularity with valency r. By measuring
distance in the image of parameter space under this
characteristic map, we can compensate for the scaling
of the surface, with respect to the parametrization,
which always occurs around extraordinary vertices.

In each triangle surrounding a vertex v of the
control mesh, let A(v) be the parametric Voronoi cell
associated with v, i.e. the region where the barycentric
coordinate associated with v is greater than those
associated with the other two vertices in the triangle
(see Figure 1). Then we evaluate d(̊uj , ůj+1) using the
following algorithm, where the cases correspond to
Figure 1:

1) If ůj and ůj+1 belong to a common cell A(v) and
r is the valency of v, let d(̊uj , ůj+1) = ‖ψr (̊uj)−
ψr (̊uj+1)‖.

mailto:thomas.cashman@usi.ch
mailto:awf@microsoft.com
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Indices and constants
h ∈ R+ Threshold for d used by τ : see §4.3
i ∈ 1 .. n Indexes images: see §3
j ∈ 1 .. Si Indexes silhouette samples in image i
k ∈ 1 ..Ki Indexes point constraints in image i
m ∈ 0 .. D Indexes basis shapes: see (1)
p ∈ N Number of vertices in subdivision surface control mesh: see §2
S =

∑
i Si Total number of silhouette samples

σsil ∈ R Estimate of noise in silhouettes: see (5)
σcon ∈ R Estimate of noise in point constraints: see (6)
σnorm ∈ R Estimate of noise in normals: see (7)

β ∈ R+ Constant that fixes the scale of the deformation basis shapes: see (9)
γ ∈ R+ Weight on terms that enforce piecewise contour generator continuity: see (10)
ξ0 ∈ R Optimization weight on smoothness of target object class: see §4.4
ξdef ∈ R Optimization weight on smoothness of model deformations: see §4.4

Problem specification

sij ∈ R2 Silhouette sample j in image i: see §3.1
si ∈ R2Si Silhouette in image i: si = {sij}Si

j=1

nij ∈ R2 Normal of silhouette sample j in image i: see §3.1
µ̊ik ∈ Ω Preimage of point constraint k in image i: see (2)
cik ∈ R2 The kth point constraint in image i: see (2)

Shape and pose parameters P
αim ∈ R Coefficient of basis shape m in image i: see (1)
Bm ∈ R3p Control vertices for mth basis shape: see (1)
Ri ∈ R3×3 Rotation for camera viewing image i: see (3)
λi ∈ R Scale for camera viewing image i: see (3)
ti ∈ R2 Translation for camera viewing image i: see (3)

θi ∈ R3 Vector used to optimize Ri: see §5.1
Xi ∈ R3p Control vertices for instance in image i: see (1)

Preimage parameters U
ůij ∈ Ω Contour preimage sample j in image i: see (4)
ůi ∈ ΩSi Contour preimage in image i: ůi = {ůij}Si

j=1

Functions and parametric domains
Ω = 4× [ 1 .. g ] Subdivision surface parameter space: there is a unit triangle 4 for each of g control

mesh triangles (see Figure 2)
M : Ω→ R3 Given control vertices ∈ R3p, evaluates subdivision surface: see §2
N : Ω→ R3 Given control vertices ∈ R3p, evaluates subdivision surface normal: see §2
Φ⊂ Ω Discrete candidate positions for contour preimage samples ůij (see §5.2)
ψr : 4× [ 1 .. r ]→ R2 Characteristic map for subdivision surface singularity with valency r
d : Ω× Ω→ R Parametric distance measure: see §4.3
τ : R→ R Quadratic truncated at h2: see §4.3
πi : R3 → R2 Camera projection for image i: see (3)

TABLE 1. Glossary of notation. All references are to our paper [1].

1a

1b

2a2b 3a

3b 1a. Same vertex, same triangle
1b. Same vertex, diff. triangle

2a. Diff. vertex, same triangle
2b. Diff. vertex, adj. triangle

3a. Diff. vertex, nonadj. triangle
Worst case

3b. Diff. vertex, nonadj. triangle
Typical case

Fig. 1. Example configurations encountered during the computation
of d. The Voronoi cells for each vertex are marked with light gray lines.
Intersections with these cells are marked where they are calculated
by our algorithm. For the line marked 3a, the points are positioned
as close as possible while falling in case 3. In this configuration, the
distance computed by d is greater than

√
3/4 as long as the valency

of the adjacent vertex is six or greater.

×

×

×Identical
control

mesh
triangles

Ω

×

×

×

Fig. 2. Without reparametrization, parameter space updates are
distorted by extraordinary vertices. In this example, a valency 3 vertex
distorts an update which is a straight line in parameter space (left) into
a complete U-turn around the valency 3 vertex in the control mesh
(right). Each intersection with a parameter space triangle, leading
to a transition to an adjacent triangle, is marked ×. We avoid this
distortion by reparametrizing near extraordinary vertices.
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2) Otherwise, let Tj be the triangle in which ůj falls.
If Tj and Tj+1 are the same triangle, or adjacent
triangles joined by an edge, then consider the
planar embedding of the equilateral parametric
triangles Tj and Tj+1. Partition the line from ůj
to ůj+1 into (at most four) segments, each of
which lies in a single cell A(w) for some vertex
w. Let d(̊uj , ůj+1) be the sum of d calculated on
each of these line segments using case 1 above.

3) Otherwise (if ůj and ůj+1 do not lie in a common
cell A(v), and also do not lie in the same or
adjacent triangles), then d(̊uj , ůj+1) =∞. That is,
these points are considered too far away from
each other on the surface, and so there is a fixed
penalty h2 in Ecg.

This last case serves two purposes. It ensures that
d is inexpensive to evaluate, as there is no need to
search for an optimal path between ůj and ůj+1. It
also guarantees that d is well-defined and symmetric:
a longer path between distant points on the surface
may not even have an unfolding into the plane.
Furthermore, by setting h (the threshold value of τ )
to no larger than

√
3/4, we can make sure that the

topological limitation imposed in case 3 almost never
creates a discontinuity in Ecg (see Figure 1). If a larger
threshold is required for an image i, then an equivalent
effect can be achieved by increasing Si (i.e. by taking
a denser set of silhouette samples).

3 UPDATES TO CONTOUR PREIMAGE

Using a subdivision surface also makes it challenging
to apply updates to the contour preimage points ůij ,
since update vectors computed by the optimizer may
require moving between the separate triangles that
make up the parameter space. At each iteration of
the continuous optimization described in §5.1 of our
paper [1], let δůij ∈ R2 be the update vector that
is applied to contour preimage sample ůij . We also
define ũij ∈ 4 as the barycentric coordinate part of
ůij , giving 2D coordinates in the unit triangle 4. This
parameter space triangle corresponds to the triangle
in the control mesh with index Tij .

We know that we need to modify Tij (i.e. transition
to a different triangle in the control mesh) if ũij +
δůij /∈ 4. Marinov and Kobbelt [5] address exactly this
issue to compute closest-point queries. Their approach
limits each optimizer iteration to updates within a
parameter triangle, transitioning to an adjacent triangle
only if a point already lies on the boundary. That is,
if ũij + δůij /∈ 4, they compute an intersection with
the boundary ∂4 of the unit triangle, by finding a
real value 0 ≤ t < 1 such that ũij + tδůij ∈ ∂4. ůij is
then updated with the shortened vector tδůij instead.
They modify Tij only if ũij ∈ ∂4 and ũij + δůij /∈ 4.
Using this approach, an update from the interior of one
triangle to the interior of another requires 3 optimizer

iterations, and moving across a vertex of valency r
requires at least r + 1.

For a single parameter point this is simple and
effective, but in our case the optimizer is modifying
all available variables simultaneously. Therefore

• iterations are computationally expensive: it is
important to use as few of them as possible;

• delaying the convergence of a sample ůij will have
an effect on every other variable: unlike closest-
point queries, an incomplete iteration is not free
of side effects.

We therefore want to allow parameter-space updates
to converge in as few iterations as possible. To do so,
we can compute an intersection with ∂4, as before,
but then modify Tij and interpret the remaining part
of the update vector, (1 − t)δůij , as an update to be
computed in the adjacent triangle. We can continue
in this way, possibly computing more intersections
with triangle boundaries as necessary, until the entire
update has been applied. This still ensures that the
new value for ũij ∈ 4, and this approach places no
restrictions on the new value for Tij , other than the
fact that there must be a straight path, in parameter
space, from the old position of ůij to the new.

Extraordinary points present a problem for this
approach, however, as they distort nearby parameter
updates. Using this interpretation of a ‘straight path
in parameter space’ near a valency 3 vertex, for
example, can lead to large updates which leave and
then return to the same triangle, or even move the
contour preimage sample in the opposite direction
(see Figure 2). A solution to this distortion comes from
applying the same idea as in §2: we reparametrize the
region surrounding each extraordinary vertex. To use
this approach, we define a circular region © at a fixed
parametric radius around each extraordinary vertex.
The radius we use is half the length of a parametric
edge. Now for each parameter-space update, we
calculate the intersection with the reparametrization
boundary ∂© as well as with the triangle boundary
∂4. If the first intersection is with ∂4, then the
transition to an adjacent triangle is handled as before.
Otherwise, we update ůij so that ũij ∈ ∂©, and
calculate ûij = ψr(ũij), where r is the valency of the
adjacent extraordinary vertex. Now (1−t)δůij is treated
as an update in the reparametrized region ψr(©) instead.
To find the final position on the surface, we calculate
ũij = ψ−1

r (ûij), where ûij is the final position of the
sample in the reparametrized coordinates.

This allows a seamless transition from one side of
an arbitrary-valency vertex to the other. Unfortunately
ψ−1

r , the inverse of the characteristic map, is com-
plicated and expensive to compute [6]. Instead, we
approximate the characteristic map using the fractional
power embedding [7]: the symmetric extension of the
map z 7→ z(6/r) when evaluated on the first 60◦ sector
of the complex plane. The inverse of this map is
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(a) ψ8 (b) z → z(6/8)

Fig. 3. A fractional power embedding such as (b) is a reasonable
approximation to the corresponding characteristic map (a), but the
inverse of (b) is straightforward to compute.
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(ẘ
)‖

without reparametrization
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Fig. 4. We improve parameter updates using local reparametrizations
surrounding extraordinary vertices. Here we show the improvement
on the initial dolphin model shown in Figure 2, by taking a random
point v̊ ∈ Ω and a random update vector δ which lies in the tangent
plane of M (̊v). We apply the parameter update, with and without
reparametrization, to gain a new position on the surface M(ẘ). This
plot shows the mean distance between the target point in the tangent
plane, M (̊v) + δ, and the new point on the surface, M(ẘ), for 10,000
such trials at each value for ‖δ‖.

straightforward to compute, and it has the same r-
fold rotational symmetry as the characteristic map (see
Figure 3).

Each update of a parameter sample ůij attempts to
move M (̊uij) towards a new target position, which lies
in the tangent plane of the surface (when evaluated
at ůij), as the first derivatives are the only surface
information available through the Jacobian. Figure 4
summarizes an experiment which demonstrates that
our reparametrization gives a small but significant
improvement in updating parameter points so that
the resulting point on the surface is closer to the
optimizer’s target. This allows a better convergence of
the contour preimage, and suggests that our technique
could be useful wherever subdivision surfaces are
applied in optimization.

Esil
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E
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reg
i

(a) Block for a single image i.

a

a

a

a

a

a

a

a

E
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(b) Full Jacobian structure: gray
regions indicate sparse blocks.

Fig. 5. Jacobian sparsity structure. For this simplified example n = 8,
D = 2, Ki = 2 and Si = 10 for all i. The structure of the complete
Jacobian is shown schematically in (b), where the 8 blocks marked ‘a’
have the sparsity structure shown in (a).

4 JACOBIAN STRUCTURE

For continuous local optimization (as described in §5.1
of our paper [1]), we provide the optimizer with an
analytic Jacobian, which grants a dramatic increase in
performance over finite differencing. As the Jacobian
matrix is sparse and structured (see Figure 5), we also
save time and space by providing a function which
calculates the product with another matrix without
forming the Jacobian explicitly. This function appears
as the Appendix of this document to show how we
implemented the structure shown in Figure 5. The
full MATLAB source code of our implementation is
available from http://forms.codeplex.com/.
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APPENDIX

function W = jacobmult(Jdata, X, flag)
% vars is the complete set of optimization parameters (P and U in the paper)
% cM is the current number of parameters in the morphable model
% P is the number of vertices in the control mesh
vars = Jdata(end, 1:2 * sum(T) + n * (7 + cM) + 3 * P * (cM + 1));

% Derivatives are provided in the matrix ’Jdata’ in a packed form. This
% loop extracts the values ready for use in the functions below.
meansc = 0;
for i = 1:n

% Start and end of derivative blocks for image i
bs = (i - 1) * (9 + cM + 3 * P) + 1;
be = i * (9 + cM + 3 * P);

% Global cell array holding derivatives with respect to the contour preimage
% S(i) is the number of silhouette samples
% T(i) is the number of free silhouette samples, taking into
% account any point constraints that lie on the silhouette
silJ{i} = Jdata(1:2 * S(i) + 5 * T(i), bs:bs + 1);

% Global cell array holding derivatives with respect to the camera parameters
% and shape coefficients. K(i) is the number of point constraints for image i
varsJ{i} = Jdata(1: S(i) + 5 * T(i) + 2 * K(i), bs + 2:bs + 8 + cM);

% Global cell array holding derivatives with respect to changes in the control mesh
meshJ{i} = Jdata(1: S(i) + 5 * T(i) + 2 * K(i), bs + 9 + cM:be);

% Mean orthographic scale factor: sv(i) gives the index of the orthographic scale factor
% for image i (lambda_i)
meansc = meansc + vars(sv(i));

end
meansc = meansc / n;

% Global variables referenced in the functions below include:
% vs(i) : parameters related to image i in vars have indices vs(i) + 1:vs(i + 1)
% Xvs(i), Xve(i) : start and end indices for subranges of the above, for
% X = s : contour preimage parameters
% X = r : camera rotation parameters
% X = m : shape mode coeffs (alpha)
%
% es(i) : equations related to image i in Jacobian have indices es(i) + 1:es(i + 1)
% Xes(i), Xee(i) : start and end indices for subranges of the above, for
% X = s : Eˆsil
% X = n : Eˆnorm
% X = m : Eˆreg
% X = c : Eˆcg
%
% tplatesqrt_3 : sqrt(Q), as defined in Section 5.1 of the paper
% fixed_sil_pts{i} : boolean array that is true for silhouette samples that are given
% by point constraints
% xi_0, xi_def : weights on Eˆtp, as described in the paper

switch sign(flag)
case +1

W = jacobmultJX(X, vars, meansc);
case -1

W = jacobmultJtY(X, vars, meansc);
case 0

Y = jacobmultJX(X, vars, meansc);
W = jacobmultJtY(Y, vars, meansc);

end

assert(˜any(any(isnan(W))));
end
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function Y = jacobmultJX(X, vars, meansc)
Y = zeros(es(n + 1) + 3 * P * (cM + 1), size(X, 2));

for i = 1:n
esi = es(i) + 1; esn = es(i + 1) - cM;
Y(esi:esn, :) = varsJ{i} * X(rvs(i):mve(i), :);
Y(esi:esn, :) = Y(esi:esn, :) + meshJ{i} * X(vs(n + 1) + 1:vs(n + 1) + 3 * P, :);
for m = 1:cM

Y(esi:esn, :) = Y(esi:esn, :) + meshJ{i} * ...
vars(mvs(i) + m - 1) * X(vs(n + 1) + 1 + m * 3 * P:vs(n + 1) + (m + 1) * 3 * P, :);

end

Y(ses(i):see(i) - T(i), :) = Y(ses(i):see(i) - T(i), :) ...
+ diag(silJ{i}(1:T(i), 1)) * X(svs(i):sve(i) - T(i), :);

Y(ses(i):see(i) - T(i), :) = Y(ses(i):see(i) - T(i), :) ...
+ diag(silJ{i}(1:T(i), 2)) * X(svs(i) + T(i):sve(i), :);

Y(ses(i) + T(i):see(i), :) = Y(ses(i) + T(i):see(i), :) ...
+ diag(silJ{i}(T(i) + 1:2 * T(i), 1)) * X(svs(i):sve(i) - T(i), :);

Y(ses(i) + T(i):see(i), :) = Y(ses(i) + T(i):see(i), :) ...
+ diag(silJ{i}(T(i) + 1:2 * T(i), 2)) * X(svs(i) + T(i):sve(i), :);

D = diag(silJ{i}(2 * T(i) + 1:2 * T(i) + S(i), 1)) + ...
diag(silJ{i}(2 * T(i) + S(i) + 1:2 * T(i) + 2 * S(i) - 1, 1), 1);

D(S(i), 1) = silJ{i}(2 * T(i) + 2 * S(i), 1); D(:, fixed_sil_pts{i}) = [];
Y(ces(i):cee(i), :) = Y(ces(i):cee(i), :) + D * X(svs(i):sve(i) - T(i), :);
D = diag(silJ{i}(2 * T(i) + 1:2 * T(i) + S(i), 2)) + ...

diag(silJ{i}(2 * T(i) + S(i) + 1:2 * T(i) + 2 * S(i) - 1, 2), 1);
D(S(i), 1) = silJ{i}(2 * T(i) + 2 * S(i), 2); D(:, fixed_sil_pts{i}) = [];
Y(ces(i):cee(i), :) = Y(ces(i):cee(i), :) + D * X(svs(i) + T(i):sve(i), :);

Y(nes(i):nee(i) - 2 * T(i), :) = Y(nes(i):nee(i) - 2 * T(i), :) ...
+ diag(silJ{i}(2 * T(i) + 2 * S(i) + 1:3 * T(i) + 2 * S(i), 1)) ...

* X(svs(i):sve(i) - T(i), :);
Y(nes(i):nee(i) - 2 * T(i), :) = Y(nes(i):nee(i) - 2 * T(i), :) ...

+ diag(silJ{i}(2 * T(i) + 2 * S(i) + 1:3 * T(i) + 2 * S(i), 2)) ...
* X(svs(i) + T(i):sve(i), :);

Y(nes(i) + T(i):nee(i) - T(i), :) = Y(nes(i) + T(i):nee(i) - T(i), :) ...
+ diag(silJ{i}(3 * T(i) + 2 * S(i) + 1:4 * T(i) + 2 * S(i), 1)) ...

* X(svs(i):sve(i) - T(i), :);
Y(nes(i) + T(i):nee(i) - T(i), :) = Y(nes(i) + T(i):nee(i) - T(i), :) ...

+ diag(silJ{i}(3 * T(i) + 2 * S(i) + 1:4 * T(i) + 2 * S(i), 2)) ...
* X(svs(i) + T(i):sve(i), :);

Y(nes(i) + 2 * T(i):nee(i), :) = Y(nes(i) + 2 * T(i):nee(i), :) ...
+ diag(silJ{i}(4 * T(i) + 2 * S(i) + 1:5 * T(i) + 2 * S(i), 1)) ...

* X(svs(i):sve(i) - T(i), :);
Y(nes(i) + 2 * T(i):nee(i), :) = Y(nes(i) + 2 * T(i):nee(i), :) ...

+ diag(silJ{i}(4 * T(i) + 2 * S(i) + 1:5 * T(i) + 2 * S(i), 2)) ...
* X(svs(i) + T(i):sve(i), :);

Y(es(n + 1) + 1:es(n + 1) + 3 * P, :) = Y(es(n + 1) + 1:es(n + 1) + 3 * P, :) + (xi_0 / n) * ...
tplatesqrt_3 * vars(vs(n + 1) + 1:vs(n + 1) + 3 * P)’ * X(sv(i), :);

for m = 1:cM
ms = es(n + 1) + 1 + m * 3 * P; me = es(n + 1) + (m + 1) * 3 * P;
Y(ms:me, :) = Y(ms:me, :) + tplatesqrt_3 * ...

(xi_def / n) * vars(vs(n + 1) + 1 + m * 3 * P:vs(n + 1) + (m + 1) * 3 * P)’ * X(sv(i), :);
end

Y(mes(i):mee(i), :) = X(mvs(i):mve(i), :);
end

Y(es(n + 1) + 1:es(n + 1) + 3 * P, :) = Y(es(n + 1) + 1:es(n + 1) + 3 * P, :) + ...
xi_0 * tplatesqrt_3 * meansc * X(vs(n + 1) + 1:vs(n + 1) + 3 * P, :);

for m = 1:cM
ms = es(n + 1) + 1 + m * 3 * P; me = es(n + 1) + (m + 1) * 3 * P;
Y(ms:me, :) = Y(ms:me, :) + xi_def * tplatesqrt_3 * ...

meansc * X(vs(n + 1) + 1 + m * 3 * P:vs(n + 1) + (m + 1) * 3 * P, :);
end

end
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function W = jacobmultJtY(Y, vars, meansc)
W = zeros(length(vars), size(Y, 2));

for i = 1:n
esi = es(i) + 1; esn = es(i + 1) - cM; ms = vs(n + 1) + 1; me = vs(n + 1) + 3 * P;
W(rvs(i):mve(i), :) = varsJ{i}’ * Y(esi:esn, :);
W(ms:me, :) = W(ms:me, :) + meshJ{i}’ * Y(esi:esn, :);
for m = 1:cM

ms = vs(n + 1) + 1 + m * 3 * P; me = vs(n + 1) + (m + 1) * 3 * P;
W(ms:me, :) = W(ms:me, :) + vars(mvs(i) + m - 1) * meshJ{i}’ * Y(esi:esn, :);

end

W(svs(i):sve(i) - T(i), :) = W(svs(i):sve(i) - T(i), :) ...
+ diag(silJ{i}(1:T(i), 1)) * Y(ses(i):see(i) - T(i), :);

W(svs(i) + T(i):sve(i), :) = W(svs(i) + T(i):sve(i), :) ...
+ diag(silJ{i}(1:T(i), 2)) * Y(ses(i):see(i) - T(i), :);

W(svs(i):sve(i) - T(i), :) = W(svs(i):sve(i) - T(i), :) ...
+ diag(silJ{i}(T(i) + 1:2 * T(i), 1)) * Y(ses(i) + T(i):see(i), :);

W(svs(i) + T(i):sve(i), :) = W(svs(i) + T(i):sve(i), :) ...
+ diag(silJ{i}(T(i) + 1:2 * T(i), 2)) * Y(ses(i) + T(i):see(i), :);

D = diag(silJ{i}(2 * T(i) + 1:2 * T(i) + S(i), 1)) + ...
diag(silJ{i}(2 * T(i) + S(i) + 1:2 * T(i) + 2 * S(i) - 1, 1), -1);

D(1, S(i)) = silJ{i}(2 * T(i) + 2 * S(i), 1); D(fixed_sil_pts{i}, :) = [];
W(svs(i):sve(i) - T(i), :) = W(svs(i):sve(i) - T(i), :) + D * Y(ces(i):cee(i), :);
D = diag(silJ{i}(2 * T(i) + 1:2 * T(i) + S(i), 2)) + ...

diag(silJ{i}(2 * T(i) + S(i) + 1:2 * T(i) + 2 * S(i) - 1, 2), -1);
D(1, S(i)) = silJ{i}(2 * T(i) + 2 * S(i), 2); D(fixed_sil_pts{i}, :) = [];
W(svs(i) + T(i):sve(i), :) = W(svs(i) + T(i):sve(i), :) + D * Y(ces(i):cee(i), :);

W(svs(i):sve(i) - T(i), :) = W(svs(i):sve(i) - T(i), :) ...
+ diag(silJ{i}(2 * T(i) + 2 * S(i) + 1:3 * T(i) + 2 * S(i), 1)) ...

* Y(nes(i):nee(i) - 2 * T(i), :);
W(svs(i) + T(i):sve(i), :) = W(svs(i) + T(i):sve(i), :) ...

+ diag(silJ{i}(2 * T(i) + 2 * S(i) + 1:3 * T(i) + 2 * S(i), 2)) ...
* Y(nes(i):nee(i) - 2 * T(i), :);

W(svs(i):sve(i) - T(i), :) = W(svs(i):sve(i) - T(i), :) ...
+ diag(silJ{i}(3 * T(i) + 2 * S(i) + 1:4 * T(i) + 2 * S(i), 1)) ...

* Y(nes(i) + T(i):nee(i) - T(i), :);
W(svs(i) + T(i):sve(i), :) = W(svs(i) + T(i):sve(i), :) ...

+ diag(silJ{i}(3 * T(i) + 2 * S(i) + 1:4 * T(i) + 2 * S(i), 2)) ...
* Y(nes(i) + T(i):nee(i) - T(i), :);

W(svs(i):sve(i) - T(i), :) = W(svs(i):sve(i) - T(i), :) ...
+ diag(silJ{i}(4 * T(i) + 2 * S(i) + 1:5 * T(i) + 2 * S(i), 1)) ...

* Y(nes(i) + 2 * T(i):nee(i), :);
W(svs(i) + T(i):sve(i), :) = W(svs(i) + T(i):sve(i), :) ...

+ diag(silJ{i}(4 * T(i) + 2 * S(i) + 1:5 * T(i) + 2 * S(i), 2)) ...
* Y(nes(i) + 2 * T(i):nee(i), :);

W(sv(i), :) = W(sv(i), :) + (xi_0 / n) * vars(vs(n + 1) + 1:vs(n + 1) + 3 * P) * ...
tplatesqrt_3’ * Y(es(n + 1) + 1:es(n + 1) + 3 * P, :);

for m = 1:cM
ms = es(n + 1) + 1 + m * 3 * P; me = es(n + 1) + (m + 1) * 3 * P;
W(sv(i), :) = W(sv(i), :) + (xi_def / n) * ...

vars(vs(n + 1) + 1 + m * 3 * P:vs(n + 1) + (m + 1) * 3 * P) * tplatesqrt_3’ * Y(ms:me, :);
end

W(mvs(i):mve(i), :) = W(mvs(i):mve(i), :) + Y(mes(i):mee(i), :);
end

W(vs(n + 1) + 1:vs(n + 1) + 3 * P, :) = W(vs(n + 1) + 1:vs(n + 1) + 3 * P, :) + ...
xi_0 * meansc * tplatesqrt_3 * Y(es(n + 1) + 1:es(n + 1) + 3 * P, :);

for m = 1:cM
ms = es(n + 1) + 1 + m * 3 * P; me = es(n + 1) + (m + 1) * 3 * P;

sms = vs(n + 1) + 1 + m * 3 * P; sme = vs(n + 1) + (m + 1) * 3 * P;
W(sms:sme, :) = W(sms:sme, :) + xi_def * tplatesqrt_3 * meansc * Y(ms:me, :);

end
end
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