
Utility-Maximizing Event Stream Suppression ∗

Di Wang�, Yeye He†, Elke Rundensteiner�, Jeffrey F. Naughton‡

wangdi@cs.wpi.edu, heyeye@cs.wisc.edu, rundenst@cs.wpi.edu, naughton@cs.wisc.edu

�Department of Computer Science, Worcester Polytechnic Institute
†,‡ Department of Computer Sciences, University of Wisconsin-Madison

ABSTRACT
Complex Event Processing (CEP) has emerged as a technology for
monitoring event streams in search of user specified event patterns.
When a CEP system is deployed in sensitive environments the user
may wish to mitigate leaks of private information while ensuring
that useful nonsensitive patterns are still reported. In this paper we
consider how to suppress events in a stream to reduce the disclo-
sure of sensitive patterns while maximizing the detection of non-
sensitive patterns. We first formally define the problem of utility-
maximizing event suppression with privacy preferences, and ana-
lyze its computational hardness. We then design a suite of real-time
solutions to solve this problem. Our first solution optimally solves
the problem at the event-type level. The second solution, at the
event-instance level, further optimizes the event-type level solution
by exploiting runtime event distributions using advanced pattern
match cardinality estimation techniques. Our user study and exper-
imental evaluation over both real-world and synthetic event streams
show that our algorithms are effective in maximizing utility yet still
efficient enough to offer near real-time system responsiveness.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

Keywords
Complex Event Processing, Utility, Privacy

1. INTRODUCTION
Complex Event Processing (CEP) has gained increasing popu-

larity for real-time pattern matching over event streams, and has re-
ceived significant attention from both the research community [5,
22, 29] and industry [1, 3]. However, to date, the privacy implica-
tions of CEP applications have been overlooked. The privacy prob-
lems we study in this paper were motivated by real-world problems

∗This work is supported in part by NSF grant IIS-1018443, NIGMS grant
R01LM011028-02, and UMMS-WPI CCTS Collaborative grant.
† Author’s current affiliation: Microsoft Research.

we encountered while developing and deploying CEP solutions for
hospital environments. While our privacy problem is abstracted
from this specific application domain, our problem formulation is
sufficiently generic that it can be applied to general CEP applica-
tions. For concreteness, we begin with our motivating example.

Motivating Applications. Consider a CEP-powered health care
system called HyReminder [27]. HyReminder, currently deployed
at University of Massachusetts Memorial Hospital, is a hospital
infection control system that aims to track, monitor and remind
health-care workers with respect to hygiene compliance. In the hos-
pital, each doctor wears an RFID badge that can be read by sensors
installed throughout the hospital. As doctors move around in the
hospital, sensor readings are triggered, which are then abstracted
as events and transmitted to a CEP engine. Using CEP query pro-
cessing techniques, event patterns that reveal hygiene compliance
or violations can then be detected and reported in accordance with
US hygiene regulations [7].

As an example of such a pattern, a doctor who exits a patient
room (represented by an Exit-patient-room event) should per-
form hand sanitization (indicated by a Sanitize event) within a
short period of time. We represent such a hygiene compliance pat-
tern using Q1 below. Similarly, a doctor should wash hands (a Wash
event) before entering an office (an Enter-psychiatrist-office
event) to prevent spreading contagious diseases, as expressed by
Q2 below. These regulations are commonly known as “wash-in,
wash-out” in hospital jargon [7].

Q1: SEQ(Exit-patient-room, Sanitize)

WITHIN 2 min

Q2: SEQ(Wash, Enter-psychiatrist-office)

WITHIN 2 min

While the benefit of such CEP applications is apparent, some
event patterns may be sensitive in that they reveal an individual’s
private information. For example, an observation that a doctor
leaves a patient’s room and then immediately enters a psychiatrist’s
office might serve as an indication that this patient is experiencing
psychiatric problems. This event sequence, when expressed as a
“private” pattern, can be written as:

P1: SEQ(Exit-patient-room, Enter-psychiatrist-office)

WITHIN 5 min

The issue is that when HyReminder monitors doctors’ behaviors
(the intended use of this application), the events being reported may
disclose private information about individual patients as a side-
effect. We observe that the simplistic approach of not directly re-
porting private patterns does not prevent their disclosure — the oc-
currence of several hygiene compliance patterns that HyReminder
does report may be used by an adversary to infer the existence of
private pattern matches.

As an example, in Figure 1, there is a stream of four events asso-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

589

Figure 1: An adversarial attack using public pattern matches

ciated with the same doctor observed in HyReminder. Each event
has a superscript indicating its timestamp in minutes. Over this par-
ticular event stream, there exists one match for Q1, (Exit-patient-
room2, Sanitize4), and one match for Q2: (Wash5, Enter-

psychiatrist-office6). Now by concatenating the matches of
Q1 and Q2, an adversary can infer that a match for private pattern
P1, namely (Exit-patient-room2, Enter-psychiatrist-

office6) also exists. This example illustrates that the existence
of private pattern matches can still be inadvertently revealed even
when only legitimate queries are reported. It underlines the impor-
tance of taking private preferences into account when deploying
CEP systems in sensitive environments like a hospital.

Of course, this hospital scenario is only one motivating example,
that by no means cover the full spectrum of privacy threats with
CEP systems – any time a CEP is deployed in a sensitive environ-
ment the possibility of a privacy breach exists. Furthermore, while
one-off actions may be possible to mitigate privacy concerns within
a particular application, our goal is broader — we wish to develop
a general model for privacy and utility in CEP systems, and initial
solutions to the problems that arise in that model.

At a high level, the problem we address can be described as fol-
lows. We consider two kinds of CEP patterns: those that should be
detected and reported to data users (which we term “public” pat-
terns), and those that users prefer not to reveal because of privacy
concerns (which we term “private” patterns).

In this work we focus on the mechanism of event suppression,
that is, deleting some events from the stream in order to “destroy”
possible private pattern matches. For example, in Figure 1, drop-
ping any event in the stream ensures that either a match of Q1
or Q2 would not be reported, thus preventing P1 from being in-
ferred. In general, there exist numerous ways in which events could
be suppressed. Note that dropping or keeping an event naturally
represents a trade-off between reporting more useful public query
matches and disclosing some undesirable private query matches.
We thus provide a utility-maximizing framework that allows users
to quantify their preferences by setting relative weights of public
and private patterns, so that events can be suppressed in such a way
that maximizes the utility of pattern matches that are preserved.

To the best of our knowledge, the work closest to ours is [15],
which first identifies the privacy concern in CEP systems. However
the work in [15] focuses on the theoretical hardness of a particular
problem variant. Furthermore, no practical algorithm is designed
nor empirical studies have been conducted. In this paper, we ana-
lyze possible variants of the more general version of the problem,
develop practical algorithms that are useful in a real-time stream-
ing environment, and experimentally evaluate our algorithms using
both real-world and synthetic data.

Specifically, we make the following contributions in this work.
• We formally define the problem of utility-maximizing event

suppression with privacy preferences. Our problem formulation en-
ables users to quantify the relative importance of eliminating unde-
sirable “private” matches versus producing useful “public” matches.
Furthermore, we analyze problem variants (Section 3), and study
their computational hardness (Section 4). We show that the prob-
lem in general is not only NP-hard, but also hard to approximate.
• Our second contribution is to develop a suite of real-time util-

ity maximizing solutions. We first propose an approach based on

linear programming that optimally solves the problem at the event-
type level (which suppresses all events of the same type). For
the computationally intractable instance-level problem (which sup-
presses individual events), we observe that our solution at the event-
type level provides a useful basis for further optimization. Specif-
ically, we introduce a Hybrid solution to tackle the instance-level
problem by combining the solution at the event-type level with op-
timization heuristics based on run-time pattern match cardinality
estimation. We further develop two techniques to address the sub-
problem of pattern match cardinality estimation, one based on event
arrival rates and the other based on periodicity using the state-of-
the-art periodicity mining algorithms [11, 20]. To the best of our
knowledge, the problem of event stream cardinality estimation has
not been explored. Just like in relational databases, we think our
cardinality estimation may be useful for resource allocation and
query optimization in event stream systems. (Section 5).
• To better understand the effectiveness and performance of our

proposed solutions, we conducted a user study and performed ex-
tensive experiments on both real-world and synthetic event streams.
We show that our Hybrid solutions preserve significantly more util-
ity than alternative approaches, while still efficient enough to en-
sure real time system responsiveness. In addition, we demonstrate
in both our user study and experiments that in at least one real world
scenario, periodicity information is needed to produce accurate car-
dinality estimation. The advantage of periodicity-based estimation
is then reaffirmed using synthetic streams (Section 6).

2. PRELIMINARIES
2.1 Event Data Model

The input to a CEP system is a potentially infinite event stream
composed of event instances. Each event instance, denoted by a
lowercase ei, corresponds to an instantaneous and atomic occur-
rence of interest [29]. Each event instance ei is associated with a
timestamp from a discrete time domain, denoted by ei.ts. Event
instances are conceptually grouped into event types. Let Σ be the
set of all possible event types. Then each event type, denoted by
an uppercase Ei ∈ Σ, is distinguished by its event type name (e.g.,
Exit-patient-room). Each event type has associated attributes
as defined by the schema of the event type.

2.2 Event Query Model
In this work, we focus on the core CEP query functionality, the

SEQ query operator [22, 29]. A SEQ query looks for a sequence
of events in a specified temporal order within a given time window.
A SEQ pattern query Q is of the form Q = SEQ (E1, E2, ...
En), where Ek ∈ Σ are event types. For each query Q there
is a specified time-window Window(Q) ∈ R+ over which Q
will be evaluated. While multiple pattern match semantics ex-
ist (see [5] for a classification), in this work we use skip till any
match semantic, defined as follows. A pattern match of Q over
an event stream S is produced if there exists a temporally ordered
subsequence S′ = (e1, e2, ... en), that is ei.ts < ej .ts for all
1 ≤ i < j ≤ n, such that for all k ∈ [1, n], ek is of type Ek,
and en.ts − e1.ts ≤ Window(Q). We say the sequence S′ is a
match of Q. As is common in current CEP engines [5, 22, 29], we
assume the output of a pattern match is the concatenation of par-
ticipating event instances. In this paper, we focus on queries with
positive event types, while the problem of supporting CEP queries
with negation is an interesting area for future work.

Individual Match vs. Aggregate Statistics. Many CEP appli-
cations are interested in individual query matches. For example,
in our hospital setting, it is important to know which doctor en-
ters which ICU after exiting a potentially-contagious patient’s room

590

without following sanitization procedures. There are also scenarios
where aggregate statistics of CEP outputs are useful. For instance,
the hospital leadership team is interested in knowing the aggregate
hygiene-compliance-ratio in the hospital by month over the last 12
months, which is also a real output produced by our HyReminder.

While both of these scenarios are important, in this paper we fo-
cus on mitigating privacy risks when individual CEP matches are
reported, which to our knowledge has not been systematically stud-
ied. Ensuring privacy for aggregate CEP statistics is also important,
although for that problem existing techniques such as differential-
privacy may be appropriate. The inapplicability of differential-
privacy to reporting individual matches is discussed in Related Work
(Section 7).

2.3 The Complication: Private Patterns
The notion of private query patterns sets our problem apart

from the conventional CEP literature. In terms of syntax, private
query patterns are just like SEQ queries, i.e., they consist of a se-
quence of events and an associated time window. The fundamental
difference, however, is that while as many SEQ pattern matches as
possible should be reported, private pattern matches would better
be suppressed. In the remainder of this work we will refer to these
two types of patterns as private query patterns and public query
patterns, respectively. Q1 and Q2 in the motivating application,
for example, are public query patterns, while P1 is a private query
pattern. We denote the set of public query patterns by Q and the
set of private query patterns by P .

2.3.1 Suppressing Private Pattern Matches
A natural way to suppress a private pattern match is to suppress

events that participate in the match. For example, in Figure 1, drop-
ping any event in the stream ensures that one match of Q1 or Q2
would not be reported, thus preventing P1 from being inferred.

One important advantage of using event suppression is that the
output is a subset of the original stream, so it remains an event
stream with the same set of event-types as the original stream. Thus
any stream-based application that can process the original stream
can process the filtered stream without modification.

In addition, event suppression ensures the desirable query-result
subset property when CEP queries with positive events are used.
Namely we only report a subset of the original CEP query matches,
which ensures that no spurious matches that do not exist in reality
will ever be produced. This is desirable because the opposite is
troubling — it would be disturbing if a hospital hygiene compliance
system reported false hygiene compliance/violations because they
were generated by the privacy protection system.

While we focus on event suppression in this work, other pos-
sible approaches also exist. In the classical database anonymiza-
tion literature, a frequently used technique is generalization [25,
21], in which a specific value is “generalized” so that its presence
reveals less information. Similarly one could adopt “event gen-
eralization” for our problem by generalizing detailed events into
generic events. Although event generalization may mitigate some
privacy concerns, it can cause trouble in producing meaningful
query matches. For example, in Figure 1, if we only observe a gen-
eralized Exit-room event instead of the Exit-patient-room,
we are not sure if matches of Q1 can be produced. Even if a proba-
bilistic interpretation is acceptable, query results would violate the
subset property that event suppression can offer.

Another possible data manipulation approach is to add noise to
the timestamps of events. This approach is also problematic, be-
cause it risks introducing spurious query pattern matches, thus vio-
lating the subset property outlined above.

Since event suppression is a simple yet effective mechanism for
addressing privacy preference in the context of CEP, in this paper
we will focus on using event suppression. Alternative approaches
are interesting directions for future work.

3. PROBLEM STATEMENT & TAXONOMY
In this section, we first formally define the problem of utility-

maximizing stream suppression with privacy preferences. We fur-
ther propose a problem taxonomy to better understand its variants.

3.1 Problem statement
Motivation of problem formulation. Since there are multiple

ways in which events could be suppressed to preserve privacy, the
question arises is which events should be dropped over others. An
intuitive answer is to suppress events such that more “important”
public pattern matches are kept. It practice, some pattern matches
are naturally more important than others. For example, in the hospi-
tal where HyReminder is deployed, another public pattern, hence-
forth referred to as Q3, may be needed to produce a query match if
a doctor exits a highly-contagious patient room, does not sanitize
his hands, and immediately enters the ICU. A match for Q3 rep-
resents a grave violation of hygiene regulations, and is considered
more “useful” than Q1 and Q2 by the user.

In order to capture this intuition, we define a positive utility
weight w(Qi) for each public query Qi, that quantifies the use-
fulness of reporting one match for Qi. Q3 mentioned above, for
example, should be assigned a higher utility weight than a match
for query Q1 or Q2. Assigning appropriate weights to different
queries in real-world applications requires domain expertise. In this
work we assume that the utility weights for queries are provided by
domain experts as part of the input to the system.

We then define utility gain as a weighted sum of all public pattern
matches as below.

DEFINITION 1. Let w(Qi) ∈ R+ be the utility gain weight of
public query Qi ∈ Q, let C(Qi, S) be the number of matches for
Qi over stream S. The utility gain generated for query Qi is:

U(Qi, S) = w(Qi) · C(Qi, S) (1)

The utility gain generated over the entire query setQ on S is:

UQ =
∑
Qi∈Q

U(Qi, S) (2)

On the other hand, to model the fact that private pattern matches
are undesirable, each such match is assigned a negative utility value,
or a utility penalty weight. The resulting aggregate utility loss is
the side-effect caused by private patterns. We then formally define
utility loss as follows.

DEFINITION 2. Let w(Pj) ∈ R− be the utility penalty weight
of private pattern Pj ∈ P , and C(Pj , S) be the number of matches
for Pj over event stream S. The utility penalty or utility loss asso-
ciated with Pj is:

U(Pj , S) = w(Pj) · C(Pj , S) (3)

Since our goal is to balance the need to maximize utility gain
and minimize utility loss, our objective function is simply defined
as the sum of the two.

DEFINITION 3. The overall utility generated byQ = {Qi} and
P = {Pj} on S is:

UQ+P =
∑
Qi∈Q

U(Qi, S) +
∑
Pj∈P

U(Pj , S). (4)

591

This objective function is an instance of aggregate objective func-
tion that is commonly used in the multi-objective optimization lit-
erature [24].

With these, we formally define the utility-maximizing stream
suppression problem as follows.

PROBLEM 1. Given an event stream S, a set of public queries
Q, a set of private queries P , and a utility weight function w(·) ∈
R, find a subset S′ of S such that the total utility UQ+P is maxi-
mized for the chosen S′ over all possible subsets of S.

3.2 A Problem Taxonomy
3.2.1 Hard-constraint vs. Soft-constraint

In certain scenarios, users may demand that the adversary cannot
infer even a single private pattern match. In other words, the con-
straints imposed by the private patterns are “hard”, assuring no pri-
vate pattern match is ever disclosed. We term such private pattern
a hard-constraint. If every private pattern is a hard-constraint, the
resulting problem is a hard-constraint utility maximization prob-
lem. In our formulation defined in Definition 2, utility penalty
weights for private patterns can be set to negative infinity to enforce
the hard-constraint.

Although the hard-constraint privacy is needed in some environ-
ments, there are cases in which reporting a public query match is
of such paramount importance that it may override certain privacy
concerns. As a concrete example, consider the public pattern Q3 in
HyReminder discussed before, where a doctor enters an ICU with-
out proper sanitization, which corresponds to a serious hygiene vi-
olation with dire consequences. On the other hand, there may also
exist private patterns representing fairly innocuous privacy viola-
tions (e.g., a patient has his blood and urine tested). In such a sce-
nario, it may be desirable to report the public pattern match Q3,
even at the potential cost of leaking not-so-harmful private infor-
mation.

Since such trade-offs are best decided using domain expertise,
we want a problem formulation flexible enough to allow users to
specify queries with overriding utilities that can trump privacy con-
cerns if necessary. In the soft-constraints variant, not all private
patterns are strictly prohibited. Instead, each such match is penal-
ized by a utility loss, as defined in our utility framework in Def-
inition 3. This allows flexible trade-offs between reporting useful
public pattern matches and disclosing undesirable private pattern
matches. Furthermore, it can degenerate into the Hard-Constraint
model by using negative infinity query weights, and thus represents
a more general problem formulation.

Choosing the Hard-constraint vs. the Soft-constraint model.
Our hospital solution was developed in consultation with person-

nel in the hospital. Initially we favored the Hard-constraint prob-
lem formulation, for the simple reason that it offers precise privacy
guarantees: anything that is labeled private will not appear in the
result set.

While conceptually appealing, we later noticed that with this
Hard-constraint approach, “utility” was significantly reduced. In
particular, occasionally very important matches to public patterns,
which must be reported in the hospital setting, were instead sup-
pressed due to minor privacy concerns. For example, a query match
that reports a grave hygiene violation (e.g., Q3 discussed earlier)
must trigger alerts to the doctor as well as to the lead nurse on duty.
However, in our initial experiments using the Hard-constraint ap-
proach, some such important matches were suppressed.

We were told this was unsatisfactory, because while it is im-
portant to mitigate privacy risks, ensuring hygiene compliance and
controlling serious in-hospital infections are sometimes given higher

Σ set of all event types
Q set of all public patterns
P set of all private patterns
w(Qj) utility weight of pattern Qj
λi arrival rate of events of type Ei
NT (Qj) expected number of matches of Qj in a time span T

Table 1: Summary of symbols

priority. The system, after all, is used internally by medical work-
ers; it is not an externally-facing system deployed on the Internet.
We believe that this is a key distinction that makes our problem
different from traditional privacy research.

This motivated us to study the more general Soft-constraint prob-
lem formulation, where private patterns are given negative weights,
so that important public pattern matches may trump minor private
matches, but at the same time serious private pattern matches can
still be guaranteed to be hidden by setting their weights to negative
infinity.

We realize that, intuitively, the Hard-constraint approach is more
acceptable when talking about privacy. In this paper we chose to
study the Soft-constraint problem not only because it is the one fa-
vored in our hospital scenario, but also because it is more generic: it
subsumes the Hard-constraint variant because we can always simu-
late the Hard-constraint model by setting weights on private patters
to negative infinity. The algorithms considered in this paper are ap-
plicable to both the Hard-constraint model and the Soft-Constraint
model.

3.2.2 Type-level vs. Instance-level
Mirroring the classical taxonomy proposed for relational data

privacy [17], our problem can be classified into “type-level” (cor-
responding to the “global recoding” in relational k-anonymity), or
“instance-level” (corresponding to “local recoding”).

More specifically, the type-level problem makes simplified sup-
pression decisions at the event type level by either suppressing or
preserving all events of the same type. That is, events of the same
type are either all suppressed or all preserved, irrespective of when
they occur in the stream.

On the other hand, the instance-level problem treats each event
differently based on its run-time context, i.e., the previously arrived
events in the active windows of queries, and the expectation of fu-
ture events. An instance-level solution can suppress one event of
a certain type while preserving another event of the same type. It
thus allows flexible event suppression decisions that offer more op-
portunities for utility optimization, but as a consequence it presents
a harder optimization problem.

3.2.3 Offline vs. Online
Orthogonal to the two dimensions above, our problem can be

further classified into offline and online variants.
The offline variant produces decisions after the whole stream has

arrived. Although this is not a practical assumption, studying the
offline variant does allow us to eliminate the hardness arising from
the randomness of the online problem and focus on optimal event
suppression in a deterministic setting.

In the online variant, decisions have to be made in real-time for
the currently arriving event without complete knowledge of future
events. While this problem variant is more fitting for CEP appli-
cations, which typically demand real-time responsiveness, it is also
intuitively more difficult. Challenges arise because (1) We must
estimate future events and pattern matches that are probabilistic in
nature, and (2) Even if future estimates are accurate, smart sup-
pression decisions are still needed to maximize utility, which is in
essence similar to the offline variant.

In the remainder of this paper we will focus on the online event

592

suppression problem with soft-constraint, at both type-level and
instance-level.

4. HARDNESS RESULTS
In this section, we study the hardness of the utility-maximizing

event suppression problem. The proofs of our theorems are pre-
sented in Appendix. We first show in Theorem 1 that the instance-
level offline variant is NP-hard.

THEOREM 1. The problem of instance-level utility-maximizing
event suppression with soft-constraint is NP-hard in the total num-
ber of events. It remains NP-hard even if each query contains ex-
actly two event types.

Moreover, we show that the instance-level problem is unlikely to
be approximable in polynomial time.

THEOREM 2. Let n be the total number of events in the stream.
There is a fixed constant ε ≥ 0 such that if there is nε factor ap-
proximation algorithm for instance-level utility-maximizing event
suppression with soft-constraint, then RP = NP.

The hardness and inapproximability results illustrate the unfor-
tunate fact that unless we are dealing with streams that have a
small number of events, utility-maximizing event suppression at
instance-level is unlikely to be even approximated efficiently. The
problem is not much simpler even if we focus on very simple query
constructs (e.g., two event types per query). Given that stream sys-
tems typically need to handle potentially a large number of event
instances in real-time, efficient optimal solutions with a good qual-
ity guarantee are unlikely to exist.

Even for the less ambitious type-level variant, we show the sur-
prising result that this variant exhibits a similar hardness as follows.

THEOREM 3. The problem of type-level utility-maximizing event
suppression with soft-constraint is NP-hard in the total number of
event types.

Despite the hardness result, we show in the following a fixed-
parameter-tractable special case that under some natural assump-
tions, the type-level variant can be solved optimally.

PROPOSITION 1. Suppose the expected number of matches for
each query Q ∈ Q and P ∈ P over some standard time unit is
known. Suppose the total number of public and private queries,
|P| + |Q|, is some fixed constant. Then the problem of utility-
maximizing online type-level event suppression can be solved in
polynomial time to obtain the optimal solution in expectation.

This proposition follows from a constructive algorithm to be de-
scribed in Section 5.1. We would like to point out here that in com-
parison to the offline type-level variant, in the online version the
solution is only optimal in expectation. The reason is because in
the online version, only expectations of query matches are known
and events can still arrive in an uncertain manner that deviates from
the expectation. As such, one type-level solution may not be the op-
timal for all event stream instances. Rather it is optimal in the sense
that in the long term, when the number of query matches converges
to the expectation, the solution is optimal in expectation.

5. ONLINE SUPPRESSION ALGORITHMS
In this section, we devise two real-time event suppression strate-

gies that maximize the overall utility. The first algorithm offers op-
timal suppression decisions at the event-type level (Sec. 5.1). Due
to the fluctuations in the event stream, the optimal type-level de-
cisions may not be the best decision for each event instance. This

leads us to design the instance-level algorithm that tweaks type-
level decisions based on run-time context, henceforth called Hy-
brid algorithm (Sec. 5.2). The key idea is that while the type-level
approach provides a pretty good long-term decision, the instance-
level decisions can fine-tune the type-level solution based on the
events in the local windows.

Both of our algorithms need to estimate the cardinality of pattern
matches as part of their decision making processes. Therefore, we
propose two cardinality estimation approaches (Sec. 5.3). The first
light-weight approach treats each type of event independent of each
other, while the second sophisticated approach takes advantage of
periodicities in the stream to produce more accurate estimations.

5.1 Optimal Type-Level Algorithm
Inspired by Proposition 1, we first explore the type-level variant.

We propose to model the type-level suppression problem as an in-
teger linear program. Specifically, let Σ = {Ei} be the set of all
event types. Let the integer xi ∈ {0, 1} be the decision variables
to drop/keep all events of type Ei in order to ensure privacy, with
xi = 1 denoting to keep Ei, and xi = 0 to drop Ei. Further
let the integer yj ∈ {0, 1} denote whether or not public pattern
Qj ∈ Q will be output, and zk ∈ {0, 1} denote whether private
pattern Pk ∈ P will be output.

Let NT (Qj) and NT (Pk) be the expected number of pattern
matches for Qj and Pk produced over a standard time period T
respectively. Using historical data, we can obtain statistics about
the stream, like the average event arrival rate. These statistics then
allow us to get a rough estimate ofNT (Qj) andNT (Pk) (we defer
a detailed discussion on the orthogonal issue of cardinality estima-
tion to Section 5.3). Now assume that NT (Qj) and NT (Pk) are
computed and treated as known constant values. The objective util-
ity function then becomes:

U =
∑
Qj∈Q

w(Qj)NT (Qj)yj +
∑
Pk∈P

w(Pk)NT (Pk)zk (5)

Recall that w(·) represents the utility weight function. We note
that whether or not query Qj can be reported (yj is 0 or 1) depends
on the values of the xi’s. Let σ(Qj) be the multi-set of all event
types in Qj . If one constituent event type Ei of a query pattern Qj
is dropped (xi = 0, for Ei ∈ σ(Qj)), then the query pattern can
never be revealed (yj = 0). We express the dependence using the
following linear constraint. For all Qj ∈ Q, we have

0 ≤ yj ≤
1

|Qj |
∑

Ei∈σ(Qj)

xi (6)

Intuitively, this says that in a type-level solution,Qj can be reported
(yj = 1) if and only if none of its participating event types are
dropped.

Similarly, the variable zk ∈ {0, 1} is subject to the constraint:

1 ≥ zk ≥
1

|Pk|
− 1 +

1

|Pk|
∑

Ei∈σ(Pk)

xi (7)

This captures the fact that the private pattern will be reported
(zk = 1) when all its participating event types are preserved. When
at least one constituent event type is absent, zk gets a value of 0,
which will avoid the utility penalty.

The problem of maximizing U is then an integer linear program-
ming problem subject to the constraints in Equations (6) and (7).
Putting the issue of estimating NT (Qj) and NT (Pk) aside, this
online type-level variant is really no different from the offline type-
level variant. From Proposition 1, we know that it is solvable if the
total number of event types or queries is limited.

593

Global lp‐based example

a0 b2 c4 d6 e8 a10 b12 c14 d16 e18 a20 b22 c24 d26 e28

(a) Original event stream

Global lp‐based example

a0 b2 d6 e8 a10 b12 d16 e18 a20 b22 d26 e28

(b) With type-level suppression

Figure 2: Type-level LP-based algorithm

This is useful, for although the number of event instances may
be unbounded in a stream system, the number of queries or event
types tends to be limited (HyReminder, for example, has 16 event
types and 14 queries and the corresponding LP can be solved in
20 ms). Furthermore, even when we are dealing with problems
that have a large number of queries and events, since the type-level
decisions would stay the same for every new arriving event, the LP
only needs to be solved once, until new statistics arrive, at which
point the decisions need to be re-computed. This approach thus
provides a practical way to solve the type-level event suppression
problem. We use Example 1 to illustrate this algorithm.

EXAMPLE 1. Suppose we have five event types, Σ = {A,B,
C, D, E}. A sample event stream is depicted in Figure 2a. The su-
perscript of an event denotes its timestamp. As shown in the figure,
events with different event types arrive with the same arrival rate,
namely 1 event per 10 time units, in a simple and recurring pattern
(a, b, c, d, e). Assume there are three public queries, namely
Q1 = SEQ(B,C,D), Window(Q1) = 10, w(Q1) = 5;
Q2 = SEQ(A,B), Window(Q2) = 10, w(Q2) = 20;
Q3 = SEQ(D,E), Window(Q3) = 10, w(Q3) = 20;

and one private pattern,
P1 = SEQ(A,C,E), Window(P1) = 10, w(P1) = −10.
Let [x1, x2, ..x5] be the decision variables of whether events of

type A, B, C, D, E can be preserved, [y1, y2, y3] be the vari-
ables that indicate whether Q1, Q2, Q3 can be reported, and [z1]
be the variable indicating whether P1 will be produced. Using
Equations (5), (6) and (7), we obtain a linear program with the
objective function:

U =
1

10
· 5 · y1 +

1

10
· 20 · y2 +

1

10
· 20 · y3 −

1

10
· 10 · z1

where the four 1
10

s are essentially NT (Qj) and NT (Pk), i.e., the
expected number of pattern matches over a time period T , subject
to the constraints that can be instantiated from Equation (6) and
(7).

Solving the linear program gives us the optimal type-level solu-
tion, [x1, x2, ...x5] = [1, 1, 0, 1, 1]. Namely, events of type C will
all be suppressed. This solution is intuitive. Dropping event type C
ensures that no matches for P1 and Q1 will be produced. Since the
arrival rate of Q1 and P1 are both 1

10
, and the weight w(Q1) = 5

while w(P1) = −10, it is profitable to drop event type C.
Once the type-level decisions are computed, at execution time,

all events of typeC will simply be suppressed, resulting in the event
stream in Figure 2b.

Discussion of LP-based algorithm. While this LP-based algo-
rithm is practical for the type-level problem variant, it would be
impractical for the instance-level variant. Recall that the instance-
level variant makes suppression decisions at the granularity of event
instances. Hence for an instance-level solution, a decision variable
xi is needed for each event instance, and each pattern match will
be represented as a constraint. Note that both of these two can
quickly become impractically large, resulting in too big a linear
program to be solved efficiently. In particular, in our small-scale

Local hybrid motivation

a0 b2 c4 d6 e8 b12 c14 d16 e18 a20 b22 c24 d26 e28

Figure 3: Motivation: suppressing c14 can be sub-optimal

experiment involving 50 event instances, the total time needed to
solve the corresponding LP is around 16 minutes. In light of this
prohibitive cost, in the next section we propose a hybrid approach
that combines the type-level solution with instance-level heuristics.

5.2 Hybrid Instance-Level Algorithm
We now explore solutions to online instance-level event suppres-

sion, which can produce better utility than a type-level solution for
the following reason. Recall that in the type-level solution, the ex-
pected number of pattern matches, NT (Qj), is an average statistic
produced over a long term. It is possible that over a short period of
time event frequencies may deviate from their long term averages.
Therefore, if the type-level solution is used as an instance-level so-
lution, it may be sub-optimal in the short-term local windows. This
observation is illustrated in the following example.

EXAMPLE 2. We consider the same query patterns as in Ex-
ample 1, now with a different event stream as shown in Figure 3.
Recall that the type-level solution was to suppress event type C.

Here, no a10 arrives as expected, which is different from what
the long-term statistics predict. Then when c14 arrives, there is no
event of type A prior to c14 within Window(P1) = 10. Hence, at
time 14, no match for P1 = SEQ(A,C,E) can be produced even
if c14 is kept. In that case, keeping c14 is essentially “free” (with-
out any utility penalty). An optimal solution should keep c14 since it
bears the potential of producing a match forQ1 = SEQ(B,C,D).
The type-level solution in this example fails to make this optimal
decision.

The reasoning in the type-level solution, however, is not without
merit. Over the long term, we expect one event of type A prior to
an event of typeC withinWindow(P1) on average, which leads to
one match of P1. We also expect one match ofQ1 in which the same
event of type C participates. So the type-level solution decides to
suppress the event of typeC, because the expected utility penalty of
keeping it is w(P1) = −10, which outweighs the expected utility
gain w(Q1) = 5. The particular case of c14 is different, because
there is no previous event of typeA in c14’s active window. This de-
viation from the long term statistics renders the type-level solution
sub-optimal.

This example illustrates that due to fluctuations in event arrivals,
the optimal type-level solution may not be the best decision. In-
stead it would be beneficial to deviate from the type-level decisions.
This leads us to design an enhanced algorithm that extends type-
level solution by instance-level heuristics that “tweaks” type-level
decisions based on run-time context.

We describe our Hybrid algorithm in Algorithm 1. The over-
all flow of Algorithm 1 is summarized below. First it computes
the expected utility gain of keeping the newly arrived event, ei, by
estimating the expected number of public query matches ei could
participate in. Then it computes the expected utility penalty if ei is
kept by estimating the expected number of private pattern matches
ei could be part of. It then decides to either suppress or keep ei by
comparing the expected utility gain and penalty.

We now describe Algorithm 1 in detail. First, the type-level de-
cision for each event type is computed once in Solve_LP. Then, as
each new event ei arrives, we look up those events that have pre-
viously arrived for partial matches that ei can participate in. Since

594

Algorithm 1 Hybrid Algorithm for Online Instance-level Suppression

Suppress_Hybrid_Instance_Level (history):
Suppress_T [] = Solve_LP(history)
while new_event arrives do
utl_gain = 0
for each partial_match of Qj that new_event participates do
exp_match← Est_Match (partial_match, Suppress_T [])
utl_gain += exp_match ∗ w(Qj)

end for
utl_penalty = 0
for each partial_match of Pk that new_event participates do
exp_match← Est_Match (partial_match, Suppress_T [])
utl_penalty += exp_match ∗ w(Pk)

end for
if utl_gain+ utl_penalty < 0 then

suppress new_event
else

preserve new_event
end if

end while

each such partial match is only a “prefix” of a full match, we then
estimate in the subroutine Est_Match the number of matches for
the “suffix” pattern from events that are expected to arrive in the
future.

To produce an accurate estimate, two challenges arise: (1) to
estimate the expected number of future matches of the “suffix” pat-
tern, and (2) to estimate the event suppression decisions for the
future events. We defer the first issue to Section 5.3. The second
issue is also hard, because the suppression decision of a future event
could affect the decisions about other future events thereafter. Our
intuition, however, is that the type-level solution should provide
guidance of what events tend to be suppressed in general. After all,
instance-level decisions deviate from the type-level solution only
when the local event distribution differs substantially from the long
term average. It can be expected that suppression decisions should
in general converge to the type-level solution. Thus we estimate the
number of matches for the “suffix” of the partial match by making
the assumption that events in the future will be suppressed in the
same manner that the type-level solution dictates.

With that estimate in Est_Match we can calculate an expected
utility gain for each partial match. Summing all the utility expec-
tations gives us an estimation of the benefit of keeping the newly
arrived event. We can perform a similar estimation of the total util-
ity penalty that we expect to suffer if the new event is kept. In the
end, by a simple comparison of total utility gain and utility penalty
we can determine, based on the events that have arrived, whether to
suppress the newly arrived event or to keep it. We use the running
example in Example 3 to illustrate Algorithm 1.

EXAMPLE 3. In Figure 4, we revisit the event stream in Exam-
ple 2 while considering the same patterns. In Figure 4, event a0 ar-
rives first, which participates in Q2 = SEQ(A,B). According to
the type-level decision, we expect events of typeB will be kept in the
future, with which a0 is likely to contribute to matches of Q2. Then
the utility gain of keeping a0 is expected to be w(Q2) = 20. But
a0 also forms a partial match for P1 = (A,C,E). Suppose in the
Est_Match procedure one match for the remaining suffix (C,E) is
expected to arrive. However we reason that events of type C will
most likely be suppressed, according to the type-level solution. As
a result, the expected utility penalty of keeping a0 is 0. Hence a0 is
preserved.

Following the same logic, c4 is suppressed and d6, e8 and b12

will be preserved. So far all the suppression decisions have been
the same as the type-level solution.

a0 b2 c4 d6 e8 b12 c14 d16 e18 a20 b22 c24 d26 e28

Figure 4: Running example of hybrid algorithm

Next we consider c14. First, for the partial match (b12, c14) of
Q1 that it participates in, suppose Est_Match again predicts that
one event of type D will arrive in the remaining window, which
amounts to a utility gain of 5. Then for P1, in which c14 could
participate, we find that from time 4 to 14, no event of typeA exists,
namely no partial match of P1 that c14 could join with. Hence,
keeping c14 will produce a net utility gain with no utility penalty. In
this case we will keep it, which is a different decision from the type-
level solution. This example manifests how the Hybrid algorithm
can exploit local optimization opportunities to maximize utility.

The upshot of this example is that the decisions converge to the
type-level solution, which is an intuitive justification for our as-
sumption that events which arrive in the future will most likely be
suppressed as predicted by the type-level solution.

5.3 Pattern Match Cardinality Estimation
So far we have treated the computation ofNT (Qj), i.e., the num-

ber of matches of Qj over a time span T in the type-level solution,
and the cardinality estimation of Est_Match in the Hybrid solution
as black boxes. Recall that the reason we need an estimate using
NT (Qj) in the type-level solution is to measure the expected util-
ity that Qj yields on average. The need of Est_Match is to weigh
the utility gain and penalty of keeping the current event based on
existing events in the active windows. The key issues behind both
operations are essentially the same, which is to estimate the number
of pattern matches over a time range T in the future.

In many applications the continuously arriving events tend to ex-
hibit certain regular patterns [11, 20]. The problem then is to use
historical data to estimate the cardinality of future pattern matches.
Formally, given a pattern query Qj = SEQ(Ej1 ,Ej2 , ..), and a
time variable T , we want to estimate, using event arrival statistics,
the number of matches for Qj produced within T , henceforth re-
ferred to as NT (Qj).

The time range T is a variable because it depends on how far
apart in time the first event and the last event in the partial match
are. For example, in Figure 4 of Example 3, when c4 arrives, we
need to estimate the number of events of type D that may arrive,
which along with the existing partial match (b2, c4), can form full
matches for query Q1 = SEQ(B,C,D). Because Window(Q1)
= 10, and the first event in the partial match is b2, at current time 4,
events of typeD that arrive in the next 10−4+2 = 8 time range can
contribute to this particular match. This, then, is the value of T that
we need to compute. However if the first event in the partial match
is, say b1 instead of b2, then the window over which event of typeD
should be estimated is 10− 4 + 1 = 7, instead of 8. In other words
the window of the partial suffix match is not fixed but rather varies.
This makes the problem of cardinality estimation challenging (if
the time range for cardinality estimation is always some fixed value
then the problem can be solved by simply counting the historical
data, with no computation involved).

In order for Est_Match to estimate the number of matches in
the Hybrid solution, we can compute the corresponding value using
the function NT (Qj). Let ef .ts be the timestamp of the first event
in the partial match, ec.ts be the timestamp of the current event
under consideration, then the active window T can be computed as
Window(Qj) − ec.ts + ef .ts. Let QS be the suffix pattern that
remains to be matched. Then Est_Match can be expressed as
N(Window(Qj)−ec.ts+ef .ts)(QS).

595

5.3.1 Estimation by Arrival Rate
Since Poisson process is a common approach to model arrivals

in queuing theory and stream processing literature [6, 16], our first
“baseline” estimation assumes that event arrivals follow the inde-
pendent Poisson process. In the context of CEP, the Poisson process
dictates that each type of event occurs continuously and indepen-
dently of each other. Each type of event, Ei, arrives with an arrival
rate λi, and the number of events that arrive in a fixed time period
follows a Poisson distribution. In practice, when events arrive in
a Poisson process, λi can be estimated by sampling the arriving
events. Considering the fact that events may follow different distri-
butions as time evolves, a moving sample of recently arrived events
can be used to estimate the arrival rate [9].

Given the arrival rate λi for event type Ei, we describe how
NT (Qj) can be estimated. We first compute for each event type in
Qj the expected number of event occurrences in time range T , de-
noted by li. This can be computed as li = λiT . Further we denote
by Γ(Qj) the multi-set of event types inQj , σ(Qj) the set of event
types in Qj , and |Qj | the pattern length of Qj (for example, query
Q = SEQ(A,A,B) has Γ(Q) = {A,A,B}, σ(Q) = {A,B},
and |Q| = 3). Denote byLj =

∑
Ei∈σ(Qj)

li the expected number
of occurrences of events relevant to Qj in T . We can then estimate
the expected number of query matches for Qj in T as:

NT (Qj) =
(Lj
|Qj |

) ∏
Ei∈Γ(Qj)

λi∑
Ek∈σ(Qj)

λk
(8)

Equation (8) can be explained as follows. Given a total of Lj
event occurrences in T , we need to pick |Qj | events to form one
query match. Let us pick the first |Qj | events among the Lj events,
and compute the probability that the first |Qj | events produce a
match. Let the event at the first position of Qj be of type Ei1 .
The probability that the first event picked is actually of type Ei1 is

λi1∑
Ek∈σ(Qj)

λk
, which is Ei1 ’s arrival rate λi1 divided by the sum

of arrival rates of all events in Qj . For the second event in the se-
quence, the probability that it matches the event type at the second
position of Qj can be computed similarly. In the end the proba-
bility that the first |Qj | events all match the event types specified
in Qj and thus produces a query match is the cross product of in-
dividual terms,

∏
Ei∈Γ(Qj)

λi∑
Ek∈σ(Qj)

λk
. Given that there are a

total of
(Lj
|Qj |

)
possible permutations out of Lj events and by sym-

metricity, the expected count of query matches can be expressed as
the product of the two, thus Equation (8).

5.3.2 Estimation by Periodicity
Estimation using the event arrival rate is generally applicable in

the sense that it does not assume dependencies between events of
interest. However, in practice, event streams may exhibit certain
periodic patterns that are highly regular. For example, in the hospi-
tal setting, a nurse may sanitize and enter patient rooms at a regular
time interval, say every hour, for routine patient check-ups. Such
patterns, being periodic and regular, can be leveraged to produce
even more accurate pattern match cardinality estimation. We use
Example 4 to illustrate this observation.

EXAMPLE 4. Suppose we have two event types, A and B, as
in Figure 5. From their arrival rates we know there will be two
instances of A and B in a time period T . Knowing only this infor-
mation, the best we can do is to use Equation (8) to produce an
average estimate of the number of matches for pattern SEQ(A, B).

If we can ascertain that events of type A and B follow certain
periodic patterns, then we can do a significantly better job. Sup-

T

a1 b2 a3 b4 a5 b6 a7 b8

(a) Periodic pattern 1

T

b1 b2 a3 a4 b5 b6 a7 a8

(b) Periodic pattern 2

Figure 5: Estimating matches of SEQ(A,B) using periodic pattern

pose A and B have the periodic pattern “A, B, A, B” as illustrated
in Figure 5a. Then starting at 0 over a period of time T there are
a total of three matches, namely {(a1, b2), (a1, b4), (a3, b4)}. On
the other hand, if the periodic pattern is of the form “B, B, A, A” as
shown in Figure 5b, then even if the arrival rate of A and B stays
the same over T , no match for SEQ(A, B) can be produced.

This illustrates the importance of discovering periodic patterns
embedded in the event data, for if such patterns can be revealed
and utilized, a much better pattern match estimate can be produced.
This leads us to discover such periodic patterns in the input stream.
The problem of periodicity mining has been extensively studied.
In this work we adapt the techniques in [11, 20] to discover the
periodic patterns.

Once such periodic patterns are discovered, we can compute the
number of matches for pattern Qj in each periodic cycle T̂ , de-
noted by NT̂ (Qj). The problem that remains to be solved is to
extrapolate the expected pattern match cardinality of an arbitrar-
ily long time period TX . More specifically, the problem can be
stated as given a periodic cycle T̂ andNT̂ (Qj), what is the number
of pattern matches of Qj in time period TX , or NTX (Qj)? Care
must be taken in calculating NTX (Qj). While it is tempting to
think that if TX = 2T̂ , then N2T̂ (Qj) can be simply computed as
N2T̂ (Qj) = 2NT̂ (Qj), the analysis presented in Example 5 shows
the error in this thinking.

EXAMPLE 5. We revisit Example 4 in Figure 6. Given the peri-
odic pattern “A, B, A, B” of stream in Figure 6a. Suppose we know
that in the periodicity T̂ , there are two instances of A and B, re-
spectively, denoted by NT̂ (A) = NT̂ (B) = 2, and three matches
of pattern SEQ(A,B), or NT̂ (AB) = 3. Then what is the number
of pattern matches for SEQ(A, B) in 2T̂? Note that N2T̂ (AB) =
2NT̂ (AB) = 6 is problematic, because when the time period is ex-
tended from T̂ to 2T̂ , A-s in T1 and B-s in T2 also produce matches
in a cross-product manner. In this particular case, N2T̂ (AB) =
NT1(AB) + NT2(AB) + NT1(A)NT2(B) = 3 + 3 + 2 ∗ 2 =
10. Similarly, in the second periodic pattern in Figure 6b, the
number of pattern matches N2T̂ (AB) follows the same formula:
N2T̂ (AB) = NT1(AB)+NT2(AB)+NT1(A)NT2(B) = 0+0+
2∗2 = 4. This corresponds to {(a3, b5), (a3, b6), (a4, b5), (a4, b6)}.

In general, to compute NnT̂ (Qj) given NT̂ (Qj), where n ∈
Z+, Equation (9) can be used following the logic derived in Exam-
ple 5. First, define a continuous i-segmentation of Qj as a segmen-
tation that breaks the event sequence of Qj into i non-empty seg-
ments (for example, 2-segmentations of Q = SEQ(A,B,C,D)
include (A/BCD), (AB/CD), and (ABC/D)). Each segment
in an i-segmentation is referred to as a chunk (for example, A and
BCD are two chunks in the segmentation (A/BCD)). We de-
note all continuous i-segmentations of Qj by Mi(Qj). Let m =
(c1, c2, ...ci) be one such segmentation in Mi(Qj), where ck is
the k-th chunk in m. Let D(m) =

∏
ck∈m

NT̂ (ck) be the cross-
product of the count statistics of chunk ck. Then the estimation of
NnT̂ (Qj) can be written as:

596

T1 =

2

NT1(A)=NT1(B)=2
NT1(AB)=3

T2 =

NT2(A)=NT2(B)=2
NT2(AB)=3

a1 b2 a3 b4 a6 b7 a8 b9

(a) Periodic pattern 1

T1 =

2

NT1(A)=NT1(B)=2
NT1(AB)=0

T2 =

NT2(A)=NT2(B)=2
NT2(AB)=0

b1 b2 a3 a4 b6 b7 a8 a9

(b) Periodic pattern 2

Figure 6: Estimating via periodic pattern for time 2T̂

NnT̂ (Qj) =

n∑
i=1

(n
i

) ∑
m∈Mi(Qj)

D(m) =

n∑
i=1

(n
i

) ∑
m∈Mi(Q)

∏
ck∈m

NT̂ (ck)

(9)
So far we have only considered estimating pattern matches in a

time period that is an exact multiple of a periodic cycle T̂ . Next
we extend the logic to the general case. To estimate pattern match
cardinality of a time period that is less than a full periodic cycle, we
can detect the number of pattern matches within that time period
from the known periodic pattern. To handle a time period that is
longer than T̂ but not an exact multiple of T̂ , we first estimate the
utility within the time of a multiple of T̂ using Equation (9), and
then detect the number of matches within the remaining time period
using the periodic pattern. Finally we combine the two parts of
estimation to obtain a final estimate.

6. EXPERIMENTAL EVALUATION
We have implemented our proposed algorithms on the HP CHAOS

stream engine [14], and used the OptimJ [2] module as the lin-
ear program solver. All experiments were conducted on a machine
with an Intel Core 2 Duo 3.0GHz CPU and 3.2GB of RAM running
Windows 7 and Java JRE 6.

Our experiments were conducted using both a real-world work-
load and a synthetic workload. The real-world workload was based
on anonymized event streams collected from the University of Mas-
sachusetts Memorial Hospital where HyReminder is deployed.

In our real workload, public query patterns were created when
HyReminder was developed from 2010 to 2012, following hygiene
regulations established for US hospitals [7]. Examples of such
queries include Q1, Q2, Q3 discussed earlier. As part of our new in-
vestigation, private patterns were constructed in consultation with
domain experts familiar with the hospital application and privacy
regulations. For example, P1 discussed earlier is a private query.
A doctor checking-out some sensitive equipment (e.g. External
Defibrillators) before entering a patient’s room is another private
query. We summarize the characteristics of these query patterns in
Table 2.

In our experimental system, weights of query patterns were de-
termined through a process in which we asked the domain experts
the basic question “compared to a query match for Qi, what is the
relative importance of a match forQj (or Pk).” Suppose the weight
of Qi is initially set to w. For a private query Pk, if we determine
that the benefit of reporting two matches of Qi would negate the

Parameter Value range
Pattern length 2 to 5
Time-based window size 1 min to 90 min
Weight of public patterns 1, 2, 3
Weight of private patterns -1, -2, -3

Table 2: Pattern query characteristics

potential damage of revealing one match of Pk, we can then set
weight of Pk to be −2w. Weights of public patterns can be deter-
mined similarly. This process is intuitive given the linearity of our
objective function, and is easily comprehensible to non-technical
users.

In our approach an important question arises as to how to iden-
tify all possible private queries a priori. In our hospital application,
where we only have a small number of event-types, we can afford to
exhaustively enumerate possible event-type combination to ensure
that no bad queries are overlooked. Although this type of simplicity
is not isolated (we know a few other CEP applications used in prac-
tice that can encode the domain of interest using a small number of
event-types), we think it is an interesting area for future work to un-
derstand how to scale this process to problems with a large number
of event types, possibly through some automatic process.

The synthetic event stream was produced with a parameterized
degree of periodicity, where periodicity 1 corresponds to a per-
fectly periodic stream, while periodicity 0 means a perfectly ran-
dom stream. We produced the synthetic stream by first generating
a perfectly periodic stream. We then added “noise” to this stream
by replacing events in the stream using different events with ran-
dom timestamps and event-types drawn from Possion processes. In
that way, an event stream with degree of periodicity γ% will have
γ% of events generated through the addition of noise.

6.1 Algorithms Compared
We compare algorithms proposed in this work, namely the type-

level LP-based solution (labeled as “Type-lvl”), the Hybrid solution
with independent Poisson arrival estimation, (“Hybrid-I”), and the
Hybrid solution with periodicity estimation (“Hybrid-P”). We also
implemented two alternative event suppression solutions, namely
the Hybrid-optimal algorithm (“Hybrid-opt”) and the Greedy algo-
rithm (“Greedy”), to compare against our proposed algorithms, in
order to shed light on the performance of our algorithms.

Hybrid optimal. The first baseline approach is the so-called
Hybrid-optimal. Recall that one key problem that we address in
this work is to estimate the cardinality of pattern matches in the
future. In this algorithm, we assume the Hybrid-optimal algorithm
has perfect statistics, that is, it magically knows the actual number
of pattern matches in the future. This can be implemented by look-
ing at the events in the future and counting the number of matches.
Comparing our approach with such an “oracle” algorithm that es-
sentially “cheats” helps us to understand the utility loss due to in-
accurate match cardinality estimations.

Global optimal. Note that there is still a gap between Hybrid-
Optimal and global optimal. As such, we are interested in finding
the size of this gap to establish a real utility upper-bound. For that,
we randomly sampled a small number of events and used an LP-
solver to solve the corresponding instance-level LP. This turns out
to be very expensive; a stream of 50 events took about 16 minutes
to finish. Over randomly sampled small-scale streams, we found
a very small utility gap (2-4%) between the Hybrid-Optimal and
the LP-solved global optimal. Given this result we regard Hybrid-
Optimal as our approximate utility upper-bound.

Greedy solution. In addition, we experimented with a greedy
algorithm that detects and eliminates breaches in a detecting-then-
removing fashion [28]. Specifically, for each event ei, it calculates

597

public vs. private patterns

u
ti

lit
y

0

500

1000

1500

2000

2500

4:4 8:4 12:4 16:4 20:4

Type-lvl

Hyb-I

Hyb-P

Greedy

Hyb-opt

(a) Daytime stream, Soft-constraint

0

200

400

600

800

1000

4:4 8:4 12:4 16:4 20:4

Type-lvl

Hyb-I

Hyb-P

Greedy

Hyb-optu
ti

lit
y

public vs. private patterns

(b) Nighttime stream, Soft-constraint

0

200

400

600

800

1000

1200

1400

4:4 8:4 12:4 16:4 20:4

Type-lvl Hyb-I

Hyb-P Greedy

Hyb-opt

public vs. private patterns

u
ti

lit
y

(c) Daytime stream, Hard-constraint

0

100

200

300

400

500

600

4:4 8:4 12:4 16:4 20:4

Type-lvl Hyb-I
Hyb-P Greedy
Hyb-opt

public vs. private patterns

u
ti

lit
y

(d) Nighttime stream, Hard-constraint

0

10000

20000

30000

0

1000

2000

3000

4000

0 -1 -10 -100 -1000

private

public

utility

Private pattern weight (public weight = 10)

n
u

m
. o

f
o

u
tp

u
t

m
at

ch
es

u
tility

(e) Vary private query weights

ra
ti

n
g

0

0.5

1

1.5

2

2.5

3

case I case II case III case IV case V

Greedy
Type-lvl
Hybrid-I
Hybrid-P

(f) User study results

Figure 7: Performance on hospital workload

the utility gain of public query matches that ei triggers, as well as
the utility loss of private query matches that ei triggers over the
stream of events output for public query matches. Both utility gain
and loss are calculated using currently detected matches without
estimating the effect of ei on future matches. The greedy approach
would suppress ei if the utility loss outweighs the utility gain, and
keeps ei otherwise.

6.2 Experiments on Healthcare Workload
We observe that events of the health care workload during the

day are dominated by random healthcare worker activities, which
tend to be aperiodic. However, events during the night are more
regular with a higher degree of periodicity, which may be due to
the fact that at night nurses on duty typically only conduct routine
check-ups in every room at regular intervals. We thus separate the
stream into two sub-streams, one with day-time events and the other
with night-time events.

Number of patterns vs. utility, using Soft-constraint. In this
experiment, we have 4 private queries while varying the number
of public queries from 4 to 20, over a stream of 20,000 events ex-
tracted from real stream trace collected during the daytime. Fig-
ure 7a shows the utility gain over the day-time stream. Clearly,
Hybrid-opt has best utility gains. Our Hybrid-P approach comes
second, slightly outperforming Hybrid-I. Both hybrid algorithms
consistently outperform the Type-level algorithm by around 30%,
and Hybrid-P outperforms the Greedy algorithm by up to 4x. This
underlines the effectiveness of our Hybrid algorithms.

Degree of periodicity

u
ti

lit
y

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1

Hybrid-I

Hybrid-P

Hybrid-Opt

(a) Vary degree of periodicity

Pattern length

u
ti

lit
y

0

200

400

600

800

1000

1200

2 3 4 5

Type-lvl Hyb-I
Hyb-P Greedy
Hyb-opt

(b) Vary pattern length

public vs. private patterns

u
ti

lit
y

0

100

200

300

400

500

600

700

800

128 : 0 112:16 96 : 32 64 : 64 48 : 80 32 : 96

Type-lvl

Hyb-I

Hyb-P

Greedy

Hyb-Opt

(c) Vary public/private patterns

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 16 32 64 128

No-PP
Type-lvl
Hyb-I
Hyb-P
Greedy

Th
ro

u
gh

p
u

t
(e

ve
n

t/
s)

Total num. of patterns

(d) Throughput

Figure 8: Performance on synthetic workload

Figure 7b shows the utility of the same experiment using a stream
of 10,000 events extracted from a night-time stream trace. In Fig-
ure 7b Hybrid-P produces 40% more utility than Hybrid-I. Note it
has only 10% less utility than the Hybrid-opt. This is encouraging,
because it shows that if the event stream exhibits periodic patterns,
then our periodicity based cardinality estimation can capture these
patterns and produce accurate estimations that ultimately lead to
better utility-preserving decisions.

Number of patterns vs. utility, using Hard-constraint. We
have mentioned that the algorithms considered in this paper are
applicable to the Hard-constraint setting for strict privacy guaran-
tees, by setting private weights to negative infinity and considering
positive utility contribution of public queries in making suppres-
sion decisions. To explore this we conducted an additional set of
experiments, where we used the same hospital data as in the previ-
ous experiment, but set all private pattern weights to minus infinity.
This mimics a more strict environment where no private match is
ever produced.

Figures 7c and 7d show similar trends for the Hard-constraint
model — the Hybrid approaches also outperform alternative algo-
rithms here. This suggests that Hybrid algorithms can be an attrac-
tive solution even when strict privacy guarantees are needed.

Pattern weight vs. number of output. In this experiment we
vary weights of 4 private patterns from 0 to −1000, while fixing
weights of 10 public pattern at 10. Results are reported using the
same daytime stream used previously. Figure 7e shows the number
of pattern matches produced by our Hybrid-P approach as well as
the corresponding utility. As the weights become more negative,
the number of private matches being output decreases. Observe that
when the negative weight has significantly larger absolute value
than the positive weight, no private match will be output at all. This
also shows that our solutions can be configured with extremely low
negative weights to solve the hard-constraint problem.

A user study on algorithm effectiveness. We invited 14 users,
all familiar with HyReminder, to evaluate the output produced by
the four algorithms considered in this work. We asked users to
rate the effectiveness of algorithms by inspecting query matches
produced by each algorithm, taking into account the perceived use-

598

fulness of public matches and potential damaging effects of private
matches.

We created five test-cases for users to judge in the following
manner. For each test-case, we randomly selected a subsequence
of 100 events (all about a single healthcare worker) from the event
trace. We also randomly picked 7 public patterns and 2 private
patterns. We executed four algorithms using that workload, high-
lighted any remaining public and private query matches, and asked
users to inspect the results. Users had their own intuitive ideas
about the relative importance of the queries, but were not given the
exact weights used by the system. The users were asked to rate the
output of each algorithm as “bad” (score = 1), “fair” (2) or “good”
(3), based on their subjective judgment of how well each algorithm
makes the tradeoff between reporting useful public queries and hid-
ing risky private queries.

Figure 7f summarizes the average score of each algorithm in five
test-cases. Hybrid-P has an average score of 2.74 and ranks the
highest across all test-cases. In test-case II and V, every user rated
it as “good”. Hybrid-I scores 2.12 on average, which is the second-
best based on user ratings, while Greedy ranks the lowest with a
score of 1.38. In summary, results of this user study are consistent
with our utility-function based evaluation, confirming the effective-
ness of our approach in capturing user’s preferences, and affirming
the usefulness of Hybrid algorithms.
6.3 Experiments on Synthetic Workload

Synthetic pattern queries were generated by randomly picking
pattern lengths, event types, window sizes and weights using values
listed in Table 2. For each experiment, numbers are reported using
an averaged over 20 randomly generated workloads.

Periodicity degree vs. utility. Now we assess the relationship
between the degree of periodicity of a stream and the resulting util-
ity. Figure 8a compares algorithms with varying degrees of period-
icity. We used 96 public patterns and 32 private patterns in this ex-
periment, and executed algorithms over a stream of 10,000 events.
With no periodicity Hybrid-P and Hybrid-I yield almost the same
utility. As we move from a less periodic stream to a more periodic
one, Hybrid-P achieves better utility preservation. The utility gain
of Hybrid-P in the case of perfect periodicity (periodicity degree =
1) is almost 2x than that of Hybrid-I. It is also worth noting that
even for streams with low degree of periodicity, say 0.2, there is a
positive, albeit slight, utility advantage of using periodicity based
cardinality estimation. For the remainder of experiments we fix the
degree of periodicity at 0.4, a middle ground value.

Pattern length vs. utility. Next, we vary pattern complexity
by changing pattern length from 2 to 5 and compare the utility of
different algorithms. For each pattern length, we executed 96 pub-
lic queries and 32 private queries over a stream of 10,000 events.
As we can see in Figure 8b the utility drops as the pattern length
increases. This is because the number of matches decreases when
the pattern length increases. Our proposed Hybrid-P achieves only
12% less utility than the Hybrid-Opt, and outperforms all other ap-
proaches in this experiment.

Number of public/private patterns vs. utility. In Figure 8c we
vary the ratio between the number of private patterns versus public
patterns, while fixing the total number of patterns at 128, and report
utility over a random stream with 10,000 events. As we can see,
when there is no private pattern, each approach produces the same
utility, as no event suppression is needed. As the number of private
patterns increases, the proposed Hybrid-P and Hybrid-I outperform
all other alternatives except for the oracle version Hybrid-Opt.

Number of patterns vs. throughput. Finally, we conduct a
throughput test by increasing the total number of patterns. The ratio
between the number of private patterns versus public patterns was

fixed at 1:3. Figure 8d shows that the Hybrid-P algorithm attains
at least 55% of the throughput of a baseline system where no pri-
vacy preservation is performed (labeled as “No-PP”). Its relatively
efficiency and superior utility makes it an appealing approach. We
also note that the Type-level approach achieves only slightly less
throughput than No-PP. Considering the fact that Type-level signif-
icantly outperforms the Greedy approach in utility, it may also be
an attractive alternative when system resources is a concern.

7. RELATED WORK
Complex Event Processing (CEP). CEP technologies exhibit so-

phisticated capabilities for pattern matching in high volume event
streams [1, 5, 22, 29]. However, privacy-aware CEP is an emerging
problem that has not been well studied. To the best of our knowl-
edge the work closest to us is [15]. However the focus of [15] is
on theoretical properties of the particular hard-constraint variant. It
does not present solutions or empirical studies for the more general
soft-constraint variant.

Privacy for data streams. Authors in [8, 31] consider k-anonymity
in streaming data, where the aim is to generalize clusters of tuples
into equivalence classes of size at least k. Differential privacy and
its streaming variants (e.g., [10, 23]) have been proposed as a rig-
orous alternative. However, their applications are mostly limited to
statistical aggregates (e.g., SUM query), and are not directly appli-
cable to CEP pattern matching operation. Because many CEP ap-
plications are interested in individual pattern matches, and adding
noise to individual matches (as opposed to aggregates) differen-
tially privately can easily render the result useless.

In numerical streams, correlation attacks are studied in [18] and
random noises are used to mitigate such attacks. Recently, authors
in [13] consider the problem of filtering sensitive user location data
in a stream to preserve privacy. These techniques, while useful for
their respective purposes, are not applicable as they do not consider
CEP pattern query semantics nor the utility optimization objective.

Hiding patterns in sequence databases. The problem of sequen-
tial pattern hiding was investigated in [4, 12] for static sequence
databases. Their approaches operate on a set of sequences which
are independent from each other. While in our CEP context, the
single input stream contains potentially endless events that are tem-
porally correlated. Therefore their approaches cannot be applied to
solve our problem.

Combining global and local prediction. Lastly, the general idea
of combining “global” (type-level) prediction and “local” (instance-
level) prediction in our Hybrid algorithm has been applied to prob-
lems in completely different contexts, such as to predict the move-
ment of mobile users [19], and to predict branches in the computer
architecture literature [30].

8. CONCLUSIONS
In this paper we study the problem of utility-maximizing event

stream suppression. We show that the Hybrid approach that com-
bines LP-based solution and periodicity-based cardinality estima-
tion is effective in maximizing utility while taking into account pri-
vacy penalties. in at least one real world scenario and many more
synthetically generated datasets. Leveraging periodicity informa-
tion for purposes beyond privacy (e.g., CEP query optimization)
seems to be interesting areas for future research.

9. REFERENCES
[1] Microsoft StreamInsight:

http://msdn.microsoft.com/en-us/sqlserver/ee476990.aspx.
[2] OptimJ: ateji.com/optimj.
[3] StreamBase: www.streambase.com.

599

[4] O. Abul, F. Bonchi, and F. Giannotti. Hiding sequential and
spatiotemporal patterns. In IEEE Trans. Knowl. Data Eng.,
volume 22, pages 1709–1723, 2010.

[5] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient
pattern matching over event streams. In SIGMOD, 2008.

[6] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: Operator
scheduling for memory minimization in data stream systems. In
SIGMOD, 2003.

[7] J. M. Boyce and D. Pittet. Guideline for hand hygiene in healthcare
settings. MMWR Recomm Rep., 2002.

[8] C.-Y. Chow, M. F. Mokbel, and T. He. A privacy-preserving location
monitoring system for wireless sensor networks. IEEE Trans. Mob.
Comput., 10(1):94–107, 2011.

[9] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Optimal
sampling from distributed streams. In PODS, 2010.

[10] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin.
Pan-private streaming algorithms. In ICS, 2010.

[11] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Stagger:
Periodicity mining of data streams using expanding sliding windows.
In Proceedings of ICDM, 2006.

[12] A. Gkoulalas-Divanis and G. Loukides. Revisiting sequential pattern
hiding to enhance utility. In ACM SIGKDD, pages 1316–1324, 2011.

[13] M. Goetz, S. Nath, and J. Gehrke. Maskit: Privately releasing user
context streams for personalized mobile applications. In Proceedings
of SIGMOD, 2012.

[14] C. Gupta and S. W. et al. Chaos: A data stream analysis architecture
for enterprise applications. In CEC, 2009.

[15] Y. He, S. Barman, D. Wang, and J. Naughton. On the complexity of
privacy-preserving complex event processing. In Proceedings of
PODS, 2011.

[16] Q. Jiang and S. Chakravarthy. Queueing analysis of relational
operators for continuous data streams. In Proceedings of CIKM,
2003.

[17] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient
full-domain k-anonymity. In Proceedings of SIGMOD, 2005.

[18] F. Li, J. Sun, S. Papadimitriou, G. A. Mihaila, and I. Stanoi. Hiding
in the crowd: Privacy preservation on evolving streams through
correlation tracking. In ICDE, 2007.

[19] T. Liu, P. Bahl, and I. Chlamtac. Mobility modeling, location
tracking, and trajectory prediction in wireless atm networks. IEEE
Journal on Selected Areas in Communications, 1998.

[20] H. J. Loether and D. G. McTavish. Descriptive and inferential
statistics, an introduction. 1993.

[21] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In
Proceedings of ICDE, 2006.

[22] Y. Mei and S. Madden. Zstream: A cost-based query processor for
adaptively detecting composite events. In SIGMOD, 2009.

[23] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption.
SIGMOD, 2010.

[24] R. E. Steuer. Multiple Criteria Optimization: Theory, Computations,
and Application. 1986.

[25] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10, 2002.

[26] J. Tan. Inapproximability of maximum weighted edge biclique and
its applications. In Proceedings of TAMC, 2008.

[27] D. Wang, E. Rundensteiner, and H. Wang. Active complex event
processing: Applications in realtime health care. In Proceedings of
VLDB, 2010.

[28] T. Wang and L. Liu. Butterfly: Protecting output privacy in stream
mining. In Proceedings of ICDE, 2008.

[29] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In SIGMOD, 2006.

[30] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch
prediction. In Proceedings of MICRO, 1991.

[31] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia. Continuous
privacy preserving publishing of data streams. In Proceedings of
EDBT, 2009.

APPENDIX
A. PROOFS FOR HARDNESS RESULTS

Proof of Theorem 1.

PROOF. We reduce the problem of Maximum Weighted Edge
Biclique (MWEB) [26] to offline instance-level event suppression
problem with soft-constraint. In the decision version of MWEB,
given a bipartite graph G = (V1, V2, H) where edges take on both
positive and negative weights W (h) ∈ R, h ∈ H , the problem
is to determine if there exists a bipartite subgraph whose sum of
edge weights is no less than a given number U . For each vertex
v ∈ V1 ∪ V2, construct an event type Ev and one event ev of type
Ev . The input event sequence S is a randomly ordered sequence
that consists of one ev for all v ∈ V1 ∪ V2. For each edge h =
(u, v) ∈ H , if the edge weight is positiveW (h) > 0, we build two
public queries Qh = SEQ(Eu, Ev) and Q′h = SEQ(Ev, Eu),
both with utility weight W (h), and infinite window size. Simi-
larly if the edge weight is negative, we build two private queries
Ph = SEQ(Eu, Ev) and P ′h = SEQ(Ev, Eu) also with utility
weight W (h) and infinite window size. We first show that if there
is a solution to MWEB with edge weight no less than U , then there
exists a solution to the event suppression problem that has utility
no less than U . Let G′ = {V ′1 , V ′2 , H ′} be the subgraph of G that
has weight C, where C ≥ U . We can preserve every event ev if
v ∈ V ′1 ∪ V ′2 . The set of query matches would correspond directly
to the set of edges H ′ in G′, thus producing a total utility of C.
Since we know C ≥ U , this proves the forward direction. Now
we need to show that if there is a solution to the event suppression
problem with utility at least U , there is a bi-clique in the original
graph that has an edge weight at least U . Let T = ev be the set of
events preserved in event suppression solution. The subgraph GT
of G induced by V = {v : ev ∈ T} has a one-to-one correspon-
dence between an edge in GT and a query match in the solution T .
The edge weight ofGT is thus the same as the utility of the solution
T , which is no less than U . This completes our proof.

Proof of Theorem 2.

PROOF. It was shown in [26] that there exists a constant ε > 0,
such that unless RP = NP, the MWEB problem cannot be approx-
imated within a factor of nε in polynomial time, where n is the
number of vertices in the graph. We note that the reduction from
MWEB above is value preserving. That is, if a MWEB problem
instance has a weight value of U , then the corresponding event
suppression problem we construct also has a utility value of U .
We show that the soft-constraint variant cannot be approximated
within nε by contradiction. Suppose there exists an polynomial
time algorithm that approximates the offline variant within a factor
of nε. Then we would have found an algorithm that approximates
MWEB within nε. This contradicts with the inapproximability re-
sult in [26] under standard complexity assumptions, thus proves the
inapproximability of the offline soft-constraint variant of the event
suppression problem.

Proof of Theorem 3.

PROOF. We show this problem variant is NP-hard using a proof
similar to the proof in Theorem 1, which is for the offline instance-
level variant. In proving the hardness of offline instance-level vari-
ant, each problem instance we construct for each instance of MWEB
problem has exactly one event instance per event type. In this par-
ticular case, an instance-level solution is also a type-level solution,
and vice versa. Thus, using a similar proof, we can also show the
hardness of the offline type-level variant.

600

	Introduction
	Preliminaries
	Event Data Model
	Event Query Model
	The Complication: Private Patterns
	Suppressing Private Pattern Matches

	Problem Statement & Taxonomy
	Problem statement
	A Problem Taxonomy
	Hard-constraint vs. Soft-constraint
	Type-level vs. Instance-level
	Offline vs. Online

	Hardness Results
	Online Suppression Algorithms
	Optimal Type-Level Algorithm
	Hybrid Instance-Level Algorithm
	Pattern Match Cardinality Estimation
	Estimation by Arrival Rate
	Estimation by Periodicity

	Experimental Evaluation
	Algorithms Compared
	Experiments on Healthcare Workload
	Experiments on Synthetic Workload

	Related Work
	Conclusions
	References
	Proofs for Hardness Results

