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Abstract—Discovering frequent episodes over event sequences
is an important data mining problem. Existing methods typically
require multiple passes over the data, rendering them unsuitable
for streaming contexts. We present the first streaming algorithm
for mining frequent episodes over a window of recent events in the
stream. We derive approximation guarantees for our algorithm in
terms of: (i) the separation of frequent episodes from infrequent
ones, and (ii) the rate of change of stream characteristics. Our
parameterization of the problem provides a new sweet spot in
the tradeoff between making distributional assumptions over the
stream and algorithmic efficiencies of mining. We illustrate how
this yields significant benefits when mining practical streams from
neuroscience and telecommunications logs.

Index Terms—Event Sequences; Data Streams; Frequent
Episodes; Pattern Discovery; Streaming Algorithms; Approxi-
mation Algorithms

I. INTRODUCTION

Application contexts in telecommunications, neuroscience,
and intelligence analysis feature massive data streams [1] with
‘firehose’-like rates of arrival. In many cases, we need to
analyze such streams at speeds comparable to their generation
rate. In neuroscience, one goal is to track spike trains from
multi-electrode arrays [2] with a view to identify cascading
circuits of neuronal firing patterns. In telecommunications,
network traffic and call logs must be analyzed on a continual
basis to detect attacks or other malicious activity. The common
theme in all these scenarios is the need to mine episodes (i.e.,
a succession of events occurring frequently, but not necessarily
consecutively [3]) from dynamic and evolving streams.

Algorithms for pattern mining over streams have become
increasingly popular over the recent past [4]-[7]. Manku and
Motwani [4] introduced a lossy counting algorithm for approx-
imate frequency counting over streams, with no assumptions
on the stream. Their focus on a worst-case setting often leads
to stringent threshold requirements. At the other extreme, algo-
rithms such as [5] provide significant efficiencies in mining but
make strong assumptions such as i.i.d distribution of symbols
in a stream.

In the course of analyzing some real-world datasets, we
were motivated to develop new methods as existing methods
are unable to process streams at the rate and quality guarantees
desired (see Sec. VI for some examples). Furthermore, estab-
lished stream mining algorithms are almost entirely focused
on itemset mining (and, modulo a few isolated exceptions,
just the counting phase of it) whereas we are interested in
mining general episodes.

Our specific contributions are as follows:

o We present the first algorithm for mining episodes in
a stream. Unlike prior streaming algorithms that focus
almost exclusively on counting, we provide solutions for
both candidate generation and counting over a stream.

o Devoid of any statistical assumptions on the stream (e.g.,
independence or otherwise), we develop a novel error
characterization for streaming episodes by identifying and
tracking two key properties of the stream, viz. maximum
rate of change and top-k separation. We demonstrate how
the use of these two properties enables novel algorithmic
optimizations, such as the idea of borders to amortize
work as the stream is tracked.

o Although our work is geared towards episode mining,
we adopt a black-box model of an episode mining algo-
rithm. In other words, our approach can encapsulate and
wrap around any pattern discovery algorithm to enable
it to accommodate streaming data. This significantly
generalizes the scope and applicability of our approach
as a general methodology to streamify existing pattern
discovery algorithms.

+ We demonstrate successful applications in neuroscience
and telecommunications log analysis, and illustrate sig-
nificant benefits in runtime, memory usage, and the scales
of data that can be mined. We compare against episode-
mining adaptations of two typical algorithms [5] from
streaming itemsets literature.

II. PRELIMINARIES

In the framework of frequent episodes [3], an event se-
quence is denoted as ((e1,71),...,(€n, 7)), where (e;,7;)
represents the i*"' event; e; is drawn from a finite alphabet £
of symbols (called event-types) and 7; denotes the time-stamp
of the ' event, with 7;,1 > 75,4 = 1,...,(n — 1). An /-
node episode o is defined by a triple o = (V,,, <a, ga ), Where
Vo = {v1,...,v¢} is a collection of ¢ nodes, <, is a partial
order over V,, and g, : V, — £ is a map that assigns an event-
type go(v) to each node v € V,,. An occurrence of an episode
aisamaph: Vo — {1,...,n} such that e (,) = go(v) forall
v € V, and for all pairs of nodes v, v’ € V,, such that v <, v’
the map h ensures that 7j,(,) < Tj(,). TWO occurrences of
an episode are non-overlapped [8] if no event corresponding
to one appears in-between the events corresponding to the
other. The maximum number of non-overlapped occurrences
of an episode is defined as its frequency in the event sequence.
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Fig. 1. A sliding window model for episode mining over event streams: By
is the most recent batch of events that arrived in the stream and Wy is the
window of interest over which the user wants to determine the set of frequent
episodes.

The task in frequent episode discovery is to find all episodes
whose frequency exceeds a user-defined threshold. Apriori-
style level-wise algorithms [3], [8] are typically applicable
in this setting. An important variant is top-k episode mining
(see [9] for definitions in the itemsets mining context), where,
rather than a frequency threshold, the user supplies the number
of most frequent episodes needed.

Definition 1 (Top-k episodes of size £): The set of top-k

episodes of size ¢ is defined as the collection of all /-node
episodes with frequency greater than or equal to the frequency
f* of the k" most frequent ¢-node episode in the given event
sequence.
The number of top-k ¢-node episodes can exceed k, although
the number of /-node episodes with frequencies strictly greater
than f* is at most (k — 1). In general, top-k mining can be
difficult to solve without knowledge of a good lower-bound for
f*: for relatively short event sequences the following simple
solution works well-enough: start mining at a high threshold
and progressively lower the threshold until the desired number
of top patterns are returned.

III. PROBLEM STATEMENT

The data available (referred to as an event stream) is in the
form of a potentially infinite sequence of events:

S (lns )y (1)

Our goal is to find all episodes that were frequent in the recent
past; for this, we consider a sliding window model' for the
window of interest. In this model, the user wants to determine
episodes that were frequent over a (historical) window of
fixed-size terminating at the current time-tick. As new events
arrive in the stream, the user’s window of interest shifts, and
the data mining task is to next report the frequent episodes in
the new window of interest.

We consider the case where the window of interest is
very large and cannot be stored and processed in-memory.
This straightaway precludes the use of standard multi-pass
algorithms for frequent episode discovery over the window
of interest. We organize the events in the stream into smaller
batches such that at any given time only the latest incoming
batch is stored and processed in memory. This is illustrated in
Fig. 1. The current window of interest is denoted by W, and
the most recent batch, B, consists of events in D that occurred
between times (s — 1)T}, and sT;, where T}, is the time-span
of each batch and s is the batch number (s =1,2,...) .

D= ((61,7’1), (62,7’2), ceey (ei,Ti), ..

10ther models such as the landmark and time-fading models have also been
studied [7] but we do not consider them here.
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WXYZ 12 EFGH WXYZ 12 IJKL 11

PQRS 10 IJKL 12 EFGH 10 PQRS 9

ABCD 8 MNOP 10 ABCD 10 MNOP 8

MNOP 8 ABCD 9 MNOP 8 ABCD 8

EFGH 0 PQRS 0 PQRS 0 EFGH 0

IJKL 0 WXYZ 0 IJKL 0 WXYZ 0
B, B, B, B,

Fig. 2. Batch frequencies in Example 1.

TABLE I
WINDOW FREQUENCIES IN Example 1.
[ EplSOde [ ABCD [ MNOP [ EFGH [ WXYZ [ UKL [ PQRS ]
[ Window Freq [ 35 [ 34 [ 25 [ 24 [ 23 [ 19 ]

The frequency of an episode « in a batch B; is referred to
as its batch frequency f*(a). The current window of interest,
Wy, consists of m consecutive batches ending in batch B,
ie.

Ws = <Bsfm+1> Bs—m+27 T BS> @

Definition 2 (Window Frequency): The frequency of an
episode « over window W, referred to as its window fre-
quency and denoted by f"s(a), is defined as the sum of
batch frequencies of « in W. Thus, if fj(a) denotes the
batch frequency of « in batch B;, then the window frequency
of a is given by fWs(a) = Yopew, f(a).

In summary, we are given an event stream (D), a time-span for
batches (7}), the number of consecutive batches that constitute
the current window of interest (1m), the desired size of frequent
episodes (¢), the desired number of most frequent episodes (k)
and the problem is to discover the top-k episodes in the current
window without actually having the entire window in memory.

Problem 1 (Streaming Top-k Mining): For each new batch,
B, of events in the stream, find all /-node episodes in
the corresponding window of interest, W,, whose window
frequencies are greater than or equal to the window frequency,

% of k' most frequent ¢-node episode in Wi.

Example 1 (Window Top-k v/s Batch Top-k): Let W be a
window of four batches B; through By. The episodes in each
batch with corresponding batch frequencies are listed in Fig. 2.
The corresponding window frequencies (sum of each episodes’
batch frequencies) are listed in Table 1. The top-2 episodes
in By are (PQRS) and (WXYZ). Similarly (EFGH) and
(IJKL) are the top-2 episodes in B, and so on. (ABCD)
and (MNOP) have the highest window frequencies but never
appear in the top-2 of any batch — these episodes would ‘fly
below the radar’ and go undetected if we considered only
the top-2 episodes in every batch as candidates for the top-2
episodes over W. This example can be easily generalized to
any number of batches and any k.

Example 1 highlights the main challenge in the streaming
top-k mining problem: we can only store/process the most
recent batch of events in the window of interest and the
batchwise top-k may not contain sufficient information to
compute the top-k over the entire window. It is obviously not
possible to track all episodes (both frequent and infrequent)
in every batch since the pattern space is typically very large.
This brings us to the question of which episodes to track in



every batch — how deep must we search within each batch for
episodes that have potential to become top-k over the window?
We develop the formalism needed to answer this question.

IV. PERSISTENCE AND TOP-k APPROXIMATION

We identify two important properties of the underlying
event stream which influence the design and analysis of our
algorithms. These are stated in Definitions 3 & 4 below.

Definition 3 (Maximum Rate of Change, A): Maximum
rate of change A(> 0) is defined as the maximum change
in batch frequency of any episode, «, across any pair of
consecutive batches, B, and B, 1, i.e., Va, s, we have

115 (@) — ()] < A (3)

Intuitively, A controls the extent of change from one batch
to the next. While it is trivially bounded by the number of
events arriving per batch, it is often much smaller in-practice.

Definition 4 (Top-k Separation of (¢,€)): A batch By of
events is said to have a top-k separation of (¢,€), ¢ > 0,
e > 0, if it contains at most (1 + €)k episodes with batch
frequencies of (ff — @A) or more, where f; is the batch
frequency of the k*" most-frequent episode in B, and A is
the maximum rate of change.

This is essentially a measure of how well-separated the
frequencies of the top-k episodes are relative to the rest of
the episodes. We expect to see roughly %k episodes with batch
frequencies of at least f* and the separation is considered
to be high (or good) if lowering the threshold from f* to
(fe — @A) only brings-in very few additional episodes, i.e. €
remains small as ¢ increases. Top-k separation of any batch
B; is characterized by, not one but, several pairs of (i, ¢)
since ¢ and e are functionally related: € is typically close to
zero if ¢ = 0, while we have ek roughly the size of the class
of /-size episodes (minus k) if A > fF. Note that ¢ is a non-
decreasing function of ¢ and that top-k separation is measured
relative to the maximum rate of change A.

We now use the maximum rate of change property to design
efficient streaming algorithms for top-k episode mining and
show that top-k separation plays a pivotal role in determining
the quality of approximation that our algorithms achieve.

Lemma 1: The batch frequencies of the k" most-frequent
episodes in any pair of consecutive batches cannot differ by
more than the maximum rate of change A, i.e., for every batch
B, we must have

it = f <A (4)

The above lemma follows directly from: (i) there are at least
k episodes with frequencies no less than f;, and (ii) the batch
frequency of any episode can increase or decrease by no more
than A when going from one batch to the next.

Our next observation is that if the batch frequency of an
episode is known relative to f; in the current batch B, we
can bound its frequency in any later batch By,.,..

Lemma 2: Consider two batches, B, and Bsi,, r € Z,
located r batches away from each other. Under a maximum

rate of change of A the batch frequency of any episode « in
B, must satisfy the following:

D) If f5(er) > fi, then [ (a) > frt" —2|r|A

2) If f*(@) < fi, then f*7"(a) < fit" +2/7|A

Detailed proofs can be found in [10]. Lemma 2 gives us
a way to track episodes that have potential to be in the top-
k of future batches. This is an important property which our
algorithm exploits and we recorded this as a remark below.

Remark 1: The top-k episodes of batch, Bsy., r € Z,
must have batch frequencies of at least (f7 — 2|r|A) in batch
B;. Specifically, the top-k episodes of By, 1 must have batch
frequencies of at least (f7 — 2A) in Bs.

The maximum rate of change property leads to a necessary
condition, in the form of a minimum batch-wise frequency,
for an episode « to be in the top-k over a window Wj.

Theorem 1 (Exact Top-k over Wy): An episode, «, can be
a top-k episode over window W only if its batch frequencies
satisfy f* (o) > (f —2(m — 1)A) VB, € W,.

Proof: Consider an episode 3 for which %' (8) < (ff —
2(m — 1)A) in batch By € W;. Let a be any top-k episode
of By. In any other batch B, € W, we have

)= f (@) = p—s'|A

> fi —lp—5|A 5)
and
P8) < 7 (B) +1p — 5'A
<(ff —2(m—=1)A) +|p—¢|A ©)
Applying |p — s'| < (m — 1) to the above, we get
fP(@) > fi = (m—1)A > f7(8) (7)

This implies fY+(3) < fW:(«) for every top-k episode v of
B, . Since there are at least & top-k episodes in By, 8 cannot
be a top-k episode over the window Wi. [ ]

Based on Theorem 1 we have the following simple algo-
rithm for obtaining the top-k episodes over a window: Use
a traditional level-wise approach to find all episodes with a
batch frequency of at least (ff — 2(m — 1)A) in the first
batch (B1), accumulate their corresponding batch frequencies
over all m batches of W, and report the episodes with the
k highest window frequencies over W;. This approach is
guaranteed to return the exact top-k episodes over Wi. In
order to report the top-k over the next sliding window Wy 1,
we need to consider all episodes with batch frequency of at
least (f¥ —2(m — 1)A) in the second batch and track them
over all batches of W, 1, and so on. Thus, an exact solution to
Problem 1 would require running a level-wise episode mining
algorithm in every batch, B,, s = 1,2,..., with a frequency
threshold of (f* —2(m —1)A).

A. Class of (v, k)-Persistent Episodes

Theorem 1 characterizes the minimum batchwise compu-
tation needed in order to obtain the exact top-k episodes
over a sliding window. This is effective when A and m are
small (compared to f¥). However, the batchwise frequency



thresholds can become very low in other settings, making the
processing time per-batch as well as the number of episodes
to track over the window to become impractically high. To
address this issue, we introduce a new class of episodes called
(v, k)-persistent episodes which can be computed efficiently
by employing higher batchwise thresholds. Further, we show
that these episodes can be used to approximate the true top-k
episodes over the window and the quality of approximation
is characterized in terms of the top-k separation property
(cf. Definition 4).

Definition 5 ((v, k)-Persistent Episode): An episode is said
to be (v, k)-persistent over window W if it is a top-k episode
in at least v batches of Wj.

Problem 2 (Mining (v, k)-Persistent Episodes): For each
new batch, B,, of events in the stream, find all ¢-node
(v, k)-persistent episodes in the corresponding window of
interest, W.

Theorem 2: An episode, «, can be (v, k)-persistent over the
window W, only if its batch frequencies satisfy f* (a) >
(ff" = 2(m — v)A) for every batch By € W,

Proof: Let o be (v, k)-persistent over W, and let V,
denote the set of batches in Wy in which « is in the top-
k. For any B, ¢ V, there exists By, € Vi that is nearest
to By. Since |V, | > v, we must have |p(q) — ¢| < (m — v).
Applying Lemma 2 we then get f9(a) > f —2(m —v)A for
all By ¢ V,. |
Theorem 2 gives us the necessary conditions for computing all
(v, k)-persistent episodes over sliding windows in the stream.
The batchwise threshold required for (v, k)-persistent episodes
depends on the parameter v. For v = 1, the threshold coincides
with the threshold for exact top-k in Theorem 1. The threshold
increases linearly with v and is highest at v = m (when the
batchwise threshold is same as the corresponding batchwise
top-k frequency).

The algorithm for discovering (v, k)-persistent episodes
follows the same general lines as the one described earlier for
exact top-k mining, only that we now apply higher batchwise
thresholds: For each new batch, Bg, entering the stream, use
a standard level-wise episode mining algorithm to find all
episodes with batch frequency of at least (¥ —2(m—v)A). We
provide more details of our algorithm later in Sec. V. First, we
investigate the quality of approximation of top-k that (v, k)-
persistent episodes offer and show that the number of errors
is closely related to the degree of top-k separation.

1) Top-k Approximation: The main idea here is that, under
a maximum rate of change A and a top-k separation of (¢, €),
there cannot be too many distinct episodes which are not
(v, k)-persistent while still having sufficiently high window
frequencies. To this end, we first compute a lower-bound ()
on the window frequencies of (v, k)-persistent episodes and
an upper-bound (fy7) on the window frequencies of episodes
that are not (v, k)-persistent (cf. Lemmas 3 & 4).

Lemma 3: If episode « is (v, k)-persistent over a window,
W, then its window frequency, fWS(a), must satisfy the

following lower-bound:

@) 23— m—v)m—v+ DAL f (8)
B/

Proof: Consider episode « that is (v, k)-persistent over
W, and let V,, denote the batches of W, in which « is in the
top-k. The window frequency of a can be written as

M) = > o)+ D i)
ByeV, ByeW\Va
> >+ >, -2 —dA
ByEV, By eW\Va
= Y K- ) 2@-da ©
B €W, By €W \V,

where Bp(,) € V,, denotes the batch nearest B, where « is in
the top-k. Since |W; \ V| < (m — v), we must have

Yo @ -d < (Q+2+- 4 (m-v))
B WV,
1
= i(m —v)im—v+1) (10)
Putting together (9) and (10) gives us the lemma. |

Similar arguments give us the next lemma about the maximum
frequency of episodes that are not (v, k)-persistent (Full proofs
are available in [10]).

Lemma 4: If episode § is not (v, k)-persistent over a win-
dow, W, then its window frequency, f"=(/3), must satisfy the
following upper-bound:

B <D v+ DAE fy (11)
BSI

It turns out that fy > fr Vv, 1 < v < m, and hence there
is always a possibility for some episodes which are not (v, k)-
persistent to end up with higher window frequencies than
one or more (v, k)-persistent episodes. We observed a specific
instance of this kind of ‘mixing’ in our motivating example as
well (cf. Example I). This brings us to the top-k separation
property that we introduced in Definition 4. Intuitively, if there
is sufficient separation of the top-k episodes from the rest
of the episodes in every batch, then we would expect to see
very little mixing. As we shall see, this separation need not
occur exactly at k*" most-frequent episode in every batch,
somewhere close to it is sufficient to achieve a good top-k
approximation.

Definition 6 (Band Gap Episodes, G,): In any batch By €
Wi, the half-open frequency interval [f% — oA, fk) is called
the band gap of B,:. The corresponding set, G, of band gap
episodes over the window Wy, is defined as the collection of
all episodes with batch frequencies in the band gap of at least
one By € W.

The main feature of G, is that, if ¢ is large-enough, then
the only episodes which are not (v, k)-persistent but that can
still mix with (v, k)-persistent episodes are those belonging



to G,. This is stated formally in the next lemma. The proof,
omitted here, can be found in [10].

Lemma 5: If £ > max{l,(1 — 2Z)(m — v + 1)}, then

any episode [ that is not (v, k)-persistent over W, can have
f(B) > fr only if B € G,.
The number of episodes in G, is controlled by the top-
k separation property, and since many of the non-persistent
episodes which can mix with persistent ones must spend not
one, but several batches in the band gap, the number of unique
episodes that can cause such errors is bounded. Theorem 3
is our main result about quality of top-k approximation that
(v, k)-persistence can achieve.

Theorem 3 (Quality of Top-k Approximation): Let every
batch By € W, have a top-k separation of (g, e) with
2 > max{l,(1 — %)(m — v + 1)}. Let P denote the
set of all (v, k)-persistent episodes over Ws. If |P| > k,

then the top-k episodes over W, can be determined from

P with an error of no more than [ €&

p=min{m—v+1,£ 1(/T+2mp - 1)}

Proof: By top-k separation, we have a maximum of (1+
€)k episodes in any batch By € Wy, with batch frequencies
greater than or equal to f% — pA. Since at least k of these
must belong to the top-k of the By, there are no more than
ek episodes that can belong to the band gap of B,. Thus,
there can be no more than a total of ekm episodes over all m
batches of W that can belong to G.

Consider any 3 ¢ P with f"s(B) > fr — these are the
only episodes whose window frequencies can exceed that of
any a € P (since fr is the minimum window frequency of
any «). If u denotes the minimum number of batches in which
[ belongs to the band gap, then there can be at most (%)
such distinct 3. Thus, if |P| > k, we can determine the set
of top-k episodes over W, with error no more than (f:”)
episodes.

There are now two cases to consider to determine pu: (i) 3
is in the top-k of some batch, and (ii) 3 is not in the top-k of
any batch.

Case (i): Let 8 be in the top-k of By, € W. Let By € W
be t batches away from B,/. Using Lemma 2 we get f S”(6) >

k, — 2¢tA. The minimum ¢ for which (fk, — 2tA < fF —
@A) is (£). Since 3 ¢ P, 3 is below the top-k in at least
(m—wv+1) batches. Hence /3 stays in the band gap of at least
min{m — v + 1, £} batches of Wi.

Case (ii): Let Vg denote the set of batches in W, where 3
lies in the band gap and let |Vz| = g. Since 3 does not belong
to top-k of any batch, it must stay below the band gap in all
the (m — g) batches of (W, \ V). Since A is the maximum
rate of change, the window frequency of 5 can be written as
follows:

episodes, where

B = > B+ D> FUB)

B,€Ve B,eW\Ve
< DB+ D, (F-es) 12
ByeVg B,eW\Vg

Let By, denote the batch in W, \ Vi that is nearest to B, €
Ve. Then we have:

f£B) < f1PB) +|p—alp)A
< [ —PA+p—d(p)A
< fy—eA+2lp—q(p)|A (13)

where the second inequality holds because (3 is below the band
gap in Bg,) and (13) follows from Lemma I. Using (13) in
(12) we get

B < > fh-mea+ Y 2p—qh)|A
B, EW, B,eVa
< > fh-meA+2042+4-+g)A
B, EW,
= > fE-meA+g(g+1)A=TUB (14)
BSIEWS

The smallest g for which (f"=(B) > fr) is feasible can be
obtained by setting UB > fr. Since £ > (1— %)(m—v+1),
UB > fr, implies

Z & —meA+glg+1)A >
B, eW,

Solving for g, we get g > 3 (/T + 2mp—1). Combining cases
(i) and (i), we get p = min{m—v+1, ¥, %(\/1 +2mp—1)}.
|

Theorem 3 shows the relationship between the extent of top-
k separation required and quality of top-k approximation that
can be obtained through (v, k)-persistent episodes. In general,
1 (which is minimum of three factors) increases with % until
the latter starts to dominate the other two factors, namely,
(m—v+1) and (/T + 2mep—1). The theorem also brings out
the tension between the persistence parameter v and the quality
of approximation. At smaller values of v, the algorithm mines
‘deeper’ within each batch and so we expect fewer errors with
respect to the true top-k epispodes. On the other hand, deeper
mining within batches is computationally more intensive, with
the required effort approaching that of exact top-k mining as
v approaches 1.

Finally, we use Theorem 3 to derive error-bounds for three
special cases; first for v = 1, when the batchwise threshold
is same as that for exact top-k mining as per Theorem I;
second for v = m, when the batchwise threshold is simply the
batch frequency of the k' most-frequent episode in the batch;
and third, for v = LmT'HJ , when the batchwise threshold lies
midway between the thresholds of the first two cases. (Proofs
are detailed in [10]).

Corollary 1: Let every batch By, € W, have a top-k
separation of (¢, €) and let W, contain at least m > 2 batches.
Let P denote the set of all (v, k)-persistent episodes over Wj.
If we have |P| > k, then the maximum error-rate in the top-k
episodes derived from P, for three different choices of v, is
given by:

) (2 forv=1,if £> (m—1)

2) (ekm) for v =m,if £ >1

Z fk,_LM

2
B, eW,
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Fig. 3. The set of frequent episodes can be incrementally updated as new
batches arrive.

3 (k) forv = [=E]if £ > L [25L] [252]

Using v = 1 we make roughly ek errors by considering
only persistent episodes for the final output, while the same
batchwise threshold can give us the exact top-k as per Theo-
rem 1. On the other hand, at v = m, the batchwise thresholds
are higher (the algorithm will run faster) but the number of
errors grows linearly with m. Note that the (¢, €)-separation
needed for v = 1 is much higher than for v = m. The case
of v = [’”T“] lies in-between, with roughly 4ek errors under
reasonable separation conditions.

V. ALGORITHM

In this section we present an efficient algorithm for incre-
mentally mining episodes with frequency at least (f7 — 0)
in batch B,, for each batch in the stream. The threshold
parameter 6 is set to 2(m — v)A for mining (v, k)-persistent
episodes (see Theorem 2) and to 2(m — 1)A for exact top-k
mining (see Theorem 1I).

A trivial (brute-force) algorithm to find all episodes with
frequency greater than (f7 — 6) in B; is as follows: Apply
an Apriori-based episode mining algorithm (e.g. [3], [8]) on
batch Bg. If the number of episodes of size-{ is less than £,
the support threshold is decreased and the mining repeated
until at least k {-size episodes are found. At this point f; is
known. The mining process is then repeated once more with
the frequency threshold (f; — ). Doing this entire procedure
for every new batch is expensive and wasteful. After seeing
the first batch of the data, whenever a new batch arrives we
have information about the episodes that were frequent in the
previous batch. This can be exploited to incrementally and
efficiently update the set of frequent episodes in the new batch.
The intuition is that the frequencies of most episodes do not
change much from one batch to the next. As a result only a
small number of previously frequent episodes fall below the
new support threshold in the new batch; similarly, some new
episodes may become frequent. This is illustrated in Figure 3.
In order to efficiently find these sets of episodes, we need to
maintain additional information that allows us to avoid full-
blown candidate generation in each batch. We show that this
state information is a by-product of an Apriori-based algorithm
and therefore any extra processing is unnecessary.

Frequent episodes are discovered level-wise, in ascending
order of episode-size. An Apriori procedure alternates between
counting and candidate generation. First a set C* of candidate

i-size episodes is determined by combining frequent (i — 1)-
size episodes from the previous level. Then the data is scanned
for determining frequencies of the candidates, from which
the frequent i-size episodes are obtained. We note that all
candidate episodes that are not frequent constitute the negative
border of the frequent lattice [11]. This is because, a candidate
is generated only when all its subepisodes are frequent. The
usual approach is to discard the border. For our purposes, the
border contains information required to identify changes in the
frequent episodes from one batch to the next?.

The pseudocode for incrementally mining frequent episodes
in batches is listed in Algorithm 1. The inputs to the algorithm
are: (i) Number k of top episodes desired, (ii) New incoming
batch B of events in the stream, (iii) Lattice of frequent
(FZ_,) and border episodes (B;_;) from previous batch, and
(iv) threshold parameter 6. Frequent and border episodes of
size-i, with respect to frequency threshold f;; — 0, are denoted
by the sets F! and B respectively (F: and B: denote the
corresponding sets for all episode sizes).

For the first batch B; (lines 1-3) the top-k episodes are
found by a brute-force method, i.e., by mining with a pro-
gressively lower frequency threshold until at least &k episodes
of size ¢ are found. Once f] is determined, F; and B are
obtained using an Apriori procedure.

For subsequent batches, we do not need a brute-force
method to determine f;. Based on Remark 1, if 6 > 2A,
F* | from batch B,_; contains every potential top-k episode
of the next batch Bg. Therefore simply updating the counts of
all episodes in F*_; in the new batch B, and picking the k*"
highest frequency gives f; (lines 4-6). To update the lattice
of frequent and border episodes (lines 7-24) the procedure
starts from the bottom (size-1 episodes). The data is scanned
to determine the frequency of new candidates together with
the frequent and border episodes from the lattice (line 11). In
the first level (episodes of size 1), the candidate set is empty.
After counting, the episodes from F*_; that continue to be
frequent in the new batch are added to ]-"f (lines 13-14). But
if an episode is no longer frequent it is marked as a border
set and all its super episodes are deleted (lines 15-17). This
ensures that only border episodes are retained in the lattice. In
the border and new candidate sets, any episode that is found to
be frequent is added to both F! and 7., (lines 18-21). The
remaining infrequent episodes belong to the border because,
otherwise, they would have at least one infrequent subepisode
and would have been deleted at a previous level; hence, these
infrequent episodes are added to Bﬁ (lines 22-23).

Finally, the candidate generation step (line 24) is required
to fill out the missing parts of the frequent lattice. We want
to avoid a full blown candidate generation. Note that if an
episode is frequent in B;_; and B, then all its subepisodes
are also frequent in both B, and Bs;_;. Any new episode
(¢ Ff_, U B’ ) that turns frequent in B, therefore, must
have at least one subepisode that was not frequent in Bs_1

2Border sets were employed by [11] for efficient mining of dynamic
databases. Multiple passes over older data are needed for any new frequent
itemsets, which is not feasible in a streaming context.



Algorithm 1 Persistent episode miner: Mine top-k v-persistent
episodes.
Input: Number k of top episodes; New batch B, of events;

Current lattice of frequent & border episodes (F;_q,Bi_1);
Threshold parameter 6 (set to 2(m —v)A for (v, k)-persistence,
2(m — 1)A for exact top-k)
Output: Lattice of frequent and border episodes (F3, B:) after Bs
1: if s =1 then
2:  Determine fi (brute force)
3 Compute (F;,B}) + Apriori(Bi, 4, fi —6)
4: else
5:  CountFrequency(F:_,, B;)
6:  Determine f; (based on episodes in F*_;)
7
8

Initialize C* < ¢ (new candidates of size 1)

fori<1,...,0do

9: Initialize F, < ¢, B; + ¢

10: Initialize F,.,, < ¢ (new frequent episodes of size 7)
11: CountFrequency(F,_; UB;_, UC", Bs)

12: for a € F._, do

13: if f*(a) > fi — 6 then

14: Update F: < F: U {a}

15: else ‘

16: Update B: + B: U {a}

17: Delete super-episodes of o from (F;_q,B5_1)
18: for o € B;_1 UC" do

19: if f°(a) > fi — 0 then

20: Update F; < F, U {a}
21: Update Fp e < Frew U {a}

22: else ‘ ,
23: Update B + B: U {a}

24: C't' < GenerateCandidate(F...,,, F)

25: return (F;,B})

but is frequent in B,. All such episodes are listed in F_, .
Hence the candidate generation step (line 24) for the next
level generates only candidates with atleast one subepisode
€ Fi..- This reduces the number of candidates generated at
each level without compromising completeness of the results.
The space and time complexity of candidate generation is
now O(|F:.,|.|Fi]) instead of O(|F%|?) and in most practical
cases |F! . | < |F¢|. Later in the experiments section, we
show how border-sets help our algorithm run very fast.

For a window W, ending in the batch Bg, the set of output
episodes can be obtained by picking the top-k most frequent
episodes from the set F*. Each episode also maintains a list
that stores its batch-wise counts is last m batches. The window
frequency is obtained by adding these entries together. The
output episodes are listed in decreasing order of their window
counts.

Example 2: In this example we illustrate the procedure for
incrementally updating the frequent episodes lattice as a new
batch By is processed (see Figure 4).

Figure 4(A) shows the lattice of frequent and border
episodes found in the batch B,_; (The figure does not show all
the subepisodes at each level, only some of them). ABC'D is a
4-size frequent episode in the lattice. In the new batch B;, the
episode ABCD is no longer frequent. The episode CDXY
appears as a new frequent episode. The episode lattice in B
is shown in Figure 4(B).

In the new batch B, AB falls out of the frequent set. AB

Level: 4
1
Level: 3 [aBc] [Bep] &

[enX] Border sets

Fig. 4. Incremental lattice update for the next batch B given the lattice of
frequent and border episodes in Bs_1.

now becomes the new border and all its super-episodes namely
ABC, BCD and ABCD are deleted from the lattice.

At level 2, the border episode XY turns frequent in Bj.
This allows us to generate DXY as a new 3-size candidate.
At level 3, DXY is also found to be frequent and is combined
with C DX which is also frequent in B to generate CDXY
as a 4-size candidate. Finally at level 4, CDXY is found to
be frequent. This shows that border sets can be used to fill
out the parts of the episode lattice that become frequent in the
new data.

VI. RESULTS
A. Experimental Setup

We show experimental results on one synthetic and two real
data streams, from two very different domains: experimental
neuroscience and telecom networks. In neuroscience, we con-
sider (1) synthetic neuronal spike-trains based on mathematical
models of interconnected neurons, with each neuron mod-
eled as an inhomogeneous Poisson process [8], and (2) real
neuronal spiking activity from dissociated cortical cultures,
recorded using multi-electrode arrays at Steve Potter’s lab,
Georgia Tech [12]. The third kind of data we consider are
call data records from a large European telecom network. Each
record describes whether the associated call was voice or data,
an international or local call, in-network or out-of-network,
and of long or short duration. Pattern discovery over such
data can uncover hidden, previously unknown, trends in usage
patterns, evolving risk of customer churn, etc. . The data length
in terms of number of events and the alphabet size of each of
these datasets is shown in Table II(a). Table II(b) gives the list
of parameters and the values used in experiments that we do
not explicitly mention in the text.

As mentioned earlier, we are not aware of any streaming
algorithms that directly address top-k episode mining over
sliding windows of data. For our experiments, we compare
persistent episode miner against two methods from itemsets
mining literature [5] (after adapting them for episodes): one
that fixes batchwise thresholds based on Chernoff-bounds
under an iid assumption over the event stream, and the second
based on a sliding window version of the Lossy Counting



TABLE II
EXPERIMENTAL SETUP.
(a) Datasets used in the experiments.

Dataset ~ Alphabet-size ~ Data-length
Call-logs 8 42,030,149
Neuroscience 58 12,070,634
Synthetic 515 25,295,474
(b) Parameter set-up.
Parameter Value
k (in Top-k episodes) 25
Number of batches in a window, m 10
Batch-size (as number of events) 106
Error parameter (applicable to Chernoff-based  0.001
and Lossy counting methods)
Parameter v (applicable to Persistence miner)  m/2

algorithm [4]. We modify the support threshold computation
using chernoff bound for episodes since the total number
of distinct itemsets is bounded by the size of the largest
transaction while for episodes it is the alphabet size that
determines this.

Estimating A dynamically: A is a critical parameter for our
persistent episode miner. But unfortunately the choice of the
correct value is highly data-dependent and the characteristics
of the data can change over time. One predetermined value
of A cannot be provided in any intuitive way. Therefore
we estimate A from the frequencies of ¢-size episodes in
consecutive batches by computing the change in frequency
of episodes and using the 75" percentile as the estimate. We
avoid using the maximum change as it tends to be noisy.

B. Quality of top-k mining

We present aggregate comparisons of the three competing
methods in Table III. These datasets provide different levels
of difficulty for the mining algorithms. Tables III(a) & III(c)
shows high f-scores® for the synthetic and real neuroscience
data for all methods (Our method performs best in both
cases). On the other hand we find that all methods report
very low f-scores on the call-logs data (see Table III(b)).
The characteristics of this data does not allow one to infer
window top-k from batches (using limited computation). But
our proposed method nearly doubles the f-score with identical
memory and CPU usage on this real dataset. It may be
noteworthy to mention that the competing methods reported
close to 100% accuracies but they do not perform that well
on more realistic datasets. In case of the synthetic data (see
Table III(c) the characteristics are very similar to that of the
neuroscience dataset.

C. Computation efficiency comparisons

Table III shows that we do better than both competing
methods in most cases (and never significantly worse than
either) with respect to time and memory.

precision-recall

3 —=9.
fscore = 2 precision+recall

TABLE III
AGGREGATE PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS.
(a) Dataset: Neuroscience, Size of episodes = 4

Top-k Miner F Score Runtime (sec) Memory (MB)
Chernoff-bound based 92.0 456.0 251.39
Lossy-counting based 92.0 208.25 158.5
Persistent episode 97.23 217.64 64.51

(b) Dataset: Call-logs, Size of episodes = 6
Top-k Miner F Score Runtime (sec) Memory (MB)
Chernoff-bound based 32.17 11.87 66.14
Lossy-counting based 24.18 3.29 56.87
Persistent episode 49.47 3.34 67.7

(c) Dataset: Synthetic data, Size of episodes = 4

Top-k Miner F Score Runtime (sec) Memory (MB)
Chernoff-bound based 92.7 14.91 43.1
Lossy-counting based 92.7 6.96 32.0
Persistent episode 96.2 4.98 34.43

1) Effect of parameters on performance: In Figure 5, we
see all three methods outperform the reference method (the
standard multi-pass apriori based miner) by at least an order
of magnitude in terms of both run-times and memory.

In Figure 5(a)-(c), we show the effect of increasing & on all
the methods. The accuracy of Lossy-counting algorithm drops
with increase in k, while that of Chernoff based method and
Persistence miner remain unchanged. Persistence miner has
lower runtimes for all choices of £ while having comparable
memory footprint as the other two methods.

With increasing window-size (m = 5,10, 15 and batch —
size = 100 events), we observe better f-scores for Persistence
miner but this increase is not significant enough and can be
caused by data characterisitcs alone. The runtimes and memory
of Persistence miner remain nearly constant. This is important
for streaming algorithms as the runtimes and memory of the
standard multi-pass algorithm increases (roughly) linearly with
window size.

2) Utility of Border Sets: For episodes with slowly chang-
ing frequency we show in Section V that using border-
sets to incrementally update the frequent episodes lattice
results in an order complexity of O(|F.,,|-|F¢|) instead of
O(|F%?) for candidate generation and in most practical cases
|Fi..,| < |Fi|. Table IV demonstrates the speed-up in runtime
achieved by using border-set. We implemented two versions
of our Persistence miner. In one we utilize border-sets to
incrementally update the lattice where as in other we rebuild
the frequent lattice from scratch in every new batch. The
same batch-wise frequency thresholds used as dictated by
Theorem 2. We run the experiment on our call-logs dataset
and for various parameter settings of our algorithm we observe
a speed-up of ~ 4x resulting from use of border-sets.

D. Adapting to Dynamic data

In this experiment we show that Persistence miner adapts
faster than the competing algorithms to changes in underly-
ing data characteristics. We demonstrate this using synthetic
data generated using the multi-neuronal simulator based [8].
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TABLE IV
UTILITY OF BORDER SET.

(a) Dataset: Call-logs, Size of episodes = 6, Parameter v = m/2

Window  Runtime Runtime (no  Memory Memory (no
size (border-set)  border-set) (border-set)  border-set)

5 2.48 12.95 67.55 66.21

10 3.13 11.41 67.7 66.67

15 3.47 13.76 67.82 67.02

(b) Dataset: Call-logs, Size of episodes = 6, window size m = 10

Parameter Runtime Runtime (no  Memory Memory (no
v (border-set)  border-set) (border-set)  border-set)

0 2.78 11.98 67.7 66.67

5 3.13 11.41 67.7 66.67

10 3.21 10.85 67.69 57.5

The simulation model was adapted to update the connection
strengths dymanically while generating synthetic data. This
allowed us to change the top-k episodes slowly over the
length of simulated data. We embedded 25 randomly picked
patterns with time-varying arrival rates. Figure 6(a) shows
the performance of the different methods in terms of f-score
computed after arrival of each new batch of events but for top-
k episodes in the window. The ground truth is again the output
of the standard multi-pass apriori algorithm that is allowed
access to the entire window of events. The f-score curves of the
both the competing methods almost always below that of the
Persistence miner. While the runtimes for Persistence miner
are always lower than those of the competing methods (see
Figure 6(b). Lossy counting based methods is the slowest at
error parameter set to 0.0001.

The main reason of better tracking in the case of Persistence
miner is that the output of the algorithm filters out all non-
(v, k) persistent episodes. This acts in favor of Persistence
miner as the patterns most likely to gather sufficient support

10
Window size (m batches)

(e) Runtime vs. m

Window sizd {m batches)

(f) Memory vs. m

Performance with different parameters (Dataset: Call logs)

to be in the top-k are also likely to be persistent. The use of
border-sets in Persistence miner explains the lower runtimes.
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dynamically changing event stream (Parameters used: k = 25, m =
Persistence miner: v=0.5, alg 6,7: error = 1.0e-4)
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E. Correlation of f-score with theoretical error

Can we compute theoretical errors (data-dependent quan-
tity) and guess how well we perform? This could be invaluable
in a real-world streaming data setting.

In this experiment we try to establish the usefulness of the
theoretical analysis proposed in the paper. The main power of
the theory is to predict the error in the output set at the end of
each batch. Unlike other methods we compute the error bounds



using the data characteristics and is dynamically updated as
new data arrives. The error guarantees of both Lossy counting
and Chernoff based methods are static.

In Figure 7, we plot the error bound using Theorem 3 and
the f-score computed with respect to the reference method
(standard multi-pass apriori) in a 2D histogram. According
to the theory different pairs of (¢, ¢) output a different error
bound in every batch. In our experiment we pick the smallest
error bound in the alloable range of ¢ and corresponding e
in each batch and plot it with the corresponding f-score. The
histogram is expected to show negative correlation between
f-score and our error predicted error bound i.e. the predicted
error for high-f-score top-k results should be low and vise
versa. The correlation is not very evident in the plot. The
histogram shows higher density in the left top part of the
plot, which is a mild indication that high f-score has a
corresponding low error predicition.
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Fig. 7. 2D Histogram of predicted error vs. f-score. (Dataset: Call logs)

VII. RELATED WORK

The literature for streaming algorithms for pattern discovery
is dominated by techniques from the frequent itemset mining
context [4]-[7], [13]-[17], and we are unaware of any algo-
rithms for episode mining over event streams.

Manku and Motwani [4] proposed the lossy counting Al-
gorithm for approximate frequency counting in the landmark
model (i.e., all events seen until the current-time constitute
the window of interest). One of its main drawbacks is that
the algorithm must essentially operate at a threshold of ¢ to
provide e error guarantees, which is impractical in many real-
world scenarios. Karp et al. [13] also propose a one pass
streaming algorithm for finding frequent items, and these ideas
were extended to itemsets by Jin and Agrawal [16], but all
these methods require even more space than lossy counting.
Mendes et al. [18] extend the pattern growth algorithm (Pre-
fixSpan) [19] for mining sequential patterns to incorporate the
idea of lossy counting. Chang and Lee [15] and Wong and
Fu [5] extend lossy counting to sliding windows and top-
k setting, respectively. New frequency measures for itemsets
over streams have also been proposed (e.g., Calders et al. [6]
Lam et al. [17]) but these methods are heavily specialized
toward the itemset context and it is not obvious how to extend
them to accommodate episodes in a manner that supports both
candidate generation and counting.

VIII. CONCLUSIONS

While episode mining in offline multi-pass scenarios has
been researched [3], [8], this paper is the first to explore ways
of doing both counting and candidate generation efficiently in
a streaming setting. We have presented algorithms that can
operate at as high frequency thresholds as possible and yet
give certain guarantees about frequent output patterns. One
of our directions of future work is to further the idea of
automatic ‘streamification’ of algorithms whereby black-box
mining algorithms that operate in levelwise fashion can ex-
ploit the approximation guarantees and border set efficiencies
introduced here. We also aim to increase the expressiveness
of our episode mining formulation; for instance, by combining
episode mining with itemsets we will be able to mine more
generalized partial order episodes in a stream.
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