
XIAO: Tuning Code Clones at Hands of Engineers in
Practice

Yingnong Dang1, Dongmei Zhang1, Song Ge1, Chengyun Chu2, Yingjun Qiu3*, Tao Xie4
1Microsoft Research Asia, China

2
Microsoft Corporation, USA

3Alibaba Corporation, China, 4NC State University, USA

{yidang;dongmeiz;songge;chchu}@microsoft.com, soloqyj@msn.com, xie@csc.ncsu.edu

ABSTRACT

During software development, engineers often reuse a code

fragment via copy-and-paste with or without modifications or

adaptations. Such practices lead to a number of the same or

similar code fragments spreading within one or many large

codebases. Detecting code clones has been shown to be useful

towards security such as detection of similar security bugs and,

more generally, quality improvement such as refactoring of code

clones. A large number of academic research projects have been

carried out on empirical studies or tool supports for detecting code

clones. In this paper, we report our experiences of carrying out

successful technology transfer of our new approach of code-clone

detection, called XIAO. XIAO has been integrated into Microsoft

Visual Studio 2012, to be benefiting a huge number of developers

in industry. The main success factors of XIAO include its high

tunability, scalability, compatibility, and explorability. Based on

substantial industrial experiences, we present the XIAO approach

with emphasis on these success factors of XIAO. We also present

empirical results on applying XIAO on real scenarios within

Microsoft for the tasks of security-bug detection and refactoring.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: [Distribution, Maintenance,

Enhancement]

General Terms

Security, Algorithm

Keywords

Code clone, code duplication, duplicated security vulnerability,

code-clone detection, code-clone search

1. INTRODUCTION
During software development, engineers often reuse a code

fragment via copy-and-paste with or without modifications or

adaptations. Such practices lead to a number of the same or

similar code fragments called code clones spreading within one or

many large codebases. Detecting code clones [6][10][14][18][20]

has been commonly shown to be useful towards various software-

engineering tasks such as bug detection and refactoring.

In general, there are four main types of code clones [6][20]. Type-

I clones are identical code fragments except for variations in

whitespace, layout, or comments. Type-II clones are syntactically

identical fragments except for variations in identifiers, literals,

types, whitespace, layout, or comments. Type-III clones are

copied fragments with further modifications such as changed,

added, or removed statements, in addition to variations in

identifiers, literals, types, whitespace, layout, or comments. Type-

IV clones are code fragments that perform similar functionality

but are implemented by different syntactic variants.

Among these four types of code clones, type-III code clones with

or without disordered statements, called near-miss code clones,

are of high practical interest because they may potentially have a

negative impact on the code quality and increase maintenance cost

[10]. For example, problems might occur when some code is

changed for fixing a bug but the same fix is not applied to its

clones. Another example is inconsistent evolution of code clones,

e.g., one piece of code is changed for supporting more data types,

but its clones are not changed accordingly. Figure 1 shows an

example near-miss clone (which indicates a bug) reported by a

Microsoft engineer. The difference between the code snippets A

and B is relatively large: one statement in the code snippet B

(Line 16) is replaced by 4 statements in code snippet A (Lines 16-

19), and the “if” statement in code snippet B (Lines 23-25) is

updated as Lines 24-28 in A with significant changes in the “if”

condition.

A large number of academic research projects [20] have been

carried out on empirical studies or tool supports for detecting code

clones. However, in practice, so far few such research projects

have resulted in substantial industry adoption beyond the

empirical studies conducted by researchers themselves. Although

a few integrated development environments have integrated the

generic feature of code-clone detection, this feature has limited

support for real use in practice, and no industrial experiences are

reported on the application of such feature.

In this paper, we attempt to address this issue and share to the

community with experiences of carrying out successful

technology transfer of our new approach of code-clone detection

[8], called XIAO. XIAO has already been used by a large number

of Microsoft engineers in their routine development work,

especially engineers from a security-engineering team at

Microsoft who have been using XIAO’s online clone-search

service since May 2009 to help with their investigation on security

bugs. XIAO has been integrated into Microsoft Visual Studio

2012, to be benefiting a huge number of engineers in industry.

Based on our experiences [8] of collaborating with Microsoft

engineers on using and improving XIAO along with our

* This work was done when this author worked for Microsoft Research

Asia.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA

Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

observations on real use of XIAO by Microsoft engineers, we

attribute the success of XIAO to four main factors: its high

tunability, scalability, compatibility, and explorability.

High tunability of XIAO is achieved with a new set of similarity

metrics in XIAO, reflecting What You Tune Is What You Get

(WYTIWYG): users can intuitively relate tool-parameter values

with the tool outputs, and easily tune tool-parameter values to

produce what the users want. For example, the similarity-

parameter value of 100% should lead to outputs of two exactly

same cloned snippets, and the 80% value should lead to outputs of

two cloned snippets with 80% similarity judged by the users. The

parameters of the proposed metrics in XIAO enable users to

effectively control the degree of the syntactic difference between

the two code snippets of a near-miss clone pair: the degree of the

statement similarity, the percentage of inserted/deleted/modified

statements in the clone pair, the balance between the code-

structure similarity, and the quantity of disordered statements.

Such high tunability of XIAO is critical in applying an approach

of code-clone detection such as XIAO to a broad scope of

software-engineering tasks such as refactoring and bug detection

since these different tasks would require different levels of

parameter values.

High scalability of XIAO in analyzing enormous lines of code is

achieved with a well-designed scalable and parallelizable

algorithm with four steps. These four steps include preprocessing,

coarse matching, fine matching, and pruning. Preprocessing

transforms source-code information to filter out inessential

information such as code comments, and map code entities such

as keywords and identifiers to tokens. Such information

preprocessing reduces the cost burden of the actual analysis. To

offer high scalability, XIAO splits the main analysis into two

steps: coarse matching and fine matching. Coarse matching is

less costly but less accurate than fine matching. The scope

narrowed down by coarse matching is fed to fine matching,

achieving a good balance on analysis scalability and accuracy.

The step of pruning further improves the analysis accuracy. In

addition, the clone-detection algorithm of XIAO can be easily

parallelized. XIAO partitions the codebase and performs code-

clone detection on each code-partition pair. Each instance of

XIAO detects clones on a number of pairs. The results of all the

instances are then merged.

High compatibility of XIAO in analyzing code in different

development environments (such as different build systems) is

achieved with its compiler-independent lightweight and pluggable

parsers. XIAO has built-in parsers for the C/C++ and C#

languages. We define an open Application Programming Interface

that allows the easy plug-in of parsers to support various

programming languages. It should be noted that the parsing task is

lighter than the comprehensive functionalities offered by

compilers. Compared with approaches of parse-tree-based clone

detection such as Deckard [14][9], our approach has the advantage

of compiler independence; it can be easily applied to

accommodate different language variants and build environments,

which typically exist in real settings of software development,

especially for C/C++ [7].

High explorability of XIAO in supporting users to easily explore

and manipulate detected code clones is achieved with its well-

designed user interfaces including visualization support. We

design a simple heuristic to define the level of difference between

cloned snippets. We also use the metric to rank clones to prioritize

the review of clones to identify bugs. XIAO includes clone

visualization to clearly show the matching blocks and the block

types of a clone pair. This way, users can quickly capture whether

there is any difference between the two cloned snippets, what kind

of difference it is, and how much difference there is. XIAO also

includes a tagging mechanism to help coordinate joint efforts of

reviewing code clones from multiple engineers.

We have released XIAO to Microsoft engineers since April 2009

and a great number of Microsoft engineers from different teams

have used it. XIAO has been integrated into Microsoft Visual

Studio 2012, to be benefiting a huge number of engineers in

industry.

The rest of this paper is organized as follows. We present our

code-similarity metric in Section 2. We introduce our clone-

detection algorithm and visualization/reporting in Section 3 and

Section 4, respectively. We present our empirical study in Section

5 and report several real-use scenarios in Section 6. Section 7

discusses related work and Section 8 concludes.

2. CODE SIMILARITY METRIC
Considering possible edits that can be applied to source code after

it has been copied and pasted, we have identified three important

// 3 identical statements omitted here

4. switch (biBitCount)

5. {

// 9 identical statements omitted here

15. case 24: // 24bpp: Read colours from pixel

 // 3 identical statements omitted here

4. switch (biBitCount)

5. {

// 9 identical statements omitted here

15. case 24: // 24bpp: Read colours from pixel
16. case 32:

17. palEntry.rgbRed = ((RGBQUAD *)pPixel)->rgbRed;

18. palEntry.rgbGreen = ((RGBQUAD *)pPixel)->rgbGreen;

19. palEntry.rgbBlue = ((RGBQUAD *)pPixel)->rgbBlue;

16. palEntry = *(RGBQUAD *)pPixel;

17. break;

18.

19.

20. default: // What else could it be?

21. return 0;

22. }

23. if (palEntry.rgbRed == 0xFF && palEntry.rgbGreen ==

0xFF

24. &&palEntry.rgbBlue == 0xFF || palEntry.rgbRed == 0xC0

25. palEntry.rgbGreen == 0xC0 && palEntry.rgbBlue == 0xC0)

26.

27. return FALSE;

28. return TRUE;

20. break;

21. default: // What else could it be?

22. return 0;

23. }

24. if (palEntry.rgbRed >= 0xFE && palEntry.rgbGreen >= 0xFE &&

25. palEntry.rgbBlue >= 0xFE ||((palEntry.rgbRed >= 0xbf &&

26. palEntry.rgbGreen >= 0xbf && palEntry.rgbBlue >= 0xbf) &&

27. (palEntry.rgbRed <= 0xc1 && palEntry.rgbGreen <= 0xc1 &&

28. palEntry.rgbBlue <= 0xc1)))

29. return FALSE;

30. return TRUE;

Code Snippet A Code Snippet B

Figure 1. An example of near-miss code clones in a commercial codebase

inconsistencies that are present in near-miss clones and that

should be measured:

1. Statement-level difference, which may be caused by adapting

the copied code to the coding style of the source file where it

is copied to, e.g., a few identifiers are renamed;

2. Inserted/deleted/modified statements, which can be the result

of changes to the code necessary for fixing bugs or

implementing new features;

3. Disordered statements, which may be related to either a

change of code logic or coding style.

We define our code-similarity metric to take these three types of

inconsistencies into account. Before we define our metric, we next

define three binary relationships between source-code statements.

Let be an alphabet whose symbols are syntactical tokens, and

 be a source-code statement.

Definition 1 (Exact-Match) Let and be two source-code

statements; let be the token length of the statement s, and s[i]

be the i-th token of s. Then and are Exact-Match-related if

and only if [] [] .

Definition 2 (Transformed-Match) Let be a token-

mapping function (e.g., mapping several different identifiers to

the same token). The statements and are Transformed-

Match-related if and only if [] []
 .

Definition 3 (α-Transformed-Match) The statements and

are α-Transformed-Match-related if and only if they are

Transformed-Match-related and there exist at least
 distinct indexes such that []
 [] .

Intuitively, two statements are Exact-Match-related if they are

identical after code formatting is ignored, and are Transformed-

Match-related if they are identical after both code formatting and

identifier renaming are ignored. The α-Transformed-Match

relationship provides the flexibility for controlling the degree on

what percentage of renamed identifiers between two matched

statements are tolerated. In fact, the α-Transformed-Match

relationship is equal to the Transformed-Match relationship when

 , and equal to the Exact-Match relationship when .

We next illustrate these three relationships with examples.

Consider that the parameterized versions of three statements A, B,

and C listed below are identical.

A: If (foo(a, b, c) == null)

B: If (foo(a, b1,c1) == null)

C: If (bar(x, y, z) == null)

A1: If (T (T, T, T) == T)

B1: If (T (T, T, T) == T)

C1: If (T (T, T, T) == T)

Original statements Parameterized statements

Consequently, any two of them are Transformed-Match-related.

Each statement has 13 tokens. Statements A and B have 11

identical tokens out of the 13 tokens (84.6%); Statements A and C

have 9 identical tokens out of the 13 tokens (69.2%). If α = 0.6, A

is α-Transformed-Match-related to both B and C; if α = 0.8, A is

α-Transformed-Match-related to only B.

In practice, Statements A and C could have a totally different

semantic and could not be caused by copy-and-paste, thus being

of low interest to users who focus on copy-and-paste clones.

Definition 4 (Disordered-Match-Score, in short as DMS)

Consider two code snippets and where m distinct statements

in at positions match m distinct statements

at positions in . Let d be the number of inversion

pairs1 in the index sequence

 . The Disordered-Match-

Score (DMS) of and is defined as

 (1)

The DMS measures the structure difference of the two code

snippets. The smaller the value of the DMS is, the more similar

the structures of the two code snippets are because there are fewer

disordered statements. The possible value of the DMS is from 0

(when there is no inversion pair) to m (when the order is fully

reversed). Figure 2 shows an example of two code snippets with

disordered statements: the statement in Line 4 on the left snippet

is moved to Line 2 on the right. The statements in Lines 1 to 5 on

the left snippet correspond to the statements in Lines 1, 3, 4, 2,

and 5 on the right snippet. The inversion pairs of this index

sequence are (3, 2) and (4, 2). The DMS of the two snippets in the

example is 1 (being 2*2/4 .

1 for (i = 0; i < 10; i++) {

2 a++;

3 b++;

4 c=foo(a, b);

5 d=bar(a, b, c);}

1 for (i = 0; i < 10; i++) {

2 c=foo(a, b);

3 a++;

4 b++;

5 d=bar(a, b, c);}

Figure 2. Example of disordered statements

Definition 5 (α-Transformed Similarity) Let be the number

of statements of a code snippet S. The α-Transformed Similarity

between two snippets and is defined as

 (2)

where m is as in Definition 4 and is a penalty coefficient to the

DMS. We use the α-Transformed similarity to measure code

similarity hereafter.

Definition 6 (Transformed Similarity) The Transformed

Similarity, is defined as its α-Transformed Similarity

with .

Definition 7 (Clone Pair) Code snippets S1 and S2 are a clone pair

when , where γ is a configurable

similarity threshold.

Definition 7 satisfies the requirement posed at the beginning of

this section. It controls the statement-level difference by the value

of . It controls the number of inserted/deleted statements

proportionally to the size of the code snippets by the value of ;

the bigger the snippets, the more inserted/deleted statements are

tolerated. The penalty coefficient permits users to control the

amount of disordered statements in a clone pair.

3. CLONE-DETECTION ALGORITHM
Figure 3 shows an overview of our clone-detection algorithm,

consisting of four steps: preprocessing, coarse matching, fine

matching, and pruning. Our algorithm takes one codebase as input

and produces code clones detected from the codebase (our

1 http://en.wiktionary.org/wiki/inversion_pair

Code

base
 Source Code

Parser
Parameterizer Indexer

Rough

Matching

Fine

Matching
Clone

Candidates
Code

Clones

Statement

Hash

Dictionary

Pruning

Preprocessing

Figure 3. Overview of XIAO’s algorithm of code-clone detection

algorithm can handle multiple codebases by treating them as one

codebase).

In the preprocessing step, the source-code parser extracts the

location information of all the functions and their statements.

Then the code is parameterized and indexed similar to the

preprocessing techniques of CP-Miner [21].

In the coarse-matching step, for each function f in the codebase, a

list of its clone-candidate functions is detected. Each

candidate function has a sufficient number of statements with the

same hash value as at least one statement in f. This step helps

reduce the search space of the fine-matching step.

In the fine-matching step, we identify all clone pairs between each

function f and each of its clone-candidate functions using

the metric in Definition 6, with . The setting of α = 0

enables us to use the hash values of the parameterized statements

to easily verify the matching relationship; θ = 0 enables us to

easily calculate the similarity using Equation (2).

In the pruning step, we recalculate the similarity of the clone pairs

obtained in the fine-matching step, using the user-specified non-

zero values of α and θ, and thus prune the clone pairs with a

similarity that is less than the similarity threshold γ. We next give

the details of the last three steps in this section.

3.1 Coarse Matching
Given a function f and a statement-hash dictionary D, the coarse-

matching algorithm returns a list of candidate functions so

that at least a minimum and sufficient number of statements in f

and any function in have the same hash values. Doing so

ensures that only functions sharing a minimum and sufficient

number of statements are searched for code clones. In this way,

the search space is reduced from the whole input codebase to just
 . All possible function pairs that potentially contain cloned

code snippets are identified by performing the coarse matching on

all the functions in the input codebase. The steps of fine matching

and pruning are then performed between f and each function in
 to obtain actual clones.

We next define the concepts of the Hit Function and Clone

Candidate Function to help illustrate the coarse-matching

algorithm.

Definition 8 (Hit Function) Let be a hash function,

and be the extension of the token-mapping function

T (see Definition 2) to whole statements. A function is named

as a Hit Function of a function f if there exist a statement s in f and

a statement in that satisfy .

Definition 9 (Clone-Candidate Function) A function is a

Clone-Candidate Function of a function f if there exist at least

nmatch statements in f with as one of its Hit Functions and

 (

)

where L is the number of the statements in f, is the clone-

similarity threshold in Definition 7, and MinS is the minimal

number of statements that a cloned snippet should have.

Intuitively, a Hit Function has at least one parameterized

statement in common with function f. has at least nmatch

common parameterized statements with f.

Suppose that is the hash dictionary of an input codebase. For

every statement s in function f, the coarse-matching algorithm

uses D to generate a list of Hit Functions by retrieving

functions each of which contains a parameterized statement with

the same hash value as that of the parameterized form of s.

 is the multiset union of all the functions in the Hit

Function lists for every statement of f. The total hit count of each

function in is equal to the function’s multiplicity in

 . We then identify a list of Clone-Candidate Functions of

f as those functions in with no less than nmatch

occurrences.

3.2 Fine Matching
The coarse matching identifies a list of Clone-Candidate

Functions for each function f in the input codebase. There may not

be clone pairs between f and for the following reasons:

(a) the matched parameterized statements may be so scattered in

f and that the similarity between the snippets in f and

 is not high enough;

(b) multiple parameterized statements in f or may be

mapped to the same tokenized statement in or f, causing

that the number of one-to-one matched statements between f

and is not high enough;

(c) two statements are not necessarily α-Transformed-Match-

related even if they have the same hash value;

(d) there might be mismatched statements between f and due

to hash collisions, although the probability of hash collision

is quite low;

(e) some matched statements could be instances of disordered

matches and the penalty to the disordered match in Equation

(2) would cause that the similarity is not high enough.

We address issues (a) and (b) in the fine-matching step and issues

(c), (d), and (e) in the pruning step.

The goal of the fine-matching step is to identify all snippet pairs

(between f and) whose Transformed Similarity (Definition 6)

is not less than a specified threshold. We formulate this problem

as finding code snippets and in f and , respectively, that

satisfy

 (()) (())

} (4)

where and , (i = 1, … , m) are m statements in and ,

respectively. Equation (4.a) ensures that there are m matching

parameterized statements; Equation (4.b) ensures that the α-

Transformed Similarity of and is not less than the similarity

threshold given the values of α and in Equation (2) are equal

to 0.

We next first present how to determine whether a given snippet

pair and satisfies equation (4), and then present how to

efficiently scan f and to find all the possible pairs of and

in f and .

To determine whether and satisfy Equation (4), we calculate

the value of m as follows. Suppose that (1) is

the list of the hash values for which at least one statement in

and one statement in are mapped to , and (2) there are also

n1,i and n2,i statements with the hash value Vi in and ,

respectively. It easily follows that there are ni = min(n1,i, n2,i)

matched parameterized statements in and . Therefore, m can

be easily calculated as

 (5)

Accordingly, we determine whether and satisfy Equation (4).

The next subtask is to scan all the possible snippet pairs in f and

 . We take a two-step procedure. First, given a snippet in f,

we scan all the possible in and determine whether and

 satisfy Equation (4). Second, we enumerate all the possible in

f and repeat the first step.

During the first step, we use a sliding window on top of the

statement sequence of to enumerate all the code snippets in

 . The statement sequence inside the window is the current

code snippet S2. To satisfy Equation (4), the number of statements

of S2 in should satisfy the following constraint:

 (6)

where

 ,

 . Therefore, we need to

use a set of sliding windows with sizes ranging from to

 to enumerate all possible snippets in . Given a sliding

window size k, the window starts from position 1 () that covers

the first k statements in . After checking whether the snippet

inside the window and satisfy Equation (4), the window moves

one step further to position 2 (), and so on. Compared with the

code snippet covered by , the code snippet covered by has

only the first statement of removed and the statement in

position k+1 added. Therefore, we calculate the value of m for the

code snippet in by just updating the value of m for the code

snippet in , i.e., by removing the contribution of the first

statement and adding the contribution of the added statement in

Equation (5).

During the second step, we use a sliding window to enumerate all

the possible snippets in f, and repeat the first step. The size of

this sliding window ranges from | | (the total number of

statements in) to MinS (the minimal number of statements

that a cloned snippet should have).

We further optimize the algorithm in a number of ways. For

example, the sliding windows in the first step could directly move

to the next statement that matches at least one statement in f. In

addition, once a snippet pair is identified as passing the fine

matching, we further execute the pruning step against the pair to

determine whether it is an actual clone pair or not. Once a snippet

pair passes the pruning, we continue to perform the fine matching

in the remaining parts of f and ; in this way we avoid getting

overlapped clone pairs.

3.3 Pruning
In the pruning step, we prune the snippet pairs obtained in the

fine-matching step to get code clones that satisfy our code-clone

definition with the specified non-zero values for α and θ in

Equation (2). This step addresses issues (c), (d) and (e) mentioned

at the beginning of Section 3.2.

To address these three issues, we need to get the α-Transformed-

Match-related statements (Definition 2) in the two code snippets

in the pair such that the Disordered-Match-Score (DMS)

(Definition 4) of the two snippets is minimized. We then calculate

the α-Transformed-Similarity based on Equation (2) and discard

the snippet pair if its α-Transformed-Similarity value is lower than

the threshold.

We use a greedy technique called Karp-Rabin Matching and

Greedy String Tiling [30] to get the matched statements. The

basic idea is to use a dynamic-programming algorithm to find the

maximal consecutive statement sub-sequences in S1, and

in S2, with the same number of statements, and each statement in

 α-Transformed-Match-related with the statement at the

corresponding position in . The next step is to exclude the

statements in and from S1 and S2, respectively, and repeat

the step on
 and

 . By reiterating this process until

there are no further matches, we get a set of statement-sub-

sequence pairs in S1 and S2, which are α-Transformed-Match-

related to each other. The matched statements that we need to

obtain are the union of all the sub-sequence pairs. At this point,

we calculate the α-Transformed Similarity and determine whether

S1 and S2 are a clone pair based on Definition 7.

4. VISUALIZATION AND REPORTING
As important and integral components of XIAO, the clone

visualization and reporting mechanism provides a rich and

interactive user experience for engineers to efficiently review the

clone-analysis results and take corresponding actions.

Clone reporting. We design a simple heuristic to define the level

of difference between cloned snippets. In particular, it first filters

out all those exactly the same cloned snippets, since cloned

snippets with slightly different logics would be more bug-prone.

We use a metric (called bug likelihood) to rank clones to prioritize

the review of clones to identify bugs. We also design a simple

heuristic to measure in what extent the cloned snippets are similar

to each other and how easily they can be refactored (e.g., the exact

same copies could be easier to be refactored than others). We call

this metric as refactoring likelihood. To facilitate users to act on

the reported clones, we have developed XIAO’s Clone Explorer, a

component of clone reporting and exploration shown in Figure 4.

It organizes clone statistics based on the directory hierarchy of

source files in order to enable quick and easy review at different

source levels (Figure 4①). A drop-down list (②) is provided to

allow pivoting the clone-analysis results around the bug likelihood

(③), refactoring likelihood, and clone scope. Clone scope

indicates whether cloned snippets are detected inside a file, cross-

file, or cross-folder. For a selected folder in the left pane, the right

pane (④) displays the list of clone functions (those including

cloned snippets), which could be sorted based on bug likelihood

or refactoring likelihood (⑥). Filters (⑤) on the clone scope,

bug likelihood, or refactoring likelihood are provided to enable

easy selection of clones of interest.

Clone visualization. Figure 5 shows how the Clone-Visualizer

component visualizes the clone pair illustrated in Figure 1. The

key to clone visualization is to clearly show the matched

statement blocks and the block types. We categorize the matched

blocks into the following types: exactly same (i.e., there are only

possible formatting differences), similar-logic block (i.e., there are

identifier substitutions between the two blocks), different logic

(i.e., the statements in the two blocks are not of the similar-logic

type but are still similar), and extra logic (i.e., the statements of a

block show up in one copy of the clone pair, but not in the other

copy). In this way, users can quickly determine whether there is

any difference between the two cloned snippets, what kind of

difference it is, and how much difference there is. Blocks are

numbered for correspondence display (Figure 5 ①), and different

colorings are used to indicate different block types (②). The left

and right source panes are synchronized, and navigation buttons

are provided to navigate through source code by matched blocks

instead of statements in order to improve review efficiency (③).

Users can take an immediate action of filing a bug once a clone is

confirmed to be a bug or a refactoring target (⑤), or copying the

code out for more investigation (④).

Tagging. One important requirement of XIAO is to help

coordinate joint efforts of reviewing code clones from multiple

engineers. We have designed a tagging mechanism for engineers

to easily work together. One clone already reviewed by an

engineer can be tagged as “immune”2, “bug”, or “refactoring”.

Then the other reviewing engineers could choose to easily skip

these already reviewed clones. Note that these tags need to be

tracked as done in XIAO when a new version of codebase is

analyzed. Overall, a tagging mechanism (Figure 4 ⑦) serves two

main purposes. First, users can tag some clones as “immune” at

various occasions. For example, some detected clones do not

include buggy code or become refactoring targets. Second, we can

implicitly collect user feedback and evaluation results in order to

keep improving our clone-analysis algorithms.

5. EMPIRICAL STUDIES
In this section, we present the empirical results of applying XIAO

on commercial codebases. In our studies, we used seven

commercial codebases at Microsoft. In the seven commercial

2 An immune clone is one of no particular interest to engineers.

codebases, six are in C/C++ and one is in C#; the numbers of lines

of code vary between 1.9 million and 12 millions.

The environment for running XIAO was a workstation running

Windows 7 64 bits with two Intel Xeon 2.0GHz processors and

12GB memory. We relied on human inspection to classify

whether a detected clone is a real clone.

5.1 Clone-Detection Effectiveness
Figure 6 shows the distribution of the types of code clones

detected by XIAO across the seven commercial codebases, when

using the default settings: MinS = 10, α = 0.6, γ = 0.8. The figure

shows that the near-miss clone pairs detected by XIAO are a

significant portion of all the clone pairs, ranging from 63% to 93%

for the commercial codebases.

On each of two commercial codebases (out of the seven) at

Microsoft, one of its Microsoft engineers (i.e., those who

developed the codebase and are familiar with the codebase)

helped evaluate some clone-analysis results generated by XIAO

on the codebase. We named these two engineers as Engineers I

and II.

1 2 3 4 5 6

7

1. Clone navigation based on source tree hierarchy

2. Pivoting of folder level statistics

3. Folder level statistics

4. Clone function list in selected folder

5. Clone function filters

6. Sorting by bug or refactoring likelihood

7. Tagging

Bug

Immune

Refact

Refact

Figure 4. UI of Clone Explorer

1. Block correspondence

2. Block types

3. Block navigation

4. Copying

5. Bug filing

1

2

3 4
5

Figure 5. Visualizing differences of a clone pair

Figure 6. Distribution of clone types of seven commercial

codebases (all in C/C++ except C1 in C#) detected by XIAO

Engineer I reviewed 69 clone groups (each of which includes a set

of similar clone pairs) with 184 functions in total. All reviewed

functions are of non-zero bug likelihood and refactoring

likelihood. Using the tagging functionality of XIAO, Engineer I

tagged 7 (10%) clone groups as potential bugs and 16 (23%) clone

groups as refactoring targets. All together there were 23 (33%)

clone groups that were identified as actionable (i.e., either

potential bugs or refactoring targets).

Engineer II evaluated a small set of clones found by XIAO in a

system component that consists of high-quality source code. The

source code of this component has been stable with few changes

for a number of years. We did not expect to find clone-related

bugs in this case. Instead, we were interested in looking for

refactoring targets in high-quality code. Engineer II reviewed a

total of 39 clone groups with 102 functions. The numbers of

clones in these clone groups vary from 2 to 7, except one clone

group, which contains 20 clones. All these 20 clones deal with

Windows Event operations and they have slight differences in

code logic. Including this clone group, Engineer II tagged 8

(16.3%) clone groups with 46 functions as refactoring targets.

5.2 Runtime Cost and Scalability
The running time of XIAO against a large codebase (with the

default environment) varies depending on the used settings: from

6 minutes (MinS = 20, α = 1, γ = 1) to 23 minutes (MinS = 10, α =

0.4, γ = 0.8). Basically, increasing γ tends to linearly decrease the

spent time; increasing MinS decreases the spent time; increasing α

does not change the spent time. This behavior can be easily

explained: increasing the value of γ leads to a smaller number of

clone-candidate functions in the coarse-matching step, thus

decreasing the time spent in each of the successive steps;

increasing MinS leads to a smaller number of snippets to be

checked; α is used in the pruning step, which is the last step, and

affects only the number of obtained clones but does not affect the

spent time.

Instead of using the default environment, we evaluated the

scalability of our XIAO system using an HPC cluster with one

master node and four computing nodes (a high-performance

computing environment that XIAO leverages to deal with a huge

number of lines of code). The master node has four AMD Opteron

880 Dual-core 2.4GHz CPUs and 32GB memory. Each of the four

computing nodes has two Intel E5335 Dual-core 2.0GHz CPUs

and 8GB memory. Both the master and computing nodes are

running on Windows Server 2008 HPC Edition.

Online clone search. We indexed a commercial codebase with

about 130 million lines of code to evaluate the scalability of

XIAO’s online clone-search engine. Code snippets with three or

more statements are accepted as valid input for clone search. The

preprocessing (including source-code parsing, tokenization, and

indexing) was conducted on one computing node and it took 3

hours and 42 minutes to finish. Source code is divided into

partitions each with 5MB storage size and these partitions are

evenly distributed on the four computing nodes. Then 16 instances

of the online clone-search engine were running to serve online

queries. We randomly selected 1000 code snippets from the

codebase as inputs. The size of these 1000 snippets ranges from 3

to 100 and the number of snippets for each size is about the same.

The clone-similarity threshold is set to be 0.6. The number of

found cloned snippets ranges from 1 to 1000 and the average time

of each query is a number of seconds.

Offline clone detection and analysis. We evaluated the

performance of XIAO’s offline clone detection and analysis on a

commercial codebase with 26 million lines of code using the same

system setup as that in the online-search environment. Clones of

functions with at least 20 lines of statements were found using the

similarity threshold of 0.6. Preprocessing was conducted on one

computing node. The clone detection and analysis were performed

in parallel on the 4 computing nodes. It took 3 hours and 30

minutes to finish the entire process. The time breakdown of each

step (in the unit of seconds) is preprocessing (1,014), coarse

matching (9,803), fine matching (213), and clone analysis (1,462).

The average amount of memory used by each instance of clone

detection and analysis is about 120MB.

6. APPLICATION SCENARIOS IN

PRACTICE
We have released XIAO inside Microsoft for different

development teams to use (with the first version released in April

2009). There were more than 750 downloads of the tool as of the

end of year 2010.

Copy-Paste-Bug Detection and Refactoring. An example

application scenario of XIAO was already described in Section 1.

In this scenario, an engineer at Microsoft reviewed 69 clone

groups for a total of 184 snippets taken from the results of code-

clone detection for a commercial codebase. All reviewed clones

were near-miss code clones. He identified 7 (10%) clone groups

as potential bugs and 23 (33%) clone groups as refactoring targets

(including the 7 with potential bugs). The motivating example

shown in Figure 1 is one of these seven cases. Function A on the

left side is from a shared component, and function B on the right

side is from an application. As confirmed by the code owner, B

was copied from A for quick reuse quite some time ago. However,

the engineer of B was not aware of the changes made to A after

the copying.

0%

50%

100%

150%

C1 C2 C3 C4 C5 C6 C7

Type III

Type II

Type I

// 14 identical statements omitted here

::SendMessage(hwndCombo, CB_LIMITTEXT, GetMaxCharacters(),

0);

int iFlags = 0;

if (!GetIsIMEAvailable())

iFlags |= SES_NOIME;

if (iFlags)

::SendMessage(hwndCombo, EM_SETEDITSTYLE, iFlags, iFlags);

// 5 identical statements omitted here

::SendMessage(hwndCombo, EM_SETCOMBOBOXSTYLE,

SCB_NOAUTOCOMPLETEONSIZE, SCB_NOAUTOCOMPLETEONSIZE);

// 2 identical statements omitted here

Figure 7. A confirmed bug: extra statements for bug fixing

were added (with the gray background) to one function but

not to its cloned one.

The clone-related bug shown in Figure 7 is another example

reported by the same engineer. In this case, the two functions

originally had similar functionalities. Later on a number of

statements were added to one function (with the gray background

in Figure 7) to ensure the synchronization between Windows GDI

objects; nevertheless, this bug fix was not applied to the other

function.

The two functions shown in Figure 8 have only slight differences.

In fact, they are the same except for one similar-logic block (the

second statement in the figure) and one different-logic block (the

first statement). This case was analyzed by XIAO to have a high

rank in both bug likelihood and refactoring likelihood. As

confirmed by its engineer, the differences between the two

functions are by-design, and the clones are not buggy. In the

meantime, this case was confirmed to be refactorable.

Figure 9 shows a clone group that was tagged as “Immune”.

Although there do exist slight logic differences between the two

functions, the differences were confirmed to be intentional.

Currently it is difficult for XIAO to handle false-positive cases

such as this one in clone analysis.

Based on our observation, an engineer often tries to prioritize his

refactoring efforts, i.e., starting from easy-to-refactor clones

(which are often those with high similarity). Another factor for

tuning parameters is that a higher value of the similarity threshold

needs less running time to get clone-detection results. Therefore,

the engineer could choose relatively high similarity threshold first

(e.g., 100% the same), to get some easy-to-refactor clones within

relatively short clone-detection time. If there is a need to

aggressively identify more refactoring opportunities, a relatively

small value of the similarity threshold could be used. In some

situations, a relatively high value of the similarity threshold would

be used. For example, we observed that engineers dealing with a

codebase with 20+ million LOC would like to identify file-level

clones with 99% similarity and set a relatively high value of the

similarity threshold to accomplish this goal.

Detection of Duplicated Vulnerable Code. A security-

engineering team at Microsoft has been using XIAO’s online

clone-search service since May 2009 to help with their

investigation on security bugs. There were more than 590 million

lines of code being indexed. During the second half of year 2010,

there were a number of vulnerable code snippets searched against

the XIAO service. Among these searching cases, there were

18.3% cases with good hits, i.e., for these cases, the security-

engineering team needs to do further investigation to confirm

whether there are duplicated vulnerabilities. Given high severity

of security bugs, 18.3% good-hit cases are very good results.

In an example real case, a reported security vulnerability could

cause potential heap corruption and lead to remote code

execution. After investigation, the vulnerable code snippet was

found in codebase A: a buffer-overflow check was missing there.

Using XIAO’s clone-search service, one security engineer on the

security engineering team found three clones of the vulnerable

code snippet – one is also in codebase A and the other two belong

to codebase B. This security engineer contacted the code owners

of these three cloned snippets and confirmed that one snippet in

codebase B was vulnerable. After the contact, the development

team owning the vulnerable cloned snippet in B had confirmed to

fix this security bug while the security bug in codebase A was

fixed.

XIAO’s clone-search service has greatly improved the

productivity of the security engineers and it enhanced the

reliability of the bug-investigation process as well. Based on the

clone-search results, security engineers are able to obtain a better

understanding of the potential impact of security vulnerabilities

and communicate more effectively with development teams on

vulnerability investigation and fixing.

In this application scenario of XIAO, security engineers would

like to have high recall of clone detection (i.e., little chance of

missing clones). Therefore, for this application scenario, XIAO

has the default value of 0.6, a relatively small value for the

similarity threshold. The value is tunable by security engineers to

achieve even higher recall.

Discussion. For the two types of application scenarios, we

observed that the second scenario on detecting duplicated

vulnerable code (with the target users as security engineers) has

occurred much more often than the first scenario, especially on

refactoring (with the target users as software engineers). Such

observation could be explained with two factors. First, refactoring

conducted by software engineers occurs much less frequently than

investigation of security bugs, which are the routine work of

security engineers. Second, the severity of consequence on

missing a refactoring opportunity is much less than the one on

missing a security bug.

// 6 identical statements omitted here

RectF rectImage(0.0f, 0.0f, (float)m_piISGU-

>GetItemWidthPx() - 1.0f, (float)m_piISGU->GetItemHeightPx() -

1.0f);

// 61 identical statements omitted here

colorBorder.SetFromCOLORREF(GetBorderColor());

// 2 identical statements omitted here

// 6 identical statements omitted here

RectF rectImage(0.0f, 0.0f, (float)s_cxInkItem - 1.0f,

(float)s_cyInkItem - 1.0f);

// 61 identical statements omitted here

colorBorder.SetFromCOLORREF(GetFrameColor());

// 2 statements identical omitted here

Figure 8. A confirmed example of code refactoring

if (!pxdsi || !pxdsl)

// 13 identical statements omitted here

if (FAILED(pxdsi->HrDeleteNode(ppxslChildren[l])))

// 10 statements identical omitted here

if (!m_spxdsi || !m_spxdsl || !m_pDesc)

// 13 identical statements omitted here

if (!ParseProperty(ppxslChildren[l]))

// 10 identical statements omitted here

Figure 9. A clone group tagged as “Immune”

7. RELATED WORK
Research on code-clone detection has been an active research

topic in recent years [3][10][17][24][27]. Roy et al. [27]

conducted an extensive survey on this research topic.

In contrast to other previous approaches on code-clone detection

that conduct aggressive code parameterization without imposing

any constraint on characteristics of statements (e.g., CCFinder

[18], CP-Miner [21], and Deckard [14]), our code-similarity

metric enables users to control the degree of tolerating statement

variations by parameter α, allowing XIAO to filter out many false-

positive clones that other approaches would report. Our code-

similarity metric also enables users to control the percentage of

inserted/deleted/modified statements, allowing XIAO to detect

near-miss code clones with any number of statement gaps. At the

same time, the algorithm efficiency is still achieved since XIAO

uses a coarse-to-fine mechanism. Token-based approaches either

cannot effectively detect near-miss clones (e.g., CCFinder) or

cannot efficiently detect clones with over three gaps (e.g., CP-

Miner).

Clone-detection approaches based on parse tree (e.g., CloneDR

[5][6] and Deckard) can detect near-miss clones with over three-

statement gaps. However, in their approaches, either the

percentage of shared tokens [5][6] or the feature-vector distance

[14] is used to approximate the tree-edit distance. Although such

approximation enables efficient detection algorithms, it leads to

false positives, due to the loss of structural similarity caused by

the approximation.

Our code-similarity metric also takes into account disordered

statements, allowing XIAO to detect near-miss clones with

disordered statements. Many other token-based detection

approaches such as CCFinder or CP-Miner do not detect clones

with disordered statements; parse-tree-based approaches can

detect clones with disordered statements; however, they suffer

from false positives.

Recently, Gabel et al. [11] proposed a scalable algorithm for

detecting semantic code clones based on dependency graphs.

They defined semantic code clones as isomorphic sub-graphs of

the code’s dependency graph. Kim et al. [19] also proposed a

memory-comparison-based algorithm for code-clone detection,

called MeCC. Their approach can detect near-miss code clones,

including clones with disordered statements. Their focus is on

detecting semantic code clones, and it is unclear how their

detected code clones overlap with near-miss code clones (the

focus of XIAO). Such investigation is left for future work.

Besides advances in clone detection, recent research has also

made progress on applying clone detection in various software-

engineering tasks such as bug detection and refactoring. Near-

miss code-clone detection has been used to help identify code-

refactoring opportunities [12][31] or find plagiarisms [25][26]. To

search whether there are cloned copies of a piece of buggy code,

Li and Ernst proposed CBCD [23], a scalable clone-search

algorithm that compares graph isomorphism over program

dependency graphs. At Microsoft, XIAO has also been used for

searching cloned code (e.g., detection of duplicated vulnerable

code) and finding refactoring opportunities; comparing to these

previous approaches, XIAO is more general and can be used in

broader scenarios with high tunability, scalability, compatibility,

and explorability.

One important application of detecting near-miss code clones is

helping engineers to identify potential bugs caused by inconsistent

code changes. CP-Miner [21] detects bugs caused by

inconsistently renamed identifiers. The approach by Jiang et al.

[15] detects inconsistent contexts of detected code clones. Since

XIAO is able to detect near-miss code clones with arbitrary gaps,

XIAO has the capability of detecting more types of bugs caused

by inconsistent code changes.

There are various tools for code-clone detection available as either

open-source tools or commercial tools. Each one performs well in

only some aspects. Most of them can detect type-I/II clones well,

but have limited capability on detecting type-III clones. Few of

them can detect code clones with disordered statements. Few of

them provide good tunability. In contrast, XIAO can detect type-

III code clones with or without disordered statements, and has

high tunability on the tolerance of inserted/deleted statements.

Some of existing tools provide Graphical User Interfaces (GUI)

available for exploring code clones. There exists a GUI front-end

called GemX for CCFinder [18] to allow users to interactively

explore clones with different metrics, such as LOC and distance

of folder locations. CP-Miner provides visualization for

highlighting clone differences without the concept of blocks.

Simian 3 is a Similarity Analyzer for identifying duplication in

code written in various languages. It provides limited

explorability, displaying only one snippet from each clone group

(assuming all copies from a clone group are exactly the same).

CloneDR [5][6] provides a summary report and individual clone-

set reports, but provides no visualization of clone differences. The

uniqueness of XIAO in terms of explorability lies in supporting

rich interaction and visualization: intuitive visualization of

differences between cloned snippets besides allowing users to tag

code clones.

There are some available tools with features of code-clone

management, such as CloneTracker [9] and SimScan 4 .

CloneTracker is useful for engineers to track code clones.

SimScan also provides GUI for clone management and tracking,

supporting simultaneous editing. XIAO’s tagging mechanism can

serve for similar purposes but XIAO provides both clone

detection and management with high tunability, scalability,

compatibility, and explorability.

The most recent related work is the work done by Jang et al. [13].

They developed a scalable approach for detecting unpatched code

clones. Their approach is language agnostic and produces

relatively low false-detection rate. They applied their approach on

entire OS distributions. While sharing the features of high

scalability and compatibility as their approach, our approach is

applied on commercial codebases, and is designed to be

continuously used by engineers in their daily practices. Therefore,

our approach has unique features such as high tunability and

explorability.

8. CONCLUSION
In this paper, we report our experiences of carrying out successful

technology transfer of our new approach of code-clone detection,

called XIAO. XIAO has been integrated into Microsoft Visual

Studio 2012, to be benefiting a huge number of engineers in

industry. We have discussed main success factors of XIAO: its

high tunability, scalability, compatibility, and explorability. We

have also presented empirical results on in-practice applying

XIAO on real scenarios within Microsoft for the tasks of security-

bug detection and refactoring. The results demonstrate the

3 http://www.harukizaemon.com/simian/index.html

4 http://blue-edge.bg/simscan/

http://www.ccfinder.net/ccfinderxos.html
http://www.semanticdesigns.com/Products/Clone/COBOLCloneDR.html
http://www.cs.mcgill.ca/~swevo/clonetracker/
http://blue-edge.bg/simscan/simscan_help_r1.htm
http://www.harukizaemon.com/simian/index.html

benefits of XIAO in these tasks. In addition, it was observed that

applying XIAO on detecting duplicated vulnerable code (with the

target users as security engineers) has occurred much more often

than the applying XIAO on refactoring (with the target users as

software engineers).

9. ACKNOWLEDGMENTS
We thank our (former) colleagues and interns for their

contribution on the implementation of XIAO: Sanhong Chen, Yan

Duan, Tiantian Guo, Shi Han, Ray Huang, Qi Jiang, Feng Li,

Xiujun Li, Jianli Lin, Huiye Sun, Jinbiao Xu, Jiacheng Yao, and

Chiqing Zhang. We thank our colleagues for their help and joint

efforts on the successful tech transfer of XIAO, especially Ian

Bavey, Gong Cheng, Sadi Khan, Weipeng Liu, and Peter Provost.

We thank our colleagues at Microsoft for their feedback and

discussion, especially Jonus Blunck, Andrew Fomichev, Shi Han,

Xiaohui Hou, Peter Nobel, Landy Wang, Jinsong Yu, and Qi

Zhang. We also thank Simone Livieri for his help on evaluations

of XIAO.

10. REFERENCES
[1] http://en.wiktionary.org/wiki/inversion_pair, as of Feb. 26,

2011.

[2] http://www.slideshare.net/icsm2011/lionel-briand-icsm-

2011-keynote

[3] B. S. Baker. On finding duplication and near-duplication in

large software systems. In Proc. WCRE, pages 86–95, 1995.

[4] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMSR: Program

transformations for practical scalable software evolution. In

Proc. ICSE, pages 625–634, 2004.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.

Clone detection using abstract syntax trees. In Proc. ICSM,

pages 368-377, 1998.

[6] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo.

Comparison and evaluation of clone detection tools, TSE,

33(9):577-591, 2007.

[7] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S.

Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and D. R.

Engler: A few billion lines of code later: using static analysis

to find bugs in the real world. Commun. ACM 53(2):66-75,

2010.

[8] Y. Dang, S. Ge, R. Huang, and D. Zhang. Code clone

detection experience at Microsoft. In Proc. IWSC, pages 63-

64, 2011.

[9] E. Duala-Ekoko and M. P. Robillard. Tracking code clones

in evolving software. In Proc. ICSE, pages 158-167, 2007.

[10] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su.

Scalable and systematic detection of buggy inconsistencies in

source code. In Proc. OOPSLA, pages 175-190, 2010.

[11] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic

clones. In Proc. ICSE, pages 321-330, 2008.

[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES:

Refactoring support tool for code clone. In Proc. WoSQ,

pages 1-4, 2005.

[13] J. Jang, A. Agrawal, and D. Brumley. ReDeBug: Finding

unpatched code clones in entire OS distributions. In Proc.

S&P, pages 48-62, 2012.

[14] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:

Scalable and accurate tree-based detection of code clones.

Proc. ICSE, pages 96-105, 2007.

[15] L. Jiang, Z. Su, and E. Chiu. Context-based detection of

clone-related bugs. In Proc. ESEC/FSE, pages 55-64, 2007.

[16] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,

Do code clones matter? In Proc. ICSE, pages 485-495, 2009.

[17] E. Juergens and N. Gӧde. Achieving accurate clone detection

results. In Proc. IWSC, pages 1-8, 2010.

[18] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a

multilinguistic token-based code clone detection system for

large scale source code. TSE, 28(7):654–670, 2002.

[19] H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: Memory

comparison-based clone detector. In Proc. ICSE, pages 301-

310, 2011.

[20] R. Koschke. Survey of research on software clones. In Proc.

Duplication, Redundancy, and Similarity in Software, 2006.

[21] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for

finding copy-paste and related bugs in operating system

code. Proc. OSDI, pages 289–302, 2004.

[22] M. Li, J. Roh, S. Hwang, and S. Kim. Instant code clone

search, In Proc. ESEC/FSE, pages 167-176, 2010.

[23] J. Li and M. D. Ernst. CBCD: Cloned buggy code detector.

In Proc. ICSE, pages 310-320, 2012.

[24] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large

scale code clone analysis and visualization of open source

programs using distributed CCFinder: D-CCFinder. In Proc.

ICSE, pages 106-115, 2007.

[25] L. Prechelt, G. Malpohl, and M. Philippsen. JPlag: Finding

plagiarisms among a set of programs. Technical report,

University of Karlsruhe, Department of Informatics, 2000.

[26] R. Robbes, R. Brixtel, M. Fontaine, B. Lesner, and C. Bazin.

Language-independent clone detection applied to plagiarism

detection. In Proc. SCAM, pages 77-86, 2010.

[27] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and

evaluation of code clone detection techniques and tools: A

qualitative approach. In Science of Computer Programming,

74(7):470-495, 2009.

[28] R. Tiarks, R. Koschke, and R. Falke. An assessment of type-

3 clones as detected by state-of-the-art tools. In Proc. SCAM,

pages 67-76, 2009.

[29] Y. Ueda, T. Kamiya, S. Kusumoto and K. Inoue. Gemini:

Maintenance support environment based on code clone

analysis. In Proc. IEEE METRICS, pages 67-76, 2002.

[30] M. J. Wise. String similarity via greedy string tiling and

running Karp-Rabin matching. Department of Computer

Science, University of Sydney,

ftp://ftp.cs.su.oz.au/michaelw/doc/RKR GST.ps, December

1993.

[31] L. Yu and S. Ramaswamy. Improving modularity by

refactoring code clones: A feasibility study on Linux. In

SIGSOFT Notes, 33(2), 2008.

