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ABSTRACT 

 
We present our recent and ongoing work on applying deep learning 

techniques to spoken language understanding (SLU) problems. The 

previously developed deep convex network (DCN) is extended to 

its kernel version (K-DCN) where the number of hidden units in 

each DCN layer approaches infinity using the kernel trick. We 

report experimental results demonstrating dramatic error reduction 

achieved by the K-DCN over both the Boosting-based baseline and 

the DCN on a domain classification task of SLU, especially when a 

highly correlated set of features extracted from search query click 

logs are used. Not only can DCN and K-DCN be used as a domain 

or intent classifier for SLU, they can also be used as local, 

discriminative feature extractors for the slot filling task of SLU. 

The interface of K-DCN to slot filling systems via the softmax 

function is presented. Finally, we outline an end-to-end learning 

strategy for training the softmax parameters (and potentially all 

DCN and K-DCN parameters) where the learning objective can 

take any performance measure (e.g. the F-measure) for the full 

SLU system.   

Index Terms — kernel learning, deep learning, spoken language 

understanding, domain detection, slot filling 

 

1. INTRODUCTION 
 

In recent years, machine learning has been playing increasingly 

important roles in speech and language processing. In particular, 

deep learning techniques have significantly improved the state of 

the art on phone recognition (Deng et al, 2012; Mohamed et al, 

2010, 2012), speech feature coding (Deng et al., 2010),  and large 

vocabulary speech recognition (Dahl et al, 2012; Hinton et al, 2012; 

Monga et al., 2012).  

     Spoken language understanding (SLU) in human/machine 

spoken dialog systems aims to automatically identify the domain 

and intent of the user as expressed in natural language and to 

extract associated arguments or slots to achieve a goal. Deep 

learning was more recently demonstrated to be effective for spoken 

language understanding (SLU) by Tur et al (2012). In both areas of 

intent determination (or domain detection) and slot filling, the 

recent state of art has been based on discriminative classifiers such 

as Boosting or SVM (Tur and De Mori, 2011) and CRF (Raymond 

and Riccardi 2007; Hahn et al, 2011). The deep learning technique 

of deep convex network (DCN) developed in (Deng and Yu, 2011; 

Deng et al., 2012) was successfully applied to a domain-detection 

task, improving the state of the art approach using Boosting (Tur et 

al, 2012).  

     In this paper, we will present the kernel version of the DCN 

(which we call K-DCN), a significant extension of the previous 

DCN technique where the number of hidden units in each DCN 

layer approaches infinity using the kernel trick. We demonstrate 

the much better classification performance of the K-DCN over 

both the Boosting-based baseline and the DCN on a domain 

classification task. 

     In addition to domain or intent determination, another key task 

of SLU is slot-filling, which requires sequence modeling where a 

slot tag is assigned to each word or phrase in the input utterance. 

That is, the task is to find an optimal slot ID sequence. In this 

paper, we will discuss how to build sequential models for slot-

filling using DCN and K-DCN to provide local features via a 

softmax-layer interface. We will also provide an end-to-end 

learning framework in which the features extracted 

discriminatively by DCN and K-DCN can be exploited to optimize 

a full SLU system that performs slot-filling tasks. This end-to-end 

training strategy allows us to optimize the slot-filling performance 

such as an F-measure directly. 

 

2. FEATURE EXTRACTION FOR SLU 
 

In this section, we review the DCN architecture and learning, and 

then extend it to the kernel version (resulting in K-DCN) by 

constructing infinite-dimensional hidden representations in each of 

the DCN module using the kernel trick. Both DCN and K-DCN 

can be used as powerful classifiers for domain detection and also 

as discriminative feature extractors for subsequent slot filling at the 

full-utterance level. 

 

2.1 Deep convex network (DCN): A review 

 

Here, we provide an overview of the DCN architecture. The 

philosophy of DCN’s architecture design rests in the concept of 

stacking, where simple modules of functions or classifiers are 

composed first and then they are “stacked” on top of each other so 

as to learn complex functions or classifiers. Following this 

philosophy, Deng and Yu (2011) and Deng et al. (2012) developed 

and presented the basic DCN architecture that consists of many 

stacking modules, each of which takes a simplified form of shallow 

multilayer perceptron using convex optimization for learning 

perceptron weights.  Fig. 1 gives an example of a three-block DCN, 

each consisting of three layers and each illustrated with a separate 

color. All hidden layers are sigmoid nonlinear. Prediction and input 

layers are linear. The DCN weight parameters   and   in each 

module are learned efficiently from training data. For making 

connections to the K-DCN in Section 2.2, we now review the 
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learning method for   given fixed   and hence fixed hidden units’ 

outputs, which is     (    ) at the bottom module of DCN and 
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 ) at a higher module. 

     The learning objective of DCN is mean square error regularized 

by L2 norm of the weights: 
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where         is DCN’s output (for each module),   
               are the target vectors for training, and C is the 

regularization parameter. The solution is well known: 

  (      )      
Hence the output of DCN of each module can be written as 

      (      )     (2) 

  
 

Figure 1: A typical DCN architecture. Hidden layers are sigmoid 

nonlinear. Prediction and input layers are linear. Three modules 

are shown, each with a distinct color. 

 

2.2 Kernel deep convex network (K-DCN) 

 
The DCN architecture reviewed above has convex learning for 

weight matrix   given the hidden layers’ outputs in each module, 

but the learning of weight matrix   is non-convex. For most 

applications, the size of   is comparable to that of    and then 

DCN is not strictly a convex network. In a recent extension of 

DCN, a tensor structure was imposed, shifting the majority of non-

convex learning burden for   into a convex one (Hutchinson et al, 

2012). In the current K-DCN extension, we completely eliminate 

non-convex learning for   using the kernel trick (Hofmann et al, 

2008).  

To derive the K-DCN architecture and the associated learning 

algorithm, we first take the bottom module of DCN as an example 

and generalize the sigmoidal hidden layer     (    )  in the 

DCN module into a generic nonlinear mapping function  ( ) 

from the raw input feature  , with high dimensionality in  ( )  

(possibly infinite) determined only implicitly by a kernel function 

to be chosen. Second, we reformulate the unconstrained 

optimization problem of (1) into a constrained one: 

minimize   
 

 
        

 

 
      

    subject to       ( )      

     Third, we make use of dual representations (rf. pages 293-294 

in Bishop, 2006) of the above constrained optimization problem to 

obtain       where vector   takes the following form 

  (    )    

and where      ( )  ( )  is a symmetric kernel matrix with 

elements of       (  ) (  )  
     Finally, for each new input vector x in the test or dev set, we 

obtain the K-DCN (bottom) module’s prediction of 

 ( )     ( )     ( ) ( )    ( )(    )    (3) 

where the kernel vector  ( ) is so defined that its elements have 

values of   ( )    (    ) in which    is a training sample and   is 

the current test sample. 
     For l-th module in K-DCN where      Eq. (3) holds except the 

kernel matrix is modified to 
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   Comparing the prediction of (2) in DCN and of Eq. (3) in K-

DCN, we see key advantages of K-DCN as follows. First, unlike 

DCN which need to compute hidden units’ output   show in (2), 

K-DCN does not need to explicitly compute hidden units’ output  

 ( ) or  (  |  
(   )

   
(   )

|    
( )

 ). In the experiments reported in 

Section IV, we have explored the use of Gaussian kernel, where 

kernel trick equivalently gives us an infinite number of hidden 

units without the need to compute them explicitly. Further, we no 

longer need to learn the lower-layer weight matrix   in DCN 

(Deng et al, 2012) and the kernel parameter (e.g., the single 

variance parameter   in the Gaussian kernel) makes K-DCN much 

less subject to overfitting than DCN. In Fig. 2, we show the 

architecture of a K-DCN using the Gaussian kernel.  

The entire K-DCN is characterized by two module-dependent 

hyper-parameters:  ( ) and  ( ) , the kernel smoothing parameter 

and regularization parameter. While both parameters are intuitive 

and their tuning (via line search or leave-one-out cross validation) 

is straightforward for a single bottom module, tuning them from 

module to module is more difficult. For example, if the bottom 

module is tuned too well, then adding more modules would not 

benefit much. In contrast, when the lower modules are loosely 

tuned (i.e., relaxed from the results obtained from straightforward 

methods), the overall K-DCN often performs much better. The 

experimental results reported in Section IV have been obtained 

using a set of empirically determined tuning schedules to 

adaptively regulate the K-DCN from bottom to top modules. 

     Without stacking to form a deep architecture, the use of kernel 

functions to perform nonlinear regression and classification has 

been reported in statistics and machine learning literature under a 

number of different names including  kernel ridge regression, least-

square SVM, kernel fisher discriminant, empirical kernel map, 

regularized least square classifier, extreme learning machine, and 

kernel partial least squares regression (e.g. Rosipal and Trejo, 

2001; Huang et al, 2012; Karasuyama, M. and Nakano, 2008; Chen 

and Haykin, 2002; Kadri et al, 2011; Hofmann et al, 2008; 

Saunders et al, 1998). The key contribution of this work is to use 

this type of shallow machines as building blocks to construct a 

deep architecture. Importantly, we have discovered that the 

principles used to regularize a single shallow block are very 

different from those for the deep network consisting of many 

stacking blocks. 

     As a summary, the K-DCN described in this section has a set of 

highly desirable properties from the machine learning and pattern 

recognition perspectives. It combines the power of deep learning 

and kernel learning in a principled way and unlike the previous 
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DCN/DSN there is no non-convex optimization for K-DCN. The 

computation steps shown in Eq. (3) make K-DCN easier to scale 

up for parallel computing in distributed servers than the previous 

DCN and tensor-DSN. There are many fewer parameters in K-

DCN to tune than DCN, T-DSN, and DNN, and there is no need 

for pre-training with often slow, empirical procedures related to 

RBM and DBN. Also, we have found that regularization plays a 

much more important role in K-DCN than in DCN and Tensor-

DSN, and the effective regularization schedules developed 

sometimes can have intuitive insight and can be motivated by 

optimization tricks. Further, we have found empirically that K-

DCN does not require data normalization, as is often essential in 

other deep networks such as DNN and DCN. Finally, our 

experience showed that, unlike other methods, K-DCN can easily 

handle mixed binary and continuous-valued inputs without data 

and output calibration. All these desirable properties have been 

demonstrated in our experiments on intent determination tasks to 

be described in Section 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Architecture illustration of K-DCN with three modules 

       

3. SPOKEN LANGUAGE UNDERSTANDING 

 
Semantic parsing of input utterances typically consists of 3 tasks, 

domain detection, intent determination, and slot filling. Originated 

from call routing systems, domain detection or intent determination 

tasks are typically treated as semantic utterance classification, and 

originated from natural language to semantic template filling 

systems such as the DARPA ATIS, slot filling task is typically 

treated as sequence classification. Syntactic, semantic, and other 

contextual features are employed in statistical modeling of these 

SLU tasks (Tur and De Mori 2011).  

An example sentence with domain, intent, and slot annotations, 

along with typical domain-independent named entities, is provided 

below, following the popular in/out/begin (IOB) representation, 

where Boston and NewYork are the departure and arrival cities 

specified as the slot values in the user’s utterance, respectively.  

 
 show flights from Boston to New York today 

Slots O O O B-dept O B-arr I-arr B-date 

Names O O O B-city O B-city I-city O 

Intent Find_Flight 

Domain Airline Travel 

 
4. SEMANTIC UTTERANCE CLASSIFICATION 

 

The semantic utterance classification (SUC) task aims at 

classifying a given speech utterance Xr into one of M semantic 

classes,  ̂ ∈ C = {C1, . . . , CM} (where r is the utterance index). 

Upon the observation of Xr,  ̂  is chosen so that the class-posterior 

probability given Xr, P(Cr|Xr), is maximized. More formally,  
 

 ̂        
  

 (     ) 

    Semantic classifiers need to allow significant utterance 

variations. A user may say “I want to fly from San Francisco to 

New York next Sunday” and another user may express the same 

information by saying “Show me weekend flights between JFK and 

SFO”. On the other hand, the command “Show me the weekend 

snow forecast” should be interpreted as an instance of another 

semantic domain class, say, “Weather.” In order to do this, the 

selection of the feature functions fi(C,W) aims at capturing the 

relation between the class C and word sequence W. Typically, 

binary or weighted n-gram features, with n = 1, 2, 3, to capture the 

likelihood of the n-grams, are generated to express the user intent 

for the semantic class C. Because of the very large dimensions of 

the input space, large margin classifiers such as SVMs or Boosting 

were found to be very good candidates for this task. 

 

5. SEQUENCE MODELING FOR SLOT FILLING 
 

In addition to domain detection and intent determination, another 

key task in SLU is slot-filling. Traditional sequential models for 

slot-filling include HMM, MEMM, SMT, and CRF (Hahn et al, 

2011). Most of these models are based on discrete or discretized 

features. In this paper, we introduce a slot-filling model based on 

the log-linear framework, with dense continuously-valued features 

transformed from raw binary lexical features using DCN and K-

DCN. We also describe how the model can be trained to directly 

maximize the accuracy metric for evaluation, where 

comprehensive experimental work is in progress. 

 

5.1 Log-linear modeling for slot-filling  

 

Given the observation, e.g., the input sentence, O, the optimal 

sequence of slot IDs   ̂ is obtained according to  

 ̂        
 

 (   ) (4) 

where   (   )  is modeled by a log-linear model (similar to the 

approach by Macherey et al, 2009): 
 

 (   )  
 

 
   {∑         (   )

 

   

} (5) 

 

and   ∑    {∑         (   ) }  is the normalization 

denominator. M is the number of feature functions. Note that we 

define the feature functions {  (   )} in log domain to simplify 

the notation in later sections.  

In the log-linear model, the feature weights    {  }  are 

usually tuned by MERT on a held-out development set (Och 2003). 

In the following sub-sections, we will describe the actual feature 

models for slot-filling and the related learning problem.  
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5.2. Slot translation model 

 

Assuming that the input sentence consists of K words, we design 

the word-to-slot translation feature which is scored as: 

  (   )  ∏ (     )

 

 (6) 

where    and    are the k-th slot ID in sequence S and the k-th 

word in observation sentence O, respectively.  

Instead of modeling translation probabilities directly, we take 

into account an n-gram context around the word   , and extract a 

local feature vector from that n-gram using the K-DCN.  

Let us denote the local feature vector extracted by K-DCN by  . 

Then we model the probability of slot ID i given feature x using 

the softmax function: 

 (     )  
    

∑      
 (7) 

where    is the i-th row of the parameter matrix  . Matrix   has 

a total of I rows and D columns, where I is the number of slot 

categories, and D is the dimension of the feature vector. In latter 

sections we describe how W can be learned in an end-to-end 

optimal manner.  

 

5.3. Slot transition model 

 

In order to capture the dependence between slot IDs, we also 

design additional “features” based on the slot-transition model: 

  (   )  ∏ (       )

 

 (8) 

which serves as a bi-gram language model (LM) for the slot IDs. In 

our work, this bi-gram ID LM is trained on the annotation of the 

training set as a regular LM. 

 

5.4. Objective function for end-to-end learning  

 

The objective function in learning matrix   is defined as the 

model-based expectation of slot-filling accuracy over the entire 

training set (proportional with a factor of N): 

 ( )    ∑ ∑  (     ) (     
 )

  

 

   

 (9) 

where N is the number of sentences in the training set,   
  is the slot 

ID sequence reference of the n-th input sentence   , and    
   (  ) that denotes the list of hypotheses of   .  (     

 ) is the 

accuracy measure of slot-filling, e.g.,  (     
 ) could be the slot 

accuracy count or F-measure of    given the annotation reference 

  
 . Note that  (     

 ) is a measure irrelevant to parameter 

optimization.   (     )  is the posterior defined in (5). The 

subscript   indicates that it is computed based on the parameter 

set   to be estimated. 

 

5.5. Optimization  

 

The objective function (9) has been widely used in a number of 

sequential pattern recognition tasks such as ASR (He et al. 2008) 

and SMT (He and Deng 2012). However, unlike previous work 

where the parameters to be optimized are in discrete probability 

distribution or continuous probability density domain, here we 

need to optimize an unbounded matrix. Therefore, the efficient 

EBW-based optimization method (He et al. 2008, He and Deng 

2012) is not suitable anymore. Instead, we resort to the stochastic 

gradient descent (SGD) method to optimize  ( ).  

By taking different forms of accuracy measure (     
 ) , the 

objective function  ( ) is directly linked to various evaluation 

metrics. Table 1 summarizes a few commonly used evaluation 

metrics for slot-filling and corresponding form of the accuracy 

measure. Note the corpus-level F-measure in the table is not 

decomposable. Therefore we use the average of sentence-level F-

measure to approximate the corpus-level F-measure. In contrast, 

the corpus-level correct slot-ID count is directly decomposable to 

the sentence-level; i.e., it is simply the sum of correct slot-ID 

counts of all sentences. 

 

Table 1. Common evaluation metrics for SLU and their 

corresponding forms of the accuracy measure in Eq. (9). 

Metric Accuracy measure  (     
 ) 

Concept error   Raw count of correct slot-IDs in    

F-measure  Sentence-level F-measure for     

 

6. EXPERIMENTS 
 

6.1 Experimental Setup 
 

In order to perform experiments with the DCNs, we compile a 

dataset of utterances from the users of a spoken dialog system. 

Table 1 shows the properties of the data sets and the (relative) 

frequencies of the two types of queries in each data set. Each of the 

utterances in these data sets is manually labeled with one of 25 

domain categories. The domains were chosen to cover specific 

target domains such as restaurants, calendar, or movies, generic 

user intents such as greeting or frustration, and one additional 

category for the remaining domains. For evaluation, the error rate 

of the top scoring class is used. The baseline performance is 

obtained using only word trigrams with Boosting. This data 

contains about 125K word trigrams, so we applied Boosting-based 

filtering reducing the input feature space size to 4789 unique 

salient n-grams. These features are then fed to DCN and K-DCN. 

We have also employed two additional kinds of features, 

following our earlier work (Hakkani-Tür et al 2012), using features 

as extracted from query click logs and named entity extraction. 

Both of these feature types have been shown to improve domain 

classification. Query click features are computed using the click 

distribution over a set of clicked base URLs (such as imdb.com 

and rottentomatoes.com) from search engine query click logs of 

user utterances. Some of these features are highly correlated as 

expected, as queries related to the same domain may be resulting in 

clicks to different base URLs related to that domain, and in this 

work these are represented as two different features. Since not 

every user utterance has these features are been observed in search 

query click logs due to the natural language nature of user 

utterances, which are different than keyword search queries, 

automatic translation of user utterances to keyword queries has 

been performed; see (Hakkani-Tür et al 2012) for more details on 

this translation.  

 

6.2. Experimental Results 

 
Shown in Table 1 are the summary results comparing the baseline 

system’s performance with that of DCN and K-DCN systems. We 
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have used three types of raw features, including lexical features, 

features derived from query clicks, and features derived from name 

entities. Four ways of their combinations are fed into the three 

types of classifiers with the error rates shown in Table 1. K-DCN 

has considerably lower error rates than DCN and the baseline 

classifier for all four sets of raw features. Specifically, when query 

click features are added to the lexical features (row 3), all systems 

reduce error rates and the K-DCN system reduces the error rate 

more significantly. When name entity features, which take 

continuous values, are further added (row 4), the baseline system is 

not able to reduce its error rate, due to the difficulty of Boosting in 

handling non-binary features. Nevertheless, both DCN and K-DCN 

systems reduce their error rates, and for K-DCN the magnitude of 

error reduction is more significant again. One most interesting 

observation gleaned from Table 2 is that K-DCN is able to exploit 

query click features much more effectively than Boosting or DCN. 

While this is an area of further investigation, our preliminary 

observation is that K-DCN has the ability to directly handle mixed 

binary and continuous-valued inputs. In all experiments, no data 

normalization is carried out and the dynamic range of different 

elements of the input vectors can go from 0->1 to 0->50. 

To provide more detailed results of the K-DCN in Table 1 with 

Lexical+QueryClick features, we show in Table 2 the domain 

classification error rates (percent) separately on Train set, Dev set, 

and Test set as a function of the depth or the module number (from 

bottom up) of the K-DCN. Importantly, the error rate of 5.94% is 

obtained at the lowest error rate of 6.45% for the Dev set, both 

occur at the sixth module of K-DCN. Beyond this, when more 

modules are stacked, the error rate of Dev and Test sets increasing, 

showing overfitting.       
 

              
Table 3. More detailed results of K-DCN in Table 2 with 

Lexical+QueryClick features. Domain classification error rates 

(percent) on Train set, Dev set, and Test set as a function of the 

depth of the K-DCN.  
Depth Train Err% Dev Error% Test Err% 

1 9.54 12.90 12.20 

2 6.36 10.50 9.99 

3 4.12 9.25 8.25 

4 1.39 7.00 7.20 

5 0.28 6.50 5.94 

6 0.26 6.45 5.94 

7 0.26 6.55 6.26 

8 0.27 6.60 6.20 

9 0.28 6.55 6.26 

10 0.26 7.00 6.47 

11 0.28 6.85 6.41 

 

     Note that, in Table 2, as the depth of K-DCN increases, the 

training error rate generally continues to decrease. If we were to 

select some fixed values of  ( )and  ( )  over all modules l, the 

training error rate would go quickly to zero but overfitting would 

start earlier than module six to produce a higher error rate than 

5.94%. To avoid this, we use a carefully tuned schedule for  ( )and 

 ( ) as a function of l. This prevents the training error rate from 

quickly going to zero, thus causing overfitting to start after a low 

error rate has already been achieved. 

We conduct slot-filling experiments on the ATIS dataset 

following similar settings as described in (Tur, et al., 2010). The 

training set consists of 4978 sentences and the test set consists of 

893 sentences. In the task, each word will be tagged by a slot ID, 

and there is a total of 127 slot IDs. An example of a sentence and 

its annotations is given in section 3. The Linear CRF result is 

obtained using only lexical features, with default parameters of 

CRF++ toolkit, following (Raymond and Riccardi, 2007). 

We then study the effectiveness of using K-DCN for local slot 

ID classification. In the experiment, we use a 5-word window for 

each position to derive raw features. We project each word to a 50-

dimension dense vector by looking-up a embedding mapping table, 

which is trained through unsupervised learning on Wikipedia text 

corpus (Collobert, et al., 2011). Then we concatenate the 5 

embedding vectors in a context window to form a 250-dimension 

contextual vector as the input for K-DCN. As in classical 

classification tasks, the output of K-DCN is a 127-dimension 

vector, each element corresponds to one slot ID. K-DCN is then 

trained on the training data. Compared to a logistic regression 

baseline which uses n-gram features (n=1~5) derived from the 5-

word window, the K-DCN local classifier improves the F-measure 

significantly.  

We then take the K-DCN output as dense local features for the 

log-linear model and perform the end-to-end training. A standard 

bi-gram LM on slot IDs is trained on the slot annotations of the 

training set. Then we performed SGD to train the softmax matrix 

by optimizing the expected F-measure. It gives further 

improvement by 0.23% over the K-DCN local classifier. 
 

 
 

The gain from the end-to-end training is not as large as we expect, 

partially due to the reason that the slot dependency information is 

only modeled by a simple bi-gram LM, and it is not trained to 

optimize the end-to-end metric. In the future, we are working on 

extending the end-to-end sequential training methods to these bi-

gram features and expect more significant results.  

 

 

7. DISCUSSION AND CONCLUSIONS 
 

This paper reports our ongoing research on the use of integrated 

deep learning and kernel learning for discriminative feature 

Table 2. Comparisons of the domain classification error rates 

among the boosting-based baseline system, DCN system, and K-

DCN system for a domain classification task. Three types of raw 

features (lexical, query clicks, and name entities) and four ways 

of their combinations are used for the evaluation as shown in 

four rows of the table. 

Feature Sets Baseline DCN K-DCN 

lexical features  10.40%  10.09%  9.52% 

lexical features 

+ Named Entities 

 9.40%  9.32%  8.88% 

lexical features 

+ Query clicks 

 8.50%  7.43%  5.94% 

lexical features 

+ Query clicks 

+ Named Entities 

 10.10%  7.26%  5.89% 

c 

Table 4. Slot-filling performances on ATIS. 

Models F-measure 

Logistic Regression  90.07% 

Linear CRF  91.09% 

K-DCN  91.65% 

Log-linear K-DCN  91.88% 
c 
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extraction for SLU applications. The K-DCN architecture 

described in this paper can be viewed as an extension of the earlier 

DCN when the number of hidden units in each module grows to 

infinity. K-DCN is shown to perform much better than our 

previous boosting-based baseline and DCN systems when 

evaluated on a set of domain detection problems in SLU. For 

potential applications to slot filling problems of SLU, we make use 

of softmax to convert the discriminatively learned features 

computed by K-DCN into posterior probabilities in a log-linear 

model. An end-to-end learning technique is outlined to estimate the 

softmax weights that calibrate the K-DCN outputs so as to directly 

optimize the SLU performance metric. Experimental work in 

developing and testing the slot filling model is currently under 

way.  

Compared with DCN, the K-DCN reported in this paper vastly 

increases the size of hidden units without suffering from 

computation and overfitting difficulties. However, as is typical of 

kernel methods, the memory required to hold the kernel matrix is 

quadratically related to the sample size, and when the sample size 

becomes very large, inverse of the correspondingly large matrix, as 

shown in Eq. (3), can become computationally expensive. For the 

SLU and speech recognition experiments involving larger training 

data than used in this study, our future work will develop feature 

selection/projection techniques, basis pursuit methods, and kernel 

approximation methods in the context of K-DCN (e.g., Baudat and 

Anouar, 2003; Cawley and N. Talbot, 2002).   We will also strive 

to develop theory to guide the practice on cross-validation and 

adaptive regularization over modules of the K-DCN.  
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