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ABSTRACT
In natural language human-machine statistical dialog systems,

semantic interpretation is a key task typically performed following
semantic parsing, and aims to extract canonical meaning represen-
tations of semantic components. In the literature, usually manually
built rules are used for this task, even for implicitly mentioned non-
named semantic components (like genre of a movie or price range of
a restaurant). In this study, we present statistical methods for model-
ing interpretation, which can also benefit from semantic features ex-
tracted from large in-domain knowledge sources. We extract features
from user utterances using a semantic parser and additional semantic
features from textual sources (online reviews, synopses, etc.) using a
novel tree clustering approach, to represent unstructured information
that correspond to implicit semantic components related to targeted
slots in the user’s utterances. We evaluate our models on a virtual
personal assistance system and demonstrate that our interpreter is
effective in that it does not only improve the utterance interpretation
in spoken dialog systems (reducing the interpretation error rate by
36% relative compared to a language model baseline), but also un-
veils hidden semantic units that are otherwise nearly impossible to
extract from purely manual lexical features that are typically used in
utterance interpretation.

Index Terms— semantic interpretation, spoken language under-
standing, graphical models, semi-supervised clustering.

1. INTRODUCTION

In a conversational understanding system, handling implicit and con-
textual information poses major challenges to current approaches for
natural language (NL) utterance interpretation. For example in the
entertainment domain, an utterance such as ’show me albums from
the 80s’ may be interpreted solely based on the semantic frame ’the
80s’, (indicating the feature the album-year) to retrieve albums re-
leased between 1980 and 1990. However, user utterances often con-
tain implied information. Given the utterance ”I wanna watch a
movie that will make me laugh”, a natural language understanding
(NLU) engine, without an extensive knowledge base (KB) or labeled
data, may fail to infer that the user is possibly requesting movies in
the comedy genre. The goal of this paper is to present an utterance
interpreter model, with specific application to utterances in which
the semantic concepts are hidden or implied.

In a typical dialog system [1, 2, 3], a speech recognizer takes
the user’s spoken utterances and converts them into text. A NLU
engine then extracts semantic information from the text, that will be
analyzed by a dialog manager with knowledge of the domain, e.g.,
travel, movies, etc., to determine the next system action. The end-
task is to retrieve and rank relevant information requested by the
user (similar to question answering [4, 5], and summarization [6]).

Sample Dialog:
S1: How can i help you?
U1: I want to watch tv-shows that will cheer me up?
S2: Here are comedy shows playing on cable right now.

Semantic Interpretation Module - SIM
Inputs Utterance: I want to watch tv-shows that

that will cheer me up?
Domain Knowledge : movie synopses
movie reviews, entity lists (movies, actors...)

Features (I) NLU Features:[semantic slots] slot(type)
=’tv-shows’; slot(descr.)=’cheer me up’
(II) Tree Features: (posterior probabilities)
P(U1|genre(’comedy’))
(II) LM Features: (likelihoods)
P(’tv-show’|genre(’comedy’))

Outputs Facet(Genre): comedy, romantic-comedy
Database select* from movies where genre
Query-Q in(’comedy’,’romantic comedy’)

Table 1. Depiction of the Semantic Interpretation Module (SIM) on
an utterance U1 from a sample dialog. The inputs, extracted features
and outputs are attributes for the interpreter engine. Facets are used
as attributes when forming standard queries Q by the domain expert
E.

Mainly hand-crafted rules or large dictionary look-up approaches are
used to map semantic structures to attributes that can be queried in
the database. In this paper, we propose a statistical modeling ap-
proach for learning interpretation rules and patterns. The new ap-
proach outperforms a baseline rule-based approach and is easier to
adapt to other domains.

More specifically, we present a statistical semantic interpreta-
tion model (SIM) that classifies a given utterance into an in-domain
semantic attribute (genre, cuisine), which can then be queried in the
KB. For example, ”I’m in the mood for spicy food tonight” can be
classified as cuisine(indian, chinese). Due to the vast language vari-
ability in NL utterances, feature extraction for the interpretation task
is intrinsically challenging. We initially extract from NL utterances
several semantic components such as named entities (movie-name,
time, or place), or other contextual semantic slots corresponding to
genre, cuisine (’vegetarian’) or nationality, etc. by way of a se-
quence classifier (see Table 1).

Recent research shows that exploiting lexical and semantic fea-
tures in large unstructured text collections (e.g., online reviews,
tweet conversations, blogs) can enhance tasks such as question an-
swering [7], template based information extraction [8, 9], extracting
semantic correspondence [10] as well as extracting facts, events
or records [11], to name a few. In earlier work, several different
probabilistic hierarchical clustering methods are proposed to extract
information from unstructured text. A clustering method is suitable
for our task, not only because the posterior probabilities from differ-
ent classes may directly correspond to attributes that we wish to map
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utterances to, but also because clustering helps to unveil information
hidden in vast amount of unlabeled text. We present a tree clustering
model (extending the previous approaches above by tailoring for
the interpretation task) to extract additional semantic features from
unstructured text.

Our main contributions in this study are (i) construction of a sta-
tistical interpretation model to learn a mapping between a given ut-
terance and a domain-specific attribute, (ii) a tree clustering model to
extract domain specific semantic information from an unstructured
text to unveil implicit semantic information patterns in utterances.
Experiments are given in §4, in which we compare the performance
of SIM to those of well-known probabilistic methods.

2. RELATED WORK AND MOTIVATION

In a dialog model, the NLU component consists of parsing a rec-
ognized spoken utterance into semantic structures and determining
the meaning of its constituents (Table 1). Most work on NLU fo-
cus on issues arising from ambiguities in the lexicon (’book’ can be
noun or phrase), sense (’bank’ has different meanings) and syntactic
structure ambiguity (’a flight to London at 9’ can have two possible
readings). An interpreter engine plays a crucial role in translating the
correct meaning representation from NLU components to generate a
proper database query and retrieve relevant information.

A typical interpreter system is represented as a post-processing
engine that uses expert-defined rules to translate NLU components
into attributes [12, 13] that can be queried (in a database). For ex-
ample, a context-independent normalizer translates extracted slots
(”NY” →”New York”, ”next Friday” →”12/14/2012”) based on
domain-independent KB. In a more recent study, [14] use a re-
scoring strategy to interpret the output of multiple semantic classi-
fiers to extract slots from NL utterances. Their results also include a
rejection decision, but categorizing slot estimates within pre-defined
types is not considered.

We approach interpretation as an utterance classification task to
automatically map utterances onto specific attributes, a.k.a., facet
types. A facet is an attribute of a domain. Existing web-pages,
product descriptions or online collections of articles are usually aug-
mented with navigational facets, e.g., restaurant-type, price-range,
genre, etc. We take ’genre’ facet in movies as a special case of se-
mantic interpretation, though our method is generic enough to be
used for other facets in a domain. The challenge of our task is to
interpret utterances (map an utterance to a facet type) in which facet
type is not always explicitly mentioned but can also be implied. In
’find scary movies’, the token ’scary’ is tagged as movie-genre (by
the semantic tagger), when the only related information in the do-
main knowledge source (i.e., database) is movie genre, the utterance
is mapped to a genre type ’horror’ in movie domain. It is trivial
to populate a dictionary of genre values for explicit genre mentions.
However, when genre facets are implied, such as in ’find something
that will cheer me up’, we need an interpreter engine to map the
utterance to ’comedy’ genre. To deal with these ambiguities, we in-
troduce several rich semantic features and evaluate their effects on
the interpreter engine in the experiments.

3. SEMANTIC INTERPRETER MODEL (SIM)

We build an utterance classifier model for semantic interpretation,
to translate an utterance u into a semantic class corresponding to a
genre facet g ∈ G, using the utterance level features extracted from
NLU semantic parser (§3.1), the constraint tree clustering (CTC)

similarity values per genre (§3.2), and language model (LM) like-
lihood features (§3.3) as presented below. We use a discriminative
classification method, AdaBoost algorithm, a member of the boost-
ing family of classifiers [15].

We use a corpus of NL user utterances (collected from human-
machine dialogs such as in Table 1) and give guidelines to annotators
to tag the utterances into several semantic components. Each utter-
ance is tagged as one or more genre types by the interpreter engine as
the output variable. In addition, the annotators assign semantic slots
(tags) to each segment in utterances. Most of the slot values of an
utterance are indicators of a domain specific facet. In this paper, we
focus on genre facet types in the movies domain. Thus, slots mostly
define named arguments of the movie related types, e.g., actor, di-
rector, movie-name, and are complemented by non-proper noun ar-
guments, e.g., explicit genre (”comedy”), rating (”PG13”), duration
(”not very long”). All other lexical units are tagged as ’other’. Addi-
tionally, we extract other slot types such as movie-description (”ter-
rifying”) or movie-content (”whose plane crashes”). NLU engine
detects slot types in new utterances, and the values of these slots are
used as semantic features of the interpreter classifier.

3.1. NLU: Semantic Parsing Features

The first set of features for our interpreter, the SIM, is based on
semantic parsing. A common approach to semantic parsing is to
extract semantic slots corresponding to segments in an utterance
via a sequence learning method. We take the slot filling model
as a log-likelihood function Lp(Du;βp) with training utterances
Du={u1, .., uN} and feature weights βp. We use Semi-Markov
Conditional Random Fields (Semi-CRF) [16], a discriminative
method for segmentation of sequences [17, 18]. Segmentation
of an utterance represented as s={s1,...,sp} where each segment
sj=〈bj , ej , yj〉 consists of a start bj and end ej position, and a label
yj ∈ Y . Let f=〈g1, ..., gT 〉 represent the vector of segment feature
functions, each of which maps the pair (u,s) and an index j to a
value fk(j, x,s) ∈ R and F(x,s)=

∑|s|
j f (j,u,s). Semi-CRF use these

feature functions in conjunction with the parameters βp to represent
the following conditional probability:

P (s|u;βp) = 1
Z(u)

eβp.F(u,s) (1)

Our semantic parser uses two main feature sets:

• Dictionary-based features: For semantic tagging, these
apply to features related to individual segments and their
labels. Given a dictionary list, they specify which label is
more likely. Using various sources such as web, manuals
and domain specific product databases, we construct domain
named-entity dictionaries, e.g., MOVIES, ACTORS, DI-
RECTORS, THEATERS, etc. and other entity dictionaries,
e.g., GENRE, AWARDS. We also use domain independent
dictionaries, e.g., CITY, DATE.

• Pattern-based features: We include noisy forms of pat-
terns as constraints defined by a domain expert. These
are in the form of regular expressions (e.g., ”directed by
{DIRECTOR}”, ”stars in {MOVIE}”) as well as more com-
plex rule-based grammars for patterns, e.g., DATE.

3.2. Features from Tree Clustering

The second set of features of the SIM is based on the simi-
larity between a NL utterance and an unstructured text with a
known attribute/facet type. These features indicate how likely a
given utterance implies a certain genre. e.g., ’show me holiday
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Fig. 1. (a) Unsupervised Tree Clustering; (b) Supervised Tree Clustering; (c) Constrained Tree Clustering (constraining the number of leaf
topics (of a super topic) having the same label to Ng = 2.). Each node is a topic distribution over vocabulary. gs={1, 2,..} indicate genre
classes, where d2|2 is a document with the genre label g2 = 2.

movies’∼genre(family). Specifically, we use a similarity function
between the movie reviews (each with genre label), and NL user
utterances. The similarity function is defined on a hierarchical
representation of concepts captured in movie reviews.

Recent research on information extraction from unstructured
text [6, 19, 20, 21, 22] focus on the discovery of hierarchical con-
cepts (from abstract to specific) in text documents using extensions
of hierarchal topic models [23] and reflect this hierarchy on the
sentences. Hierarchical concept learning models help to discover,
for instance, that ’funny’ and ’hilarious’ are both contained in a
general class ’comedy’, so that the utterances with specific terms can
be related to more abstract concepts like comedies.

To learn the representations of unstructured text D such as re-
views and synopses, we adopt the hierarchical topic model [23],
which represents the distribution of topics in D by organizing them
into a tree T of fixed depth L (Fig. 1): Each labeled document
〈ds|gs〉 pair 1 is assigned a path c={c1,...,cL} in the tree and each
word wi in a given document ds is assigned a hidden topic zc at
level l of c. Each node is associated with a topic distribution over
words parameterized by β.

In the standard form (Fig. 1.(a)), where no genre information is
used at training time, the structure of labeled T is learned using a
nested Chinese restaurant process (nCRP) [23], to define a distribu-
tion over words into paths in L-level tree T . In nCRP, assignments
of labeled documents to paths are sampled sequentially: The first
document d1 takes the initial path, a single branching tree. Later,
mth subsequent document is assigned to a path drawn from:

p(pathold, c
l|m,mc) = mc

γ+m−1

p(pathnew, c
l|m,mc) = γ

γ+m−1

(2)

where (mc is the number of documents on the chosen path). Sam-
pling from nCRP continues until the (L-1)th level is reached. Earlier
work has introduced constraints on the structure of tree T mainly
fixing the branch level L, where the set of topics associated with a
document is known a priori [24, 25].

Similar to Labeled LDA [26], we use document genre labels
to construct a labeled T . The application of such supervision is
sketched on (Fig. 1.(b)). Specifically, each path gets the label of
the documents assigned to them, e.g., the first document d1|1 with
genre=1 (as shown in blue) is sampled from the first path on the
left and gets the blue color, and so on. However, such an approach
may fail to capture the specific and abstract vocabulary attributing

1e.g., gs={1(family), 2(horror),..} takes on nominal values of different
movie-genre classes, where d1|1 indicates that document d1 has the genre
label g1 = 1.
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Fig. 2. Depiction of Constrained Tree Clustering. Blue colored ran-
dom variables are observed, red colored variables are introduced in
our model as an extension to the standard topic clustering [27].

to a certain genre. Such a structure does not allow sharing of top-
ics between different genre classes (paths on the figure) that poten-
tially enable discovery of a compact genre specific vocabulary (topic
clusters) at the leaf nodes. We demonstrate this with sharing of the
vocabulary across topic clusters in Fig 3, which shows topic clus-
ters of leaf nodes obtained from a supervised topic clustering of
(Fig. 1.(b)). Note the two topic nodes, comedy and family, share
many words, e.g., ’summer’, adventure’, or ’kid-friendly’. Thus, we
need to constrain the supervision injected into the unsupervised hi-
erarchical topic models to capture a vocabulary indicative of genre
classes.

3.2.1. Constrained Tree Clustering - CTC

We present a new constrained tree clustering approach, as sketched
in (Fig. 1.(c)). The assumption is that documents related to movies of
different genre share common words, so we don’t introduce supervi-
sion to the tree at the higher level nodes. Instead, at higher nodes, we
let documents related to movies from different genre share common
topics. At the (L-1)th level (one level above the leaf nodes), we use
genre labels and constrain the branching strategy as follows: At the
(L-1)th level, we allow each document ds choose a path only from
existing children of that node that has the same genre label (Fig. 1
(c)). The algorithm either samples from a new topic (and labels it gs)
or from one of the existing topics with the gs label. Sampling from a
new topic is limited by the maximum number of genre topics Ng (a
user defined parameter) at the Lth level to increase the concentration
of the same genre topics. The idea for limiting the number of genre
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Fig. 3. A sample Supervised Tree Clustering of selected reviews.
The topics on different paths have overlapping vocabulary, e.g.,
’summer’, advanture’, or ’kids’.

topics is to enable sampling phrases of different utterances that infer
the same genre (”jump out of my skin” and (movie) ”psycho”) from
the same topic. We influence the tree structure at this level by in-
troducing two separate hyper-parameters for the nCRP prior. While
sampling a document ds with label gs:
? if there areNg number of existing leaf nodes with the same label

as gs, use γ = γg ,
? otherwise, use γ = γ0.

We keep an inventory of each labeled leaf node. If there is no child
node with the same genre label, we sample from new paths until the
number of nodes reachesNg for each genre. We use a small value for
γg (0 < γg ≪ 1) by suppressing the generation of new branches for
genres that already have enough child nodes. We let new documents
have the option of creating new child nodes with probabilities pro-
portional to γ0 when there are not enough child nodes of that genre.
We constrain the generation of new branches to a fixed number Ng
by choosing γg ≪ γ0 and modifying the nCRP prior in Eq.(2).

The CTC generative process as depicted in Fig. 2 is shown in
Algorithm 1.

Given a document ds, θd is a vector of topic proportions from L
dimensional Dirichlet(α) (distribution over levels in the tree). The
nth word of dg is sampled by first choosing a level zds,n = l from
the θd with probability θd,l.

3.2.2. Features Obtained via CTC

We use collapsed Gibbs sampling to learn CTC parameters. Given
the assignment of words w to levels z and assignments of documents
to paths c, the expected posterior probability of a particular word w
at a given topic z=l of a path c=c is proportional to the number of
times w was generated by that topic:

p(w|z, c,w, η) ∝ n(z=l,c=c,w=w) + η (3)

Similarly, the posterior probability of a particular topic z in a given
document d is proportional to the number of times z was generated
by that document:

p(z|z, c, α) ∝ n(c=cds ,z=l) + α (4)

where n(.) is the count of elements of an array satisfying the con-
dition. After seeing the data, each path c gets multiple genre labels
cg ∈ G, and only the leaf nodes get a single genre label.

We use the posteriors of n-gram-topic and utterance-topic multi-
nomials for each genre as additional features for the interpreter clas-
sifier as follows: Given an utterance u, and the tree, we find the

Algorithm 1. CTC Generation Process.
1. For each topic k ∈ T , sample a distribution

βk v Dirichlet(η).
2. For each level l ∈{2,..,(L-1)}
∗ draw a topic from node cl−1 using nCRP(γ0)

3. At genre level l=L, draw a topic
∗ from cl−1

g using nCRP(γg) if Ng nodes exist,
∗ else from node cl−1

g using nCRP(γ0)
4. For each labeled document 〈dg, Gg〉 ∈ Dg ,

(a) Sample L-vector θd mixing weights from
Dirichlet distribution θd ∼ Dir(α).

(b) For each word n, choose: (i) level zd,n|θd
and (ii) word wd,n| {zd,n, cd, β}

*red colored lines (2 and 3) describe the new nCRP prior.

similarity of the user uttrerance u to the closest path for each genre
cg based on word-topic and topic-document posteriors:

sim(g|u) = simφ(cg|u) ∗ simθ(cg|u) (5)
Let p̄cg,l be a sparse probability distribution of node l of path cg over
all the words from all the documents on the path (from same genre),
averaged by the number of documents Nd on the path. Let pu,l be a
sparse distribution of node l of path cg over the posteriors of all the
words in utterance u. simφ(cg|u) is a measure of divergence of pu,l
from p̄cg,l

simφ(cg|u) = 1
L

∑L
l=1 10−IR(p̄cg,l,pu,l) ∗ l (6)

Words that are more specific to utterances get higher probabilities
at the child nodes (e.g., in ”show me movies that others find terrify-
ing”, ”terrifying” is a more specific word than ”show”) . Thus, we
boost the similarity, which is based on the Kullback-Leibler (KL)
measure2, as the level is closer to the leaves. The second measure is
based on the divergence between the utterance-topic mixing distri-
butions pu = p(zui |cg) and pcg = 1

Nd
p(zdg |cg) (Eq. 4), where Nd

is the number of documents in the path cg:

simθ(cg|u) = 10−IR(pui
,pcg ) (7)

We use sim(g|u) in Eq. (5) to represent CTC features per genre.

3.3. Language Modeling Features

Language modeling has been shown to be a powerful paradigm for
information retrieval applications (Lafferty and Zhai, 2003; Zhai,
2008, [29, 30]) in terms of representing the concepts and language of
the domain. They first postulate a model for each document and for a
given query select the document that is most likely to have generated
the query. In contrast to earlier work, we build supervised language
models on sets of documents, which are pre-labeled with a specific
genre, and later obtain likelihood features for each utterance. We
encode supervision in the form of manually constructing clustersDs
of reviews/synopses from the same genre gs and building a separate
genre language model, LMg , for each cluster. Given Ds we train
n-gram language models (LMg) (n<4) in which the probability of
a given string w for each genre g (such as semantic structure (slot)
value or full utterance) is given by:

p(w|g) =
∏|q|
i=1 p(wi|wi−1, ..., wi−(n−1)) (8)

where |q| is the length of the string. We build LMgs on the reviews
and synopsis clusters separately. Then the usual Bayesian formula-
tion is applied for inference:

ĝ = arg maxg p(g|w) = arg maxg p(w|g)× p(g) (9)

2IR(p,q)=KL(p|| p+q
2

)+KL(q|| p+q
2

) [28]
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where p(g) is the prior probability for genre g.
We trained LMgs using SRILM [31], with Kneser-Ney smooth-

ing and using the default parameters. In the experiments, we show
several n-gram posteriors per LM model that are used as additional
constraints to the interpreter classifier.

4. EXPERIMENTS AND DISCUSSIONS

Here we present the results of our experiments based on the per-
formance of the interpreter engine that uses the various feature sets
presented in this paper. We discuss the effects of using estimated
semantic components in comparison to truth values (actual compo-
nents) as well as features from unstructured text.

Data. Our corpus consists of 10K utterances labeled with 19
unique genre classes, e.g., animation, family, classics, comedy, etc.
Some utterances contain no genre information and get ’n/a’ tag.
In addition to output genre tags, each utterance is labeled with 41
unique slot tags attributed to named entities and phrases in utter-
ances, e.g., movie/actor/director name, description, language, etc.
We downloaded around 80K synopses from Netflix.com and 200K
online movie reviews from IMDB.com.

Features. The interpreter features are as follows:

• f-lexical: N-gram features up to n=3.
• f-slot-E: Binary feature (per slot type) indicating whether a

segment in an utterance is tagged with that slot type. There is
one feature per slot type E.

• f-slot-V: Slot value features and has the value of the segment
if the segment in the utterance is tagged with a slot type. One
feature per slot type.

• f-LM: LM likelihoods as features obtained from genre spe-
cific LMs per slot values. For instance, given ”[black and
white]movie−type movies”, we obtain the likelihood per
genre LM given movie-type slot as such: p(”black and
white”|LMcomedy), p(”black and white”|LMclassics), etc.

• f-CTC: Features representing the similarity of an utterance to
each genre class, as measured through the constrained tree T ,
using Eq. (5). We extract one similarity value per genre.

Model. We analyze the performance of the interpreter module
using the genre labels as output values and compute classification
error rate by comparing system estimated labels with manually an-
notated ones. In each experiment we use five-fold cross validation,
where each time a fold is left out for measuring the model’s perfor-
mance. The final measure is the average performance of each fold.
At CTC training time, we include a set of training utterances with the
same genre as additional documents. To limit the amount of paths
specific to each genre, we use dual-hyper-parameters and choose a
small value γg = 10e−4 � γ0 for when the max-number of path
per genre is reached. We experimented with various depth tree struc-
tures l = 3, 4, 5 and found that l = 3 is the optimal depth.

4.1. Analysis on the Semantic Interpreter

We present interpretation as an utterance classification task, using
several constraining features to build a robust model. We analyze
the performance of our interpreter engine against several baselines:

1. Dictionary-based (DIC) baseline deterministically selects a
genre label given an utterance, as defined in §3.1.

2. The Language Model (LM) baseline uses semantic compo-
nents (slots) within utterances to capture per genre likeli-
hoods. Among the NLU slots, genre and description slots
specifically correspond to explicit genre mentions. Thus, we
use these slots to extract probabilities e.g., p(sgenre|LMg)

Model Type Interpretation Error Rate

B
as

el
in

es DIC 13.1%
LM 6.7%
NB 7.8%
SIM-Lex 8.9%
SIM-LM 5.6%
SIM-LM-Lex 4.3%
SIM-CTC 5.7%
SIM+CTC+Lex 4.2%

Table 2. Benchmark semantic interpreter models. DIC: Dictionary
Lookup (Baseline); LM: Language Model; NB: Naive Bayes; SIM-
$: Our semantic interpterer with features Lex: n-grams, LM- likeli-
hoods from genre specific LMs, CTC: posteriors from tree clustering.

and calculate the conditional likelihood of the user utterance
given each genre g to find the optimum genre g∗:

g∗ = arg maxg p(g|sgenre, sdescription) ∝
p(sgenre|LMg) ∗ p(sdescription|LMg)

3. Naive Bayes (NB): Given LM posterior probabilities on lexi-
cal units in an utterance u, and certain slot values, we make a
”naive” conditional independence assumption, and compute
conditional distribution over genre g labels:
p(g|u, S) ∝ p(g)

∏|q|
i=1 p(w|LMg)∗

p(sgenre|LMg) ∗ p(sdescription|LMg)

where S={sgenre,sdescription}, is the list of slot values, p(g)
is the genre class prior distribution obtained from the training
data and |q| is the number of lexical units in utterance u. For
an observed u, an optimum genre g∗ is chosen if the class
conditional is maximized g∗ = arg maxg p(g|u, S).
To investigate the performance of our interpreter against the
baselines above, we build various SIM models using different
features:

4. LM in SIM (SIM-LM), uses f -LM features to build inter-
preter classifier,

5. N-gram lexical features in SIM (SIM-Lex), uses only n-
gram features f-lexical,

6. LM and lexical features in SIM (SIM-LM-Lex),
7. CTC in SIM (SIM-CTC), uses only constrained similarity

scores per genre from CTC (Eq. 5),
8. CTC with lexicals in SIM (SIM-CTC-Lex), uses CTC sim-

ilarity scores per genre with lexicals.

The performance results are shown in Table 2. The SIM models
achieve the best performance, significantly reducing the error rate
89%, 37%, and 46% relative compared to the dictionary DIC, LM,
and NB baselines consecutively. Furthermore, with the SIM models,
using features from unstructured text can actually help to capture
hidden (implied) genre facets. CTC can discover hidden concepts in
synopses or reviews that correspond to implied semantic structures
in NL utterances. Thus, the clustering approaches help to discover
hidden information from unstructured text, which can then be used
as additional features for the semantic interpreter engine. A simple
classifier based on lexical features may not be able to capture the
implicit genre information hidden in the NL utterances.
4.2. Analysis on Extracted Features

Here we analyze the contribution of each set of features on two
seperate interpretation models: (1) SIM-bin a binary interpretation
model which detects if there is a genre facet information in a given
utterance (g = 1) or not (g = 0) (the genre is neither implied nor ex-
plicitly mentioned in the utterance), and (2) Sim-mult a multi-way
classifier that maps utterances into one of the genre facet labels.
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Features SIM-bin SIM-mult
Actual Est. Actual Est.

(1) f-lexical 4.8% − 5.9% −
(2) f -LM 3.9% − 5.6% −
(3) f -CTC 4.7% − 5.7% −
(1)+f-slot-E 3.5% 4.0% 5.3% 6.2%
(1)+f-slot-V 3.2% 3.9% 5.1% 6.0%
(1)+(2) 2.6% − 4.3% −
(1)+(3) 3.5% − 4.2% −
(1)+(2)+(3)+ 2.2% − 3.9% −
f-slot-E + f-slot-V

Table 3. Interpretation error rates of five-fold cross-validation for
different features and methods. Bold values indicate statistical sig-
nificance over baseline.

We predict a given utterance’s semantic structure (slots) using
NLU semantic parsing explained in §3.1. The predicted slots are
used as features for the interpreter classifier. To analyze the effect
of the NLU semantic parser’s performance on the interpreter, we
compiled additional sets of features using the actual slot values of
the interpreter features. We denote the interpreter models that use
actual slot labels (features f-slot-E and f-slot-E) as Actual, whereas,
the predicted slot labels are denoted as Estimates (Est.).

The experiment results are shown in Table 3. The addition of
almost every feature set improves the performance of the model,
though the increase in performance is not large. For instance the
F-LM feature corresponding to movie-director slot helps to cor-
rectly estimate the utterances such as ”movies like directed by james
cameron”, or ”Hitchcock type movies”. However there are only
handful of these types of utterances in our dataset. Thus, addition
of posterior probabilities from unstructured text as constraints on
top of n-gram features improves the robustness of the interpreter
classifier. Using all the features extracted from unstructured text
outperforms the rest of the models. In addition, the interpreter is
slightly affected by the NLU prediction errors (Actual vs. Est.). The
error rate reduces by 1-2% absolute in average.

Using only the lexical features (F-Lex) provides a good base-
line performance. The reason for this is that, it is not uncommon
for utterances to have explicit semantic frames that can be easily
mapped/estimated to correct genre facets. It is the implied genre ut-
terances where the lexical models are not strong at predicting the
correct genre. Using features extracted from unstructured text, (2)
and (3) in Table 3, improves the lexical model performance on pre-
dicting the implied genre utterances.

5. CONCLUSIONS

In this paper, we presented a classifier based semantic interpreter
model for translating NL utterances into pre-defined facets. We
demonstrated that implementation of constrained clustering tools to
extract hidden concepts from unstructured text can improve inter-
pretation of user utterances, specifically when the utterances contain
implied concepts. In future work, we’ll investigate the extension of
our interpreter module to facets in different domains.
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