
Inference of Necessary Field Conditions with
Abstract Interpretation

Mehdi Bouaziz 1, Francesco Logozzo 2, Manuel Fähndrich 2

1 École Normale Supérieure, Paris
2 Microsoft Research, Redmond, WA (USA)

Abstract. We present a new static analysis to infer necessary field con-
ditions for object-oriented programs. A necessary field condition is a
property that should hold on the fields of a given object, for otherwise
there exists a calling context leading to a failure due to bad object state.
Our analysis also infers the provenance of the necessary condition, so
that if a necessary field condition is violated then an explanation con-
taining the sequence of method calls leading to a failing assertion can be
produced.
When the analysis is restricted to readonly fields, i.e., fields that can only
be set in the initialization phase of an object, it infers object invariants.
We provide empirical evidence on the usefulness of necessary field con-
ditions by integrating the analysis into cccheck, our static analyzer for
.NET. Robust inference of readonly object field invariants was the #1
request from cccheck users.

1 Introduction

Design by Contract [24] is a programming methodology which systematically re-
quires the programmer to provide the preconditions, postconditions, and object
invariants (collectively called contracts) at design time. Contracts allow the au-
tomatic generation of documentation, amplify the testing process, and naturally
enable assume/guarantee reasoning for static program verification.

Assume/guarantee reasoning is a divide and conquer methodology, where the
correctness proof is split between the callee and the caller. When the body of
the callee is analyzed, its precondition is assumed and the postcondition must
be proved. At a call site, the precondition must be proved and the postcondition
can be assumed by the caller. In object-oriented programs, an object invari-
ant (sometimes incorrectly called class invariant) is a property on the object
fields that holds in the steady states of the object, i.e., it is at the same time a
precondition and a postcondition of all the methods of a class.

In a perfect (Design by Contract) world, the programmer provides contracts
for all the methods and all the classes, and a static verifier would leverage them
to prove the program correctness. In the real world, relatively few classes and
methods have contracts, for various reasons. First, the programming language or
the programming environment may not support contracts at all. Programmers
may add checks on the input parameters of a method and on the object fields,

but there is no systematic way of expressing those in a way that can be exploited
by a static analyzer to perform assume/guarantee reasoning. Second, even if the
programming environment supports contracts, programmers may have only par-
tially annotated their code, for instance by adding preconditions only to the
externally visible (public) methods, ignoring object fields. Third, the program-
mer may also have avoided adding contracts which may appear evident from the
code, e.g., setting a private field to a non-null value in the constructor and never
changing it again. Fourth, the provided contracts may be too weak, for instance
a stronger object invariant may be needed to ensure the absence of errors such
as runtime failures or assertion violations.

Inference has been advocated as the holy grail to solve the problems above.
Ideally, an automatic static analyzer will infer preconditions and postconditions
for each method, and object invariants for each class, exploiting the existing an-
notations and parameter checking code to get more precise results. The inferred
contracts will then be propagated and used in the assume/guarantee reasoning.

Much research has been conducted to characterize when the object invariant
can be assumed and when it should be checked, e.g. [11]. Orthogonally, some
static analyses have been developed to infer object invariants when those points
are known, e.g. [23, 4]. Those analyses over-approximate the strongest object
invariant which in turn over-approximates the trace-based object semantics [23].

In this paper we tackle the problem of inferring necessary conditions on
object invariants, i.e., conditions on object fields that should hold, for otherwise,
there exists an execution trace starting with an object construction and a series
of method invocations that leads to an assertion failure in one of the object’s
methods due to bad object state. Necessary object invariants differ from “usual”
programmer-written object invariants in that they typically under-approximate
the object invariant. Necessary object invariants are necessary in the sense that
if they don’t hold, there exists an execution trace that is guaranteed to fail.
Satisfying all necessary object invariants on the other hand does not guarantee
the absence of failures, due to, e.g., method internal non-determinism.

Main contributions. We discuss and define the problem of brittleness of
class-level modular analyses (Sect. 2) – solving that problem was the #1 request
of cccheck [15] users3. We introduce a solution to the problem based on the in-
ference of necessary field conditions (Sect. 4). Our solution builds on the top of
previous work on precondition inference [8]. We show that when readonly fields
are concerned, necessary conditions are object invariants (Sect. 5). We validate
our analysis on large and complex libraries (Sect. 6). We compare it with: (i) a
baseline run (BR) where no properties for object fields are inferred (only method
preconditions and postconditions); and (ii) an optimized implementation of the
class-level modular analysis (CLMA). Experimental results show that our anal-
ysis: (i) introduces a modest slowdown (and in some cases a speedup!) over BR;
(ii) is up to 2× faster than CLMA; and (iii) induces a precision improvement
comparable to CLMA. To the best of our knowledge we are the first to system-

3 cccheck is the abstract interpretation-based [7] contract static checker for CodeCon-
tracts [13]. At the moment of writing it counts more than 75,000 external downloads.

2

public class Person {
private readonly string Name;
private readonly JobTitle JobTitle;

public Person(string name, JobTitle jobTitle) {
Contract.Requires(jobTitle != null && name != null);

this.Name = name;
this.JobTitle = jobTitle;

}

public string GetFullName() {
if (this.JobTitle != null)

return string.Format("{0} ({1})", PrettyPrint(this.Name), this.JobTitle.ToString()));
return PrettyPrint(this.Name);

}

public int BaseSalary() {
return this.JobTitle.BaseSalary;

}

public string PrettyPrint(string s) {
Contract.Requires(s != null);
// ...

}
}

Fig. 1. The running example. Without the object invariant this.Name != null ∧
this.JobTitle != null a modular static analyzer issues two false warnings.

atically evaluate and compare different approaches to the static inference of field
conditions. In the light of the experimental results, we have chosen to deploy it
as the standard analysis for object-invariant inference in cccheck.

2 Motivation
Let us consider the code in Fig. 1. A Person object contains two private fields,
the name of the person and his job title. The C# readonly marker specifies
that those fields can only be assigned inside the constructors. The method
GetFullName returns the name of the person and the job title, if any. The method
BaseSalary returns the base salary for the job title of the given person.

2.1 Separate Method-Level Analysis

A method-level modular analysis of Person will analyze each constructor/method
in isolation. At the entry point, it will assume the precondition and the ob-
ject invariant. At the exit point, it will assert the postcondition and the ob-
ject invariant. In our simple example the object invariant is empty (trivially
the true invariant). The analysis reports 2 possible null dereferences. In the
method GetFullName, the field Name may be null, violating the precondition of
PrettyPrint. In the method BaseSalary the field JobTitle may be null (in
GetFullName, JobTitle is checked before being dereferenced). Those are false
warnings as both fields are initialized to non-null values in the constructor. The
readonly fields semantics guarantees that they cannot be modified anymore.

The usual solution to this problem is to ask the programmer to provide the
object invariant. This is for instance the approach of tools like ESC/Java [18, 3],
Krakatoa [16], Spec# [1], and the default behavior of cccheck [15]. The advan-
tage of programmer-provided invariants is that they clearly state programmer

3

intent and can be used as documentation. The drawback is that too many anno-
tations may be required, quickly overwhelming the programmer. Our goal is to
help the programmer by inferring (or suggesting in the IDE) object invariants.

2.2 Class-Level Modular Analysis

A class-level modular analysis [22] exploits the information that the methods are
executed after the constructor to improve precision. The main insight is that an
object invariant can be given a fixpoint characterization as follows:

I =
⊔

c∈Constrs

sJcK t
⊔

m∈Methods

sJmK(I), (1)

i.e., an object invariant is a property that holds after the execution of the con-
structors and before and after the execution of the public methods4. Once we
fix an abstract domain A and the corresponding static analysis s̄J·K, equation (1)
can be solved with standard fixpoint techniques. A widening operator may be
required to enforce the convergence of the iterations.

In our example, we let A be the non-nullness abstract domain [14]. At the
first iteration, the analysis infers that JobTitle and Name are not null at the
exit of the constructor: I0 = 〈Name 7→ NN, JobTitle 7→ NN〉. The analysis then
propagates I0 to the entry point of the two methods: s̄JGetFullNameK(I0) =
s̄JBaseSalaryK(I0) = I0 so that I0 is an object invariant. It is easy to see that I0
is the strongest state-based invariant for Person. Using the invariant I0, a static
analyzer can prove the safety of all the field dereferences in the class.

2.3 Drawbacks of Class-Level Modular Analysis

In general a class-level modular analysis is brittle with respect to source modifi-
cations. A small change in one part of a class may cause a warning in a distant
(apparently) totally unrelated part of the same class, causing major confusion for
the programmer. We identify two main sources of brittleness. The first source
arises from adding new members (constructors, methods) to a class. The sec-
ond source arises from changes to the allowed initial method states and object
initialization.

Addition of New Class Members: Suppose that a new constructor is added
to the class in our example as follows:

public Person(string name) {
Contract.Requires(name != null);

this.Name = name; }

Let us call the modified class Person′. The field JobTitle is not assigned in
the constructor, and it gets the default value null. The C# compiler does not
issue any warning: it is perfectly legal to not assign a field (even if marked as
readonly) in the constructor. The class-level modular analysis now considers the

4 Here for simplicity we omit the treatment of aliasing, of inheritance, of the projection
operators, and of method calls. The interested reader can find the extension of (1)
for the treatment of those features in [23].

4

two constructors, and hence two ways of initializing the object. The object state
after constructor invocation is:

J0
0 = s̄JPerson(string, JobTitle)K = 〈Name 7→ NN, JobTitle 7→ NN〉
J1

0 = s̄JPerson(string)K = 〈Name 7→ NN, JobTitle 7→ T〉
J0 = J0

0 t J1
0 = J1

0 .

The analysis of the methods yields:

J0
1 = s̄JGetFullNameK(J0) = 〈Name 7→ NN, JobTitle 7→ T〉
J1

1 = s̄JBaseSalaryK(J0) = 〈Name 7→ NN, JobTitle 7→ NN〉
J1 = J0

1 t J1
1 = J0.

It is easy to see that J0 is the strongest state-based object invariant for the
modified class Person′. Therefore no imprecision is introduced by the abstract
domain (or in general by the widening).

The analysis verifies the field dereferences in GetFullName: the explicit check
for JobTitle nullness ensures that the successive access is correct. On the other
hand, the analysis now issues a warning for the dereference of JobTitle in
BaseSalary. This warning is no longer a false alarm, but a symptom for a real
defect in the code. However, what is the real origin of this problem? Who should
be blamed? Was the original class correct? Or, could it be that the verification of
BaseSalary in the first version of Person was just a “lucky” accident? After all,
the programmer was protecting against JobTitle being null in GetFullName,
but she forgot to do so in the other method. The class-level static analysis on
Person was smart enough to prove that the field JobTitle was always not-null.
But was it the intent of the programmer?

Ideally, if the programmer wanted JobTitle to be not-null, then we should
emit the warning in the new version of the class where the field is assigned a
null value (i.e., the constructor). If, on the other hand, the programmer allowed
JobTitle to be null, then we should emit the warning where the field is deref-
erenced (i.e., BaseSalary), and we should produce an inter-procedural trace
leading to the alarm.

One can argue that if Person(string) is not used in the program, no warn-
ings would have been emitted. However it is a good design pattern to consider
and analyze a class as a whole, regardless of how it is used. Moreover a class can
be compiled as a library and used outside the project: the analysis cannot rely
on the context.
Changing the Initial State of the Object: Suppose that in the example
of Fig. 1 the precondition for Person(string, JobTitle) was omitted or deleted.
Call the resulting class Person′′. Then the object fields can be assigned null so
that invariant (1) is T (trivially true invariant). As a consequence the analysis
can no longer prove the safety of the field dereference in BaseSalary, and it
emits a warning in that method. While the analyzer is correct in pointing out
that dereference, because that is the point where the runtime error will occur, the
real error may be in the constructor where the programmer has not prevented

5

her implementation from leaving jobTitle initialized to null. Catching this kind
of weakness in realistic and large classes is in general quite difficult.
Usability Impact: In general, an apparently innocent and harmless code ad-
dition like a new constructor caused a warning in a piece of code that was pre-
viously verified. Adding new constructors or new methods may cause the object
invariant to be weaker, hence causing the analysis to emit alarms in many places
that are apparently unrelated to the changes. Debugging those problems can be
very painful for the programmer: it is hard from invariant (1) to trace back the
origin of a warning. In a realistic setting, a class definition may contain dozens
of methods, some of them with a complex control flow graph. Furthermore,
the underlying abstract domain used by the analyzer may be very complex—in
general, the reduced product of many abstract domains, e.g., alias, numerical,
symbolic, arrays, etc. As a consequence, the object invariant inferred according
to (1) may not be immediately evident to the programmer. Pretty-printing the
inferred invariant is of little help. The programmer would have to understand
why the tool inferred the object invariant, and how this invariant was used to
prove the assertions in the previous version of the class. Then, she would have
to inspect the newly inferred invariant, understand why it is different from the
previous one, i.e., to identify the root cause of the alarm. In real code this process
is time consuming, and requires the programmer to have some expertise about
the internals of the analyzer, something we want to avoid.

In principle, the above noted brittleness is problematic for all inference prob-
lems, e.g., loop invariants and postconditions. However, according to our experi-
ence, loop invariants and postcondition inference is pretty stable. We guess that
these inferences are more stable because they are locally inferred. Object invari-
ant inference, on the other hand, manifests a more chaotic behavior: according
to equation (1), the effects of small changes are amplified by the interleaved
propagation to all the other class members, de facto losing locality.

2.4 Necessary Object Invariants

We propose a different, new approach to the object-invariant inference problem.
We detect conditions that should hold on the fields of an object, for otherwise
we can exhibit a trace from object construction and a series of method calls
that leads to an assertion failure inside a method of the class. These conditions
are necessary for the object’s correctness. Technically, instead of performing a
forward analysis as in equation (1), we perform a goal-directed backward inter-
procedural propagation of potentially failing assertions. By proceeding back-
wards, we can infer an abstract error trace, producing a more meaningful mes-
sage for the programmer. We illustrate our technique with the Person example.

In the original class Person, we first run a method-level separate modu-
lar analysis of the methods, assuming the object invariant to be T 5. cccheck
will report the warnings as in Sect. 2.1. Using the techniques of [8] we try
to infer preconditions by pushing the assertions that cannot be proven to the
method entry points. In our example, we get the two following conditions on
the entry state: I(GetFullName) = this.Name != null and I(BaseSalary) =

5 If the class contains a programmer-provided invariant, we will use it.

6

this.JobTitle != null. I(m) denotes a necessary precondition for the method
m. The conditions are necessary for the correctness of the method: if violated, an
error will definitely occur. In this example, they happen to also be sufficient: if
they hold at entry, then no error will appear at runtime. However, they cannot
be made pre-conditions as they violate the visibility rules of the language: a pre-
condition cannot be less visible than the enclosing method [24]. The two fields
are private to the object, but the conditions are on the entry of public methods.
Thus, there is no way for the client to understand and satisfy these conditions at
call-sites. The conditions are internal to the object, but they should hold when-
ever the respective method is called. In particular, they should hold just after ob-
ject construction, i.e., just after the constructor is done. Our analysis pushes the
necessary conditions to the exit point of constructor Person(string, JobTitle)
as postconditions that should be established by the constructor. The analyzer
can easily prove the two assertions (they follow from the constructor precondi-
tion). As the fields are marked as readonly, their value cannot be changed by
methods after construction, and so I(GetFullName)∧I(BaseSalary) is an object
invariant. Overall, no warning is raised for Person.

In Person′, the conditions I(GetFullName) and I(BaseSalary) are propa-
gated backwards to both constructors. In the newly added constructor, the as-
sertion this.JobTitle != null is false. cccheck emits an alarm pointing to
the newly added constructor (instead of the field dereference in BaseSalary as
in Sect. 2.2). Furthermore, cccheck produces an error trace: the sequence of
calls 〈Person′(s), BaseSalary〉, for any s, will drive the execution into a null
dereference.

In Person′′, the conditions are propagated to the constructor. None of the
conditions are satisfied by the constructor at the exit point: both this.Name and
this.JobTitle can be null. The analysis further propagates those assertions to
the constructor entry, as preconditions: name != null && jobTitle != null.
It also infers a provenance trace: violating the first (resp. second) precondition
will point to a failure in GetFullName (resp. BaseSalary).

3 Preliminaries

A class is a tuple 〈F, C, M, IF〉, where F is a set of fields, C is a set of object
constructors, M is a set of methods, and IF is an object invariant. A field f ∈ F

has a type, a visibility modifier private or public, and an optional readonly
flag specifying if the field can be assigned only in constructors. We refer to
constructors and methods as members (m ∈ C∪M). Each member has a signature
(return type, parameter types), a visibility modifier private or public, a body
bf ∈ S , an optional precondition Pref, and an optional postcondition Postf.
When clear from the context, we omit the subscript for the member from the
body, the precondition, and the postcondition. The optional object invariant IF
is a property only on the fields in F. We assume the contracts are expressed in
a side-effect free language B. For the sake of simplicity, we focus our attention
on private fields and public constructors and methods. It is difficult to state
an object invariant on public fields (preconditions and postconditions are better

7

suited for it) and private methods do not contribute to the object invariant. We
do not consider inheritance in this paper.

Let Σ be a set of states and τ ∈ P(Σ ×Σ) be the transition function. The
partial-trace semantics of the body b of a member has a fixpoint characterization:

τ+
b (S) = lfpλT. S ∪ {σ0 . . . σnσn+1 | σ0 . . . σn ∈ T ∧ τb(σn, σn+1)}.

The concretization function γB ∈ B→ P(Σ) gives the semantics of a contract in
terms of the set of states Σ. The initial states for the execution of a member are
S0 = γB(IF) ∩ γB(Pre). The partial-trace semantics of a member is τ+

b (S0). The
bad states B are the ones violating some code or language assertions (Bs ⊆ Σ),
or the postconditions: B = Bs ∪ γB(¬Post). The finite bad traces are those that
contain at least one bad state: B∗ = {σ0 . . . σn ∈ Σ∗ | ∃i ∈ [0, n].σi ∈ B}. The
good runs of a member from S ⊆ S0 are G(b, S) = τ+

b (S) \ B∗. Dually, the bad
runs of a member from S ⊆ S0 are B(b, S) = τ+

b (S) ∩B∗.
We assume an abstract domain A soundly approximating the set of states,

i.e., 〈P(Σ),⊆〉 −−−→←−−−α
γ
〈A,v〉 [7]. When ā ∈ A is such that S0 ⊆ γ(ā), then the

abstract semantics s̄JbK(ā) ∈ A overapproximates αΣ(τ+
b (S0)) — αΣ being the

abstraction collecting the states in a set of traces.
In [8] we defined the problem of necessary initial conditions inference as

finding an initial condition e ∈ B such that: G(b, γB(e) ∩ S0) = G(b, S0) and
B(b, γB(e) ∩ S0) ⊆ B(b, S0), i.e., e is a condition at the entry of b such that:
(i) all good runs are preserved; and (ii) only bad runs are eliminated. Please
note that the conditions for the necessary precondition inference are equivalent,
because of monotonicity, to only requiring that G(b, γB(e)∩S0) ⊇ G(b, S0). Also,
the problem is different from the inference of the weakest (liberal) preconditions,
which imposes that all the bad traces are eliminated. For instance, a trivial
solution to our problem is e = true, but true is not (in general) a solution
of λX.X =⇒ wlp(b, Post). Cousot, Cousot, and Logozzo [8] presented several
static analyses I(b) ∈ A → B to infer non-trivial initial necessary conditions,
parameterized by the abstract domain A. Those analyses are more or less precise.
They can discover simple predicates (e.g., x != null), disjunctive conditions
(e.g., x ≤ 0 ∨ 0 < y), or quantified conditions over collections (e.g., ∀i.0 ≤ arr[i]
or ∃i.arr[i] = 123). The common idea behind the analyses of [8] is to find a
Boolean expression e in terms of the member entry point values, such that if e is
violated at the entry point, then an assertion a will later definitely fail (up to non-
termination). We denote this relation as e a. We do not repeat the details of
these analyses here, leaving them as a building block to our analysis of necessary
object field conditions. Our goal here is: (i) to show how such analyses can be
lifted to infer necessary field conditions; and (ii) to prove that this inference is
competitive with the forward class-level modular analysis in terms of precision
and performance.

4 Inference of Necessary Conditions on Object Fields

Our goal is the inference of necessary conditions on object fields. A necessary
field condition is a property that should hold on the instance fields of an object,

8

otherwise there exists a context (sequence of public method calls) that causes
the object to be in a bad state. In this section we design a new static analysis,
built on the top of a generic abstract interpretation of the class members, to
infer such conditions.

The verification of a member m, cccheck(m,out ā)6, works in two steps: (i)
first analyze the member to infer program-point specific invariants, call these ā;
(ii) use these inferred invariants to prove the assertions in m body. Assertions
can be user-defined assertions or language assertions (e.g., pointer dereference,
arithmetic overflow, division by zero . . .). The member precondition and the
postconditions of the called functions are turned into assumptions (nothing to be
proven). The member postcondition, the object invariant, and the preconditions
of the called functions are turned into assertions (they should be proven). For
methods only, the object invariant is assumed at their entry point.

If no alarm is raised, i.e., the member has been verified, there is nothing to
do. Otherwise, cccheck tries to infer an initial condition. The necessary initial
condition for a member m is I0 := I(m)(ā). If I0 ≡ true we are done: there is no
way to push any of the failing assertions to the entry point.

If m is a constructor, then I0 contains predicates on parameters, on the public
fields reachable from the parameters, or on private fields of an object of the same
type as the type m belongs to.

In the first two cases, I0 can be made a precondition of m. We denote by
φP := π1(I0) the components of I0 that are valid preconditions according to the
language visibility rules. Note that in general, when m contains loops, φP does
not guarantee its safety. The safety in general can be checked by re-running the
verification with the new precondition: cccheck(m[Pre 7→ Prem ∧ φP],out ā). In
some cases, safety can be guaranteed by construction, e.g., if m contains no loops.
If we can prove safety, we can mask the warning (the precondition is a necessary
and sufficient condition).

In the last case, when an object of the same type as the type m belongs to
is passed as a parameter, we emit the warning, and point out the assumption
the programmer is making on the private field of a different object, suggesting
a refactoring.

If m is a method then there is a fourth case for I0: it may contain some
condition φI on the private fields of the this object. The condition φI cannot
be made a precondition of m as a precondition less visible than the enclosing
member is not allowable by the Design-by-Contracts methodology: there is no
way for the client to satisfy the precondition7. Nevertheless, φI is a necessary
condition on the object fields, which should hold whenever the method is invoked.
In particular, it is a condition that should hold just after any of the constructors
c or any of the (public) methods m′ are executed. Otherwise we can construct
a context where the call to c or m′ is immediately followed by a call to m, and
we know by construction that invoking m in a state satisfying ¬φI will definitely

6 As usual in programming languages the keyword out denotes out parameters.
7 Remember that we are only considering public methods. If the method was private,

then the condition could have been made a precondition.

9

Result: A necessary condition I∗ on object fields

while true do
φ ← true

foreach m ∈ M do
if ¬cccheck(m, out ā) then // Strengthen precondition and invariant
〈φP , φI〉 ← π2(I(m)(ā))
Prem ← Prem ∧ φP

φ ← φ ∧ φI

end

end
if φ = true then

break// no change on IF, we are done
else

IF ← IF ∧ φ
end

end
foreach c ∈ C do

if ¬cccheck(c, out ā) then // Strengthen the precondition
Prec ← Prec ∧ π1(I(c)(ā))

end

end

Algorithm 1: The necessary field conditions inference algorithm. The algo-
rithm can be easily instrumented to trace the provenance of the φs appearing
in I∗ and hence to construct a failing context.

cause a failure (up to termination). Therefore we can strengthen the object
invariant to IF 7→ IF ∧ φI , and repeat the analysis of all the class members. We
denote by 〈φp, φI〉 := π2(I0) the pair containing the new precondition for m and
the necessary condition on the object field.

For each new condition φ added to the object invariant we can remember its
provenance (the failing assertion and the containing member). In general, we can
generate a provenance chain an an−1 . . . a0. Suppose that an is an assertion
in one of the object constructors. By construction we know (up to termination)
that if an is violated, then we can construct a sequence of public method calls
(the ones containing the assertions ai, i ∈ [0, n]) causing a0 to fail at runtime.
Therefore, we can produce more meaningful warnings to the programmer by
pointing out the assertion an and the sequence of public method calls that will
lead to an assertion failure at runtime if an is violated.

Algorithm 1 formalizes our explanations above. It computes a greatest fix-
point on the abstract domain B × (C → B) × (M → B). The partial order is the
pointwise lifting of the logical implication ⇒. Please note that the algorithm
may not terminate, necessitating widening for convergence. A simple widening
is to limit the number of iterations (k-widening). The algorithm can be opti-
mized using Gauss-Seidl chaotic iterations [6], i.e., by strengthening IF after the
analysis of each method.

It is easy to modify it to track the origin of the assertions. The object con-
dition is in conjunctive form: φI = φ0

I ∧ · · · ∧ φnI . By construction of I, each
φiI , i ∈ [0, n] originates from some assertion a that cannot be proven: ∃a. φiI a.
In turn, a may be an inferred condition with its own provenance, and so on, ef-
fectively building a provenance chain. We denote by I∗ the conjunction of the
φs computed by the algorithm at each step.

10

5 Object Invariants for Readonly Fields

The predicate I∗ inferred by the Algorithm 1 is a necessary condition on the
object fields. It states a condition that must hold on the object’s fields in be-
tween calls to public methods for otherwise, there exists a series of method calls
from object construction to a guaranteed assertion failure. In general, the def-
inition of object invariants is tied to a particular methodology for when object
invariants are supposed to be valid. These programming methodologies define at
which program points the object invariant holds, and which aliasing containment
policy is assumed and enforced. Different methodologies adopt different policies
(e.g., cccheck [15], Spec# [1], jStar [10] or VeriFast [20]). The programming
methodology is an orthogonal issue to the solution presented in this paper, since
it is mainly concerned with guaranteeing that object invariants are sufficient for
proving the safety of all methods. In contrast, we are inferring necessary condi-
tions on fields without which failure is guaranteed. This distinction is analogous
to the distinction between necessary and sufficient preconditions [8]. Thus, in
this paper we do not consider any particular object invariant methodology.

Yet, it is still useful to point out one special case, where we can indeed talk
about an object invariant: If we restrict ourselves to include in Algorithm 1
only readonly fields, then the inferred predicate is truly an object invariant,
since it needs to hold at every program point after construction (independent of
methodology).

A field marked as readonly can only be updated in a constructor of the class
it belongs to [19]. Assignment to a readonly field is not compulsory. If a readonly
field is not initialized, it gets the default value (e.g., null for heap objects). A
readonly field is different from a constant field in that it is not a compile time
constant.

The algorithm for the inference of object invariants for readonly fields differs
from Algorithm 1 in the way the inferred necessary conditions for the methods
are selected: 〈φp, φI , φA〉 := π3(I(m)(ā)). The function π3 ∈ B → B3 partitions
the inferred conditions according to visibility rules. The precondition φP con-
tains only variables as-visible-as the method. The readonly object invariant φI
contains only readonly fields of the this object. Finally the input assumption
φA contains conditions necessary for the method correctness, but which cannot
be included in the method precondition or the readonly invariant.

It is easy to see that I∗ computed by this modified algorithm is an invariant
on object fields, no matter which methodology for object invariants is chosen.
Indeed, the initial, programmer-provided condition IF is an invariant. All the
successive additions are properties on readonly fields that should hold at the
end of the constructor and — by the semantics of readonly fields — cannot be
further changed.

6 Experiments

We evaluate the cost and the precision of our analysis by comparing it to runs
of cccheck: (i) without object invariants inference; (ii) with object invariants
inference based on class-level modular analysis. We want to measure the extra

11

cost and precision induced by our analysis. We use the main libraries of the
.NET framework (mscorlib, System, System.Core) and some randomly chosen
libraries as benchmarks. The libraries are available in all Windows installations.

Experimental setting. We ran cccheck with four different settings:

(BR) with the object invariant inference disabled;
(NCR) with the object invariant inference enabled for readonly fields only (Sect. 5);
(NC1) with the object invariant inference enabled for all fields (Sect. 4), with the

constraint of analyzing every method only once;
(CLMAR) with the forward class-level modular analysis enabled for readonly fields only

(Sect. 2.2).

In the (BR) experience, we ran cccheck with the default abstract domains
and options. The default abstract domains include a domain for the heap analy-
sis, one for the non-null checks, several numerical abstract domains, and an ab-
stract domain for collections (more details in [15]). In this configuration, cccheck
verifies the absence of: (i) contract violations, (ii) null dereferences, and (iii) out-
of-bounds array accesses. cccheck performs intra-procedural modular analysis:
it infers invariants on the member body which it uses to discharge the proof
obligations. It exploits contracts to achieve inter-procedural analysis. To reduce
the annotation burden, cccheck infers and propagates preconditions and post-
conditions. First, cccheck computes an approximation of the call-flow graph
of the assembly under analysis. Then it schedules the analysis of the members
in a bottom-up fashion: callees are analyzed before callers. Inferred precondi-
tions (resp. postconditions) are propagated to the callers as additional asserts
that should be proven (resp. assumes it can rely over). Finally, to improve per-
formance, cccheck implements a caching mechanism to avoid re-analysis: if it
detects that a member has not changed (in our case, no new contract has been
added to the member or to its callees) it skips its analysis, and simply replays
the previous result (warnings, inferred contracts).

(NCR) adds to (BR) the algorithm to infer object invariants for readonly
fields. We include (NC1) in the experiments to get a better sense of the power of
inferring necessary field conditions. It computes field conditions for all fields, but
without iterating the propagation until a fixpoint is reached. It is essentially Al-
gorithm 1 instantiated with the Gauss-Seidl iteration schema with a 1-widening
(i.e., the widening is set to one iteration). (CLMAR) adds to (BR) object invari-
ants inference for readonly fields using a class-level modular analysis.

Results. In Fig. 2, we report, for each library, the total number of meth-
ods, the number of proof obligations (language assertions or inferred contracts)
generated during the analysis, the number of proof obligations that cannot be
proven and the overall execution time. The first thing to note is the increase on
checks. This is due to the field conditions being inserted as postconditions to be
checked at constructor exits and method exits, as well as propagation of nec-
essary field conditions to preconditions of constructors, and on to call-sites. In
return, we assume the invariant at method entries. The increase in proof obliga-
tions is paid for by the reduction in overall warnings. In the (NCR) experience,
we have at worst 45 (Data.OracleClient) and at most 741 (Data.Entity) fewer

12

(BR) (NCR) (NC1) (CLMAR)
Library # Meth. Checks Top Time Checks Top Time Checks Top Time Checks Top Time

mscorlib 22,904 113,551 13,240 31:41 113,750 13,084 27:36 115,002 11,053 32:22 116,116 13,152 26:12
Addin 552 4,170 682 4:15 4,148 605 4:07 4,295 485 4:11 4,067 571 12:55
Composition 1,340 6,228 909 0:44 6,356 791 0:46 6,302 743 0:47 8,095 885 1:57
Core 5,952 34,324 5,323 29:57 36,100 4,820 33:50 36,196 4,463 34:54 42,602 5,715 72:31
Data.Entity 15,239 88,286 12,460 23:13 87,743 11,719 24:02 91,591 15,861 27:59 88,125 11,569 43:36
Data.OracleClient 1,961 9,596 1,070 2:38 9,738 1,025 2:21 9,736 887 2:26 107,23 1,018 3:25
Data.Services 2,448 18,255 3,118 6:45 18,518 2,938 7:23 18,733 2,749 6:54 21,818 2,989 24:18
System 15,586 94,038 8,702 15:03 93,948 8,644 15:15 96,154 10,693 15:30 94,008 8,648 17:37

Fig. 2. Experiments results showing the impact of our static analysis in reducing the false warnings
and its comparison with a class-level modular analysis. Time is in minutes and seconds. Columns
Checks and Top are respectively the total number of proof obligations and the number of proof
obligations that cannot be decided.

warnings. When percentages are observed, the best improvement is in the Core
benchmark (2.16 %). (NC1) in general provides an even more dramatic reduc-
tion of the total number of warnings (up to 2, 187 less in mscorlib) but in two
cases it adds to the baseline (e.g., 3, 401 more warnings for Data.Entity). The
reason for it is that in some cases the inferred object invariant is quite complex
(many disjuncts). It gets propagated as precondition for the constructor. The
constructor is called in many places and either cccheck cannot prove the pre-
condition at those call sites, or it is further propagated, sometime originating in
an even more complex call-site assertions, etc. As one may expect (CLMAR) is
generally more precise than (BR) – up to 891 fewer warnings on Data.Entity.
Nevertheless there is no definite answer whether (CLMAR) is more precise than
(NCR). When absolute numbers are compared, in 5 cases (mscorlib, Composi-
tion, Core, Data.Services, System) (NCR) emits fewer warnings than (CLMAR).
On the other hand, when the ratio Top/Checks is considered, in 6 cases (mscorlib,
Addin, Composition, Data.Entity, Data.OracleClient, Data.Services) (CLMAR)
provides better results than (NCR). Overall, precision-wise there is no big dif-
ference between (NCR) and (CLMAR).

When performances are considered, results are somehow surprising. A more
precise analysis does not always mean a slower analysis. For instance the ana-
lyis of mscorlib was faster in both (NCR) and (CLMAR) than in (BR). On
the other hand, in some benchmarks (CLMAR) was way slower than (NCR)
and (NC1) (e.g., Addin, Core, Data.Entity, Data.Service). In those benchmarks
the bottom-up propagation of inferred pre/post-conditions caused (CLMAR)
to converge very slowly. For instance, a new inferred contract may trigger the
re-analysis of a constructor, originating in a new object invariant, which at its
turn impacts, e.g., the postconditions inferred for the methods of this type, etc.
Of course, theoretically (NCR) may suffer from the same problem, but we did
not experienced it in our experiments. Overall, performance-wise (NCR) seems
a better choice than (CLMAR): in all but one experiment (mscorlib) it is faster,
it adds a modest slowdown w.r.t. (BR), and it seems to be less prone to hit
performance corner cases.

In Fig. 3 we report the number of field conditions inferred (after simplifi-
cation, to remove redundant ones). For (NCR) and (NC1) we also report the
number of violations, i.e., the number of necessary field conditions for which

13

(NCR) (NC1) (CLMAR)
Library Inferred Violations Inferred Violations Inferred
mscorlib 41 1 823 80 61
AddIn 9 5 48 8 2
Composition 36 0 63 0 33
Core 150 0 323 6 81
Data.Entity 230 4 531 18 378
Data.OracleClient 13 0 75 8 54
Data.Services 53 1 96 11 49
System 22 0 349 55 131

Fig. 3. Experiments results showing the number of inferred conditions and the number of definite
violations found.

cccheck was able to automatically find an instantiation context that definitely
leads to a failure. When comparing (NCR) and (NC1), it is worth noting that
the effectiveness of invariant inference is limited by the fact that in “old” li-
braries (e.g., mscorlib) few fields are actually declared as readonly. The inferred
conditions distribute evenly between (NCR) with (CLMAR): in 4 benchmarks
(NCR) infers more conditions than (CLMAR), and vice versa. Our static anal-
ysis was able to find several instantiation contexts definitely leading to a failure
in some classes. Experiment (NCR) shows that in 11 cases (overall) it is possible
to cause a class to fail by breaking an invariant on readonly fields. The failing
context creates the object by invoking a particular constructor and just after
calling a particular method (e.g., the sequence Person(string), BaseSalary

in Sect. 2). In general, in experiment (NC1) the instantiation context is more
complex, requiring longer invocation sequences to manifest.

Discussion. The experimental results are encouraging, but they require fur-
ther study. In particular, given that programs are partially specified only, im-
portant usage conditions may be absent from the code. To the programmer, our
necessary field conditions may appear too strong or the failing context may ap-
pear unfeasible. E.g., consider a class that requires an initialization method A to
be called before allowing a call to B. If this initialization pattern is not specified
using preconditions and postconditions on A and B, necessary field condition
inference will probably find a condition for B that is only established after A,
but not by the constructors. Our analysis will suggest it as an invariant to be
added to the constructors, which may confuse the programmer.

In general, a necessary field condition φm can be decomposed into a precon-
dition Prem and a weaker invariant I, such that Prem ∧ I ⇒ φm. In our example
above, assume a public flag init is used to indicate that the object is initial-
ized. In that case, the precondition for B is init, and the weaker invariant I is
init⇒ φm. We plan to investigate how to decompose necessary field conditions
into the above form.

Overall evaluation. The inference of field conditions improves the precision
of the basic modular analysis (BR) – this was expected. The question is then
which analysis to use, and in particular which one to provide to our users, who
were asking for a readonly fields inference algorithm. When precision is con-
sidered (NC1) generally performs slightly better than (NCR) and (CLMAR),
except one case where it adds thousands more warnings. Precision-wise, there

14

is no clear winner between (NCR) and (CLMAR) – the choice seems to depend
on the particular code base. When the extra cost of the analysis is considered,
(NCR) performs better than (NC1) and way better than (CLMAR) in most
cases. As far as usability is concerned, (NCR) and (NC1) should produce a bet-
ter programmer experience since warnings are more understandable and easier to
fix. We have no formal user study on that issue, only anedoctal evidence from the
interaction with our customers (e.g., on the CodeContracts MSDN forum [25]).
Overall, we think that (NCR) is the analysis best suited for our users, and we
decided to set it as the default object invariant inference in the CodeContracts
distribution.

7 Related Work
Daikon [12] pioneered the dynamic invariant inference approach. Given a suite of
test cases, Daikon observes the values, and then generalizes it to likely invariants
(pre, post, and object invariants). As a dynamic technique, Daikon requires a
good set of test cases in order to produce useful invariants. In contrast, our
approach is purely static, it works without test inputs and it is not limited by
the pre-set candidate invariants. DySy [9] uses dynamic symbolic execution to
infer preconditions, postconditions, and invariants. Like Daikon, the approach
depends on test suites but uses symbolic path condition computations to identify
candidate invariants (so it is not limited to a pre-defined set of invariants).

On the purely static side of invariant inference, Logozzo [23] introduced
the forward analysis described in the introduction (equation (1)). Chang and
Leino [4] instantiated [23] using the Spec# methodology [1] and stronger heap
invariants. Houdini [17] is an annotation inference system based on ESC/Java.
It guesses invariants and uses ESC/Java to prove them. Houdini is limited by
the pre-set initial candidates for invariants.

What sets our work apart from all the above is the focus on necessary condi-
tions that, when violated, lead to failures. Instead, all the above analyses com-
pute a form of strongest invariants given a set of possible candidates or abstract
domains. We are not aware of work describing the problem of analysis brittleness
with respect to small or simple program changes.

Surprisingly little research focuses on the problem of detecting the origin of
alarms in abstract interpretation-based analyzers. We are aware of Rival [26]
who studies the source of warnings in the context of the ASTREE analyzer,
and Brauer and Simon [2] who use under-approximations to present a counter-
example to the programmer. Our work differs from theirs because we do not
only want to report the cause for a warning but we also want to infer a contract
for the program. The problem is studied more widely in model checking [5] and
deductive verification, e.g., [21], where the finiteness hypotheses make the prob-
lem more tractable. Our traces leading to failure can be viewed as an approach
to finding the origin and explanations of warnings.

8 Conclusion

Necessary object field conditions provide an alternative approach to finding pred-
icates that are candidates for object invariants. These conditions are computed

15

using a backward analysis from assertions within methods that will fail, unless
the object field condition is satisfied on entry to the method. This approach
produces invariant candidates that are demand-driven, as opposed to accidental
implementation details that are often inferred by forward analyses, drastically
eliminating the usual brittleness of object invariant inference caused by changes
in the program. We evaluated our analysis in the context of the CodeContract
static checker and found that it significantly reduces the number of warnings in
a variety of large code bases.

References

[1] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter. Specification
and verification: the Spec# experience. CACM, 54(6):81–91, 2011.

[2] J. Brauer and A. Simon. Inferring definite counterexamples through under-approximation. In
NASA Formal Methods, 2012.

[3] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions: Advanced specification
and verification with JML and ESC/Java2. In FMCO, 2006.

[4] B.-Y. E. Chang and K. R. M. Leino. Inferring object invariants: Extended abstract. ENTCS,
131, 2005.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.

[6] P. Cousot. Asynchronous iterative methods for solving a fixed point system of monotone equa-
tions in a complete lattice. Res. rep. 88, Laboratoire IMAG, Université scientifique et médicale
de Grenoble, France, 1977.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL, 1977.

[8] P. Cousot, R. Cousot, and F. Logozzo. Contract precondition inference from intermittent as-
sertions on collections. In VMCAI, 2011.

[9] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: dynamic symbolic execution for invariant
inference. In ICSE, 2008.

[10] D. Distefano and M. J. Parkinson. jStar: Towards practical verification for Java. In OOPSLA,
2008.

[11] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified framework for
verification techniques for object invariants. In ECOOP, 2008.

[12] M. D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis, University of
Washington, 2000.

[13] M. Fähndrich, M. Barnett, and F. Logozzo. Code Contracts, 2009.

[14] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-oriented
language. In OOPSLA, 2003.

[15] M. Fähndrich and F. Logozzo. Static contract checking with abstract interpretation. In
FoVeOOS, 2010.

[16] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive program
verification. In CAV, 2007.

[17] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java. In FME:
Formal Methods for Increasing Software Productivity, 2001.

[18] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for java. In PLDI, 2002.

[19] A. Hejlsberg, M. Torgersen, S. Wiltamuth, and P. Golde. The C# Programming Language.
Addison-Wesley Professional, 2010.

[20] B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier. In APLAS,
2010.

[21] C. Le Goues, K. R. M. Leino, and M. Moskal. The Boogie Verification Debugger (Tool Paper).
In SEFM, 2011.

[22] F. Logozzo. Class-level modular analysis for object oriented languages. In SAS, 2003.

[23] F. Logozzo. Modular static analysis of Object-oriented languages. PhD thesis, École poly-
technique, 2004.

[24] B. Meyer. Eiffel: The Language. Prentice Hall, 1991.

[25] MSDN. CodeContracts Forum. http://social.msdn.microsoft.com/Forums/en-US/codecontracts/threads/.

[26] X. Rival. Understanding the origin of alarms in Astrée. In SAS, 2005.

16

